一篇化学文献的翻译
化学论文翻译 - 英文原文+汉语翻译

School of Medical Engineering, Hefei University of Technology, Hefei 230009, China Received April 29, 2013; accepted June 23, 2013; published online August 21, 2013
Polo-like kinase 1 (Plk1), a member of a family of serine/threonine kinases, is an attractive target for the development of anticancer drugs because it is involved in the regulation of cell-cycle progression and cytokinesis. This kinase provides two pockets for developing Plk1 inhibitors: the N-terminal catalytic domain (NCD) and the polo-box domain (PBD). For both of the two pockets, some natural products were identified as Plk1 inhibitors and some synthetic Plk1 inhibitors were developed by mimicking ATP and phosphopeptides, natural products binding to NCD and PBD respectively. This article not only reviews the progression of Plk1 inhibitors binding to these two pockets, but also discusses diversity evolution and jump in the process of drug development using Plk1 inhibitors as examples and how they impact on drug design and pharmacophore modeling. diversity evolution, diversity jump, Polo-like kinase 1, ATP mimics, natural product
化学专业外文文献原稿和译文

外文文献原稿和译文原稿Facile synthesis of hierarchical core–shell Fe3O4@MgAl–LDH@Au as magnetically recyclable catalysts for catalytic oxidation of alcoholsA novel core–shell structural Fe3O4@MgAl–LDH@Au nanocatalyst was simply synthesized via supporting Au nanoparticles on the MgAl–LDH surface of Fe3O4@MgAl–LDH nanospheres. The catalyst exhibited excellent activity for the oxidation of 1-phenylethanol, and can be effectively recovered by using an external magnetic field.The selective oxidation of alcohols to the corresponding carbonyl compounds is a greatly important transformation in synthesis chemistry. Recently, it has been disclosed that hydrotalcite (layered double hydroxides: LDH)-supported Cu, Ag and Au nanoparticles as environmentally benign catalysts could catalyse the oxidation of alcohol with good efficiency. In particular, the Au nanoparticles supported on hydrotalcite exhibit high activity for the oxidation of alcohols under atmospheric O2 without additives. It has been extensively demonstrated that the activity of the nanometre-sized catalysts will benefit from decreasing the particle size. However, as the size of the support is decreased, separation using physical methods, such as filtration or centrifugation, becomes a difficult and time-consuming procedure. A possible solution could be the development of catalysts with magnetic properties, allowing easy separation of the catalyst by simply applying an external magnetic field. From the green chemistry point of view, development of highly active, selective and recyclable catalysts has become critical. Therefore, magnetically separable nanocatalysts have received increasing attention in recent years because the minimization in the consumption of auxiliary substances, energy and time used in achieving separations canresult in significant economical and environmental benefits.Magnetic composites with a core–shell structure allow the integration of multiple functionalities into a single nanoparticle system, and offer unique advantages for applications, particularly in biomedicine and catalysis. However it is somewhat of a challenge to directly immobilize hierarchical units onto the magnetic cores. In our previous work, the Fe3O4 submicro-spheres were first coated with a thin carbon layer, then coated with MgAl–LDH to obtain an anticancer agent-containing Fe3O4@DFUR–LDH as drug targeting delivery vector. Li et al. prepared Fe3O4@MgAl–LDH through a layer-by-layer assembly of delaminated LDH nanosheets as a magnetic matrix for loading W7O24as a catalyst. These core–shell structural nanocomposites possess the magnetization of magnetic materials and multiple functionalities of the LDH materials. Nevertheless, these reported synthesis routes need multi-step and sophisticated procedures. Herein, we design a facile synthesis strategy for the fabrication of a novel Fe3O4@MgAl–LDH@Au nanocatalyst, consisting of Au particles supported on oriented grown MgAl–LDH crystals over the Fe3O4 nanospheres, which combines the excellent catalytic properties of Au nanoparticles with the superparamagnetism of the magnetite nanoparticles. To the best of our knowledge, this is the first instance of direct immobilization of vertically oriented MgAl–LDH platelet-like nanocrystals onto the Fe3O4 core particles by a simple coprecipitation method and the fabrication of hierarchical magnetic metal-supported nanocatalysts via further supporting metal nanoparticles.As illustrated in Scheme 1, the synthesis strategy of Fe3O4@MgAl–LDH@Au involves two key aspects. Nearly monodispersed magnetite particles were pre-synthesized using a surfactant-free solvothermal method. First, the Fe3O4 suspension was adjusted to a pH of ca. 10, and thus the obtained fully negatively charged Fe3O4spheres were easily coated with a layer of oriented grown carbonate–MgAl–LDH via electrostatic attraction followed by interface nucleation and crystal growth under dropwise addition of salts and alkaline solutions. Second, Au nanoparticles were effectively supported on thus-formed support Fe3O4@MgAl–LDH by a deposition–precipitation method (see details in ESI).Fig. 1 depicts the SEM/TEM images of the samples at various stages of the fabrication of the Fe3O4@MgAl–LDH@Au nanocatalyst. The Fe3O4nanospheres (Fig. 1a) show asmooth surface and a mean diameter of 450 nm with a narrow size distribution (Fig. S1, ESI). After direct coating with carbonate–MgAl–LDH (Fig. 1b), a honeycomb like morphology with many voids in the size range of 100–200 nm is clearly observed, and the LDH shell is composed of interlaced platelets of ca. 20 nm thickness. Interestingly, the MgAl–LDH shell presents a marked preferred orientation with the c-axis parallel to, and the ab-face perpendicular to the surface of the magnetite cores, quite different from those of a previous report. A similar phenomenon has only been observed for the reported LDH films and the growth of layered hydroxides on cation-exchanged polymer resin beads. The TEM image of two separate nanospheres (Fig. 1d) undoubtedly confirms the core–shell structure of the Fe3O4@MgAl–LDH with the Fe3O4 cores well-coated by a layer of LDH nanocrystals. In detail, the MgAl–LDH crystal monolayers are formed as large thin nanosheet-like particles, showing a edge-curving lamella with a thickness of ca. 20 nm and a width of ca. 100 nm, growing from the magnetite core to the outer surface and perpendicular to the Fe3O4surface. The outer honeycomb like microstructure of the obtained core–shell Fe3O4@MgAl–LDH nanospheres with a surface area of 43.3 m2g_1 provides abundant accessible edge and junction sites of LDH crystals making it possible for this novel hierarchical composite to support metal nanoparticles. With such a structural morphology, interlaced perpendicularly oriented MgAl–LDH nanocrystals can facilitate the immobilization of nano-metal particles along with avoiding the possible aggregation.Scheme 1 The synthetic strategy of an Fe3O4@MgAl–LDH@Au catalyst.Fig. 1 SEM (a, b and c), TEM (d and e) and HRTEM (f) images and EDX spectrum (g) of Fe3O4 (a), Fe3O4@MgAl–LDH (b and d) and Fe3O4@MgAl–LDH@Au (c, e, f and g).Fig. 2 XRD patterns of Fe3O4 (a), Fe3O4@MgAl–LDH (b) and Fe3O4@MgAl–LDH@Au(c).The XRD results (Fig. 2) demonstrate that the Fe3O4@MgAl–LDH nanospheres are composed of an hcp MgAl–LDH (JCPDS 89-5434) and fcc Fe3O4 (JCPDS 19-0629). It canbe clearly seen from Fig. 2b that the series (00l) reflections at low 2θ angles aresignificantly reduced compared with those of single MgAl–LDH (Fig. S2, ESI), while the (110) peak at high 2θangle is clearly distinguished with relatively less decrease, as revealed by greatly reduced I(003)/I(110) = 0.8 of Fe3O4@MgAl–LDH than that of MgAl–LDH (3.9). This phenomenon is a good evidence for an extremely well-oriented assembly of MgAl–LDH platelet-like crystals consistent with the c-axis of the crystals being parallel to the surface of an Fe3O4core. The particle dimension in the c-axis is calculated as ~ 25 nm using the Scherrer equation (eqn S1, ESI) based on the (003) line width (Fig. 2b), in good agreement with the SEM/TEM results. The energy-dispersive X-ray (EDX) result (Fig. S3, ESI) of Fe3O4@MgAl–LDH reveals the existence of Mg, Al, Fe and O elements, and the Mg/Al molar ratio of 2.7 close to the expected one (3.0), indicating the complete coprecipitation of metal cations for MgAl–LDH coating on the surface of Fe3O4.The FTIR data (Fig. S4, ESI) further evidence the chemical compositions and structural characteristics of the composites. The as-prepared Fe3O4@MgAl–LDH nanosphere shows a sharp absorption at ca. 1365 cm_1 being attributed to the ν3 (asymmetric stretching) mode of CO32_ ions and a peak at 584 cm_1 to the Fe–O lattice mode of the magnetite phase, indicating the formation of a CO32–LDH shell on the surface of the Fe3O4 core. Meanwhile, a strong broad band around 3420 cm_1 can be identified as the hydroxyl stretching mode, arising from metal hydroxyl groups and hydrogen-bonded interlayer water molecules. Another absorption resulting from the hydroxyl deformation mode of water, δ(H2O), is recorded at ca. 1630 cm_1.Based on the successful synthesis of honeycomb like core–shell nanospheres, Fe3O4@MgAl–LDH, our recent work further reveals that this facile synthesis approach can be extended to prepare various core–shell structured LDH-based hierarchical magnetic nanocomposites according to the tenability of the LDH layer compositions, such as NiAl–LDH and CuNiAl–LDH (Fig. S3, ESI).Gold nanoparticles were further assembled on the honeycomb likeMgAl–LDH platelet-like nanocrystals of Fe3O4@MgAl–LDH. Though the XRD pattern (Fig. 2c) fails to show the characteristics of Au nanoparticles, it can be clearly seen by the TEM of Fe3O4@MgAl–LDH@Au (Fig. 1e) that Au nanoparticles are evenly distributed on the edgeand junction sites of the interlaced MgAl–LDH nanocrystals with a mean diameter of 7.0 nm (Fig. S5, ESI), implying their promising catalytic activity. Meanwhile, the reduced packing density (large void) and the less sharp edge of LDH platelet-like nanocrystals can be observed (Fig. 1c and e). To get more insight on structural information of Fe3O4@MgAl–LDH@Au, the HRTEM image was obtained (Fig. 1f). It can be observed that both the Au and MgAl–LDH nanophases exhibit clear crystallinity as evidenced by well-defined lattice fringes. The interplanar distances of 0.235 and 0.225 nm for two separate nanophases can be indexed to the (111) plane of cubic Au (JCPDS 89-3697) and the (015) facet of the hexagonal MgAl–LDH phase (inset in Fig. 1f and Fig. S6 (ESI)). The EDX data (Fig. 1g) indicate that the magnetic core–shell particle contains Au, Mg, Al, Fe and O elements. The Au content is determined as 0.5 wt% upon ICP-AES analysis.Table 1 Recycling results on the oxidation of 1-phenylethanol The VSM analysis (Fig. S7, ESI) shows the typical superparamagnetism of the samples. The lower saturation magnetization (Ms) of Fe3O4@MgAl–LDH (20.9 emu g_1) than the Fe3O4 (83.8 emu g_1) is mainly due to the contribution of non-magnetic MgAl–LDH coatings (68 wt%) to the total sample. Interestingly, Ms of Fe3O4@MgAl–LDH@Au is greatly enhanced to 49.2 emu g_1, in line with its reduced MgAl–LDH content (64 wt%). This phenomenon can be ascribed to the removal of weakly linked MgAl–LDH particles among the interlaced MgAl–LDH nanocrystals during the Au loading process, which results in a less densely packed MgAl–LDH shell as indicated by SEM. The strong magnetic sensitivity of Fe3O4@MgAl–LDH@Au provides an easy and effective way to separate nanocatalysts from a reaction system.The catalytic oxidation of 1-phenylethanol as a probe reaction over the present novel magnetic Fe3O4@MgAl–LDH@Au (7.0 nm Au) nanocatalyst demonstrates high catalytic activity. The yield of acetophenone is 99%, with a turnover frequency (TOF) of 66 h_1,which is similar to that of the previously reported Au/MgAl–LDH (TOF, 74 h_1) with a Au average size of 2.7 nm at 40 1C, implying that the catalytic activity of Fe3O4@MgAl–LDH@Au can be further enhanced as the size of Au nanoparticles is decreased. Meanwhile, the high activity and selectivity of the Fe3O4@MgAl–LDH@Au can be related to the honeycomb like morphology of the support Fe3O4@MgAl–LDH being favourable to the high dispersion of Au nanoparticles and possible concerted catalysis of the basic support. Five reaction cycles have been tested for the Au nanocatalysts after easy magnetic separation by using a magnet (4500 G), and no deactivation of the catalyst has been observed (Table 1). Moreover, no Au, Mg and Al leached into the supernatant as confirmed by ICP (detection limit: 0.01 ppm) and almost the same morphology remained as evidenced by SEM of the reclaimed catalyst (Fig. S8, ESI).In conclusion, a novel hierarchical core–shell magnetic gold nanocatalyst Fe3O4@MgAl–LDH@Au is first fabricated via a facile synthesis method. The direct coating of LDH plateletlike nanocrystals vertically oriented to the Fe3O4 surface leads to a honeycomb like core–shell Fe3O4@MgAl–LDH nanosphere. By a deposition–precipitation method, a gold-supported magnetic nanocatalyst Fe3O4@MgAl–LDH@Au has been obtained, which not only presents high 1-phenylethanol oxidation activity, but can be conveniently separated by an external magnetic field as well. Moreover, a series of magnetic Fe3O4@LDH nanospheres involving NiAl–LDH and CuNiAl–LDH can be fabricated based on the LDH layer composition tunability and multi-functionality of the LDH materials, making it possible to take good advantage of these hierarchical core–shell materials in many important applications in catalysis, adsorption and sensors.This work is supported by the 973 Program (2011CBA00508).译文简易合成易回收的分层核壳Fe3O4@MgAl–LDH@Au磁性纳米粒子催化剂催化氧化醇类物质一种新的核壳结构的Fe3O4@MgAl–LDH@Au纳米催化剂的制备只是通过Au离子负载在已合成的纳米粒子Fe3O4@MgAl–LDH球体的MgAl–LDH的表面上。
有机化学英文文献翻译

有机化学英文文献翻译海黄和紫檀哪个更有价值怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。
“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手串。
”端木轩的尚女士向记者引见说。
海黄紫檀领风骚手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。
怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网“目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。
”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。
一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。
“你看这10年间海南黄花梨价钱涨了百余倍,都说水涨船高,这海黄手串的价钱自然也是一路飙升。
”“这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。
”檀梨总汇的李女士说着取出手串让记者感受一下,托盘里一串直径2.5mm的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。
当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。
同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。
李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。
“和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。
”正说着店里迎来一位老顾客,这位顾客通知记者,受经济条件所限,他是先从1000元以内的小叶檀手串玩起,再一步一步升级的。
中英文文献以及翻译(化工类)

Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
化学化工类外文翻译 原文

化学化工类外文翻译原文Original Text:Chapter 1 Introduction1.1 BackgroundNuclear energy has been providing a significant share of the world’s electricity for more than half a century. Currently, nuclear power plants generate approximately 10% of the world’s electricity supply, with this figure increasing to over 30% in some countries such as France [1]. However, for nuclear energy to continue to be an important source of electricity in the future, the safe and efficient operation of nuclear power plants must be ensured. A key component of ensuring safe and efficient operation is the availability of inspection techniques that can detect defects, assess their severity, and monitor their growth over time.The presence of defects in materials used in nuclear power plants can arise from a number of sources including fabrication, welding, and service exposure. Defects can manifest themselves as a variety of features such as cracks, voids, inclusions, and inhomogeneities. Defects can be classified based on their size, shape, and orientation, with some defectsbeing more critical to the performance and safety of a component than others. For example, surface-breaking transverse cracks in pressure vessel components can be particularly critical since they can rapidly propagate under service loading and can lead to catastrophic failure if not detected and remedied in a timely manner [2].Inspection techniques used to detect and monitor defects in nuclear power plant components are continually evolving. Inspection methods have traditionally included visual examination, ultrasonics, radiography, and eddy current testing [3]. These techniques have proven reliable and effective, but have limitations such as the inability to inspect certain materials and geometries. In addition, advances in materials science and technology have led to the development of new materials with different physical and chemical properties that may not be well-suited to traditional inspection techniques. Therefore, there is a need to develop and optimize inspection techniques that are capable of detecting andmonitoring defects in advanced materials and structures.1.2 Objectives and ScopeThe primary objective of this chapter is to provide an overview of the different types of inspection techniques that are currently used in the nuclearpower industry for detecting, characterizing, and monitoring defects in materials and components. The chapter will discuss the limitations of current inspection techniques and the challenges associated with the inspection of advanced materials and structures. The chapter will also highlight recent developments in inspection techniques including the use of advanced sensors, imaging, and data analysis techniques.The scope of the chapter will cover a range of inspection techniques used in the nuclear power industry including visual examination, ultrasonics, radiography, eddy current testing, and other techniques such as thermography and acoustic emission testing. The chapter will focus on the application of these techniques to welds, pressure vessels, steam generators, and reactor components. The chapter will also briefly discuss the use of inspection techniques for other applications such as monitoring corrosion and degradation of materials.1.3 Organization of the ChapterThe remainder of this chapter is organized as follows. Section 2 provides an overview of visual examination and its application to the inspection of nuclear power plant components. Section 3 describes ultrasonic inspection techniques and their use in detecting and characterizing defects in materials and components.Section 4 discusses radiography and its use forimaging defects in materials. Section 5 covers eddy current testing and its application to the detectionof surface and subsurface defects. Section 6 provides an overview of other non-destructive evaluation techniques such as thermography and acoustic emission testing. Section 7 summarizes recent developments in inspection techniques including the use of advanced sensors and imaging techniques. Section 8 concludesthe chapter with a discussion of challenges and future directions in inspection technology for nuclear power plant components.中文翻译:第一章绪论1.1 背景核能已经为全球电力供应提供了半个多世纪的重要部分。
带原文的文献翻译

NaCaPO4-SiO2系统硅酸盐-磷酸盐玻璃的直接结晶摘要这项研究的主题是硅酸盐-磷酸盐玻璃NaCaPO4-SiO2系统,它们是玻璃的前身-结晶材料。
玻璃-通过NaCaPO4-SiO2系统结晶获得结晶材料玻璃属于一类叫做生物活性的材料。
为了获得玻璃-结晶材料和预先建立的参数,让玻璃结晶在特殊条件在实验是必须的。
为了设计直接结晶过程正常,有必要知道玻璃状前体的结构和微结构。
微观观查显示,熔析发生在所有的玻璃研究中。
基于DSC检查,它已经发现的该结晶NaCaPO4-SiO2系统的玻璃是一个多步骤的过程。
测试玻璃中,在DSC曲线存在几个明显分开放热的峰值,使它可能结晶只与分离的相矩阵剩余非晶反之亦然。
开展材料的详细X射线和光谱研究通过加热的梯度炉(DSC中的基础上指定的温度)得到的结果表明分离相与基体分别结晶。
因此,生物活性玻璃-结晶材料可由于得到的相分离现象和结晶相的预先建立的大小的存在。
关键词:玻璃-结晶材料,直接结晶,硅酸盐-磷酸盐玻璃第1章绪论玻璃和NaCaPO4-SiO2系统的玻璃结晶材料属于一组生理活性的材料,能够形成与组织结合[1-10]。
使用玻璃作为生物材料使得有可能采取的优点的玻璃态的特定属性,即易于获得的几乎任何形状,缓和通过控制属性化学组合物的适当的选择,以应用可能性各种加工方法,以及各向同性性能。
然而,在硅酸盐 - 磷酸盐玻璃的主要特征也是它的脆弱性,这显著限制了它们的用途如生物材料。
一种最好的方法就是提高眼镜的机械性能的最佳方式是执行部分结晶(失透),以获得玻璃 - 结晶材料。
这种材料的特点是非常的存在的结晶相的细晶体,随机分布在在玻璃状基质的其余部分[11,12]。
这使得组合两个玻璃和晶体材料的优点(高机械强度)。
其结果,玻璃的结晶材料的特点是高得多的机械强度相比玻前体。
然而,一个问题结晶相生长的出现会对玻璃的生物活性产生不利影响[13,14] 。
在极端的情况下,不受控制的结晶可导致转换生物活性玻璃成完全惰性材料[14]。
化学专业英语课文翻译

01 元素和元素周期表The number of protons in the nucleus of an atom is referred to as the atomic number, or proton number, Z. The number of electrons in an electrically neutral atom is also equal to the atomic number, Z. The total mass of an atom is determined very nearly by the total number of protons and neutrons in its nucleus. This total is called the mass number, A. The number of neutrons in an atom, the neutron number, is given by the quantity A-Z.原子核内的质子数被称为原子序数,或质子数,Z。
一个电中性原子的电子数量也等于原子序数,Z。
原子的总质量接近核内质子数和中子数之和。
这个总数被称为质量数A。
中子在一个原子中的数量,中子数,给出了的数量为A-Z。
The term element refers to, a pure substance with atoms all of a single kind. To the chemist the "kind" of atom is specified by its atomic number, since this is the property that determines its chemical behavior. At present all the atoms from Z = 1 to Z = 107 are known; there are 107 chemical elements. Each chemical element has been given a name and a distinctive symbol. For most elements the symbol is simply the abbreviated form of the English name consisting of one or two letters, for example:单质是指,一个纯物质由一种原子组成的。
中英文文献以及翻译(化工类)

Foreign material:Chemical Industry1.Origins of the Chemical IndustryAlthough the use of chemicals dates back to the ancient civilizations, the evolution of what we know as the modern chemical industry started much more recently. It may be considered to have begun during the Industrial Revolution, about 1800, and developed to provide chemicals roe use by other industries. Examples are alkali for soapmaking, bleaching powder for cotton, and silica and sodium carbonate for glassmaking. It will be noted that these are all inorganic chemicals. The organic chemicals industry started in the 1860s with the exploitation of William Henry Perkin’s discovery if the first synthetic dyestuff—mauve. At the start of the twentieth century the emphasis on research on the applied aspects of chemistry in Germany had paid off handsomely, and by 1914 had resulted in the German chemical industry having 75% of the world market in chemicals. This was based on the discovery of new dyestuffs plus the development of both the contact process for sulphuric acid and the Haber process for ammonia. The later required a major technological breakthrough that of being able to carry out chemical reactions under conditions of very high pressure for the first time. The experience gained with this was to stand Germany in good stead, particularly with the rapidly increased demand for nitrogen-based compounds (ammonium salts for fertilizers and nitric acid for explosives manufacture) with the outbreak of world warⅠin 1914. This initiated profound changes which continued during the inter-war years (1918-1939).Since 1940 the chemical industry has grown at a remarkable rate, although this has slowed significantly in recent years. The lion’s share of this growth has been in the organic chemicals sector due to the development and growth of the petrochemicals area since 1950s. The explosives growth in petrochemicals in the 1960s and 1970s was largely due to the enormous increase in demand for synthetic polymers such as polyethylene, polypropylene, nylon, polyesters and epoxy resins.The chemical industry today is a very diverse sector of manufacturing industry, within which it plays a central role. It makes thousands of different chemicals whichthe general public only usually encounter as end or consumer products. These products are purchased because they have the required properties which make them suitable for some particular application, e.g. a non-stick coating for pans or a weedkiller. Thus chemicals are ultimately sold for the effects that they produce.2. Definition of the Chemical IndustryAt the turn of the century there would have been little difficulty in defining what constituted the chemical industry since only a very limited range of products was manufactured and these were clearly chemicals, e.g., alkali, sulphuric acid. At present, however, many intermediates to products produced, from raw materials like crude oil through (in some cases) many intermediates to products which may be used directly as consumer goods, or readily converted into them. The difficulty cones in deciding at which point in this sequence the particular operation ceases to be part of the chemical industry’s sphere of activities. To consider a specific example to illustrate this dilemma, emulsion paints may contain poly (vinyl chloride) / poly (vinyl acetate). Clearly, synthesis of vinyl chloride (or acetate) and its polymerization are chemical activities. However, if formulation and mixing of the paint, including the polymer, is carried out by a branch of the multinational chemical company which manufactured the ingredients, is this still part of the chemical industry of does it mow belong in the decorating industry?It is therefore apparent that, because of its diversity of operations and close links in many areas with other industries, there is no simple definition of the chemical industry. Instead each official body which collects and publishes statistics on manufacturing industry will have its definition as to which operations are classified as the chemical industry. It is important to bear this in mind when comparing statistical information which is derived from several sources.3. The Need for Chemical IndustryThe chemical industry is concerned with converting raw materials, such as crude oil, firstly into chemical intermediates and then into a tremendous variety of other chemicals. These are then used to produce consumer products, which make our livesmore comfortable or, in some cases such as pharmaceutical produces, help to maintain our well-being or even life itself. At each stage of these operations value is added to the produce and provided this added exceeds the raw material plus processing costs then a profit will be made on the operation. It is the aim of chemical industry to achieve this.It may seem strange in textbook this one to pose the question “do we need a chemical industry?” However trying to answer this question will provide(ⅰ) an indication of the range of the chemical industry’s activities, (ⅱ) its influence on our lives in everyday terms, and (ⅲ) how great is society’s need for a chemical industry. Our approach in answering the question will be to consider the industry’s co ntribution to meeting and satisfying our major needs. What are these? Clearly food (and drink) and health are paramount. Other which we shall consider in their turn are clothing and (briefly) shelter, leisure and transport.(1)Food. The chemical industry makes a major contribution to food production in at least three ways. Firstly, by making available large quantities of artificial fertilizers which are used to replace the elements (mainly nitrogen, phosphorus and potassium) which are removed as nutrients by the growing crops during modern intensive farming. Secondly, by manufacturing crop protection chemicals, i.e., pesticides, which markedly reduce the proportion of the crops consumed by pests. Thirdly, by producing veterinary products which protect livestock from disease or cure their infections.(2)Health. We are all aware of the major contribution which the pharmaceutical sector of the industry has made to help keep us all healthy, e.g. by curing bacterial infections with antibiotics, and even extending life itself, e.g. ß–blockers to lower blood pressure.(3)Clothing. The improvement in properties of modern synthetic fibers over the traditional clothing materials (e.g. cotton and wool) has been quite remarkable. Thus shirts, dresses and suits made from polyesters like Terylene and polyamides like Nylon are crease-resistant, machine-washable, and drip-dry or non-iron. They are also cheaper than natural materials.Parallel developments in the discovery of modern synthetic dyes and the technology to “bond” th em to the fiber has resulted in a tremendous increase in the variety of colors available to the fashion designer. Indeed they now span almost every color and hue of the visible spectrum. Indeed if a suitable shade is not available, structural modification of an existing dye to achieve this canreadily be carried out, provided there is a satisfactory market for the product.Other major advances in this sphere have been in color-fastness, i.e., resistance to the dye being washed out when the garment is cleaned.(4)Shelter, leisure and transport. In terms of shelter the contribution of modern synthetic polymers has been substantial. Plastics are tending to replace traditional building materials like wood because they are lighter, maintenance-free (i.e. they are resistant to weathering and do not need painting). Other polymers, e.g. urea-formaldehyde and polyurethanes, are important insulating materials f or reducing heat losses and hence reducing energy usage.Plastics and polymers have made a considerable impact on leisure activities with applications ranging from all-weather artificial surfaces for athletic tracks, football pitches and tennis courts to nylon strings for racquets and items like golf balls and footballs made entirely from synthetic materials.Like wise the chemical industry’s contribution to transport over the years has led to major improvements. Thus development of improved additives like anti-oxidants and viscosity index improves for engine oil has enabled routine servicing intervals to increase from 3000 to 6000 to 12000 miles. Research and development work has also resulted in improved lubricating oils and greases, and better brake fluids. Yet again the contribution of polymers and plastics has been very striking with the proportion of the total automobile derived from these materials—dashboard, steering wheel, seat padding and covering etc.—now exceeding 40%.So it is quite apparent even from a brief look at the chemical industry’s contribution to meeting our major needs that life in the world would be very different without the products of the industry. Indeed the level of a country’s development may be judged by the production level and sophistication of its chemical industry4. Research and Development (R&D) in Chemical IndustriesOne of the main reasons for the rapid growth of the chemical industry in the developed world has been its great commitment to, and investment in research and development (R&D). A typical figure is 5% of sales income, with this figure being almost doubled for the most research intensive sector, pharmaceuticals. It is important to emphasize that we are quoting percentages here not of profits but of sales income, i.e. the total money received, which has to pay for raw materials, overheads, staff salaries, etc. as well. In the past this tremendous investment has paid off well, leading to many useful and valuable products being introduced to the market. Examplesinclude synthetic polymers like nylons and polyesters, and drugs and pesticides. Although the number of new products introduced to the market has declined significantly in recent years, and in times of recession the research department is usually one of the first to suffer cutbacks, the commitment to R&D remains at a very high level.The chemical industry is a very high technology industry which takes full advantage of the latest advances in electronics and engineering. Computers are very widely used for all sorts of applications, from automatic control of chemical plants, to molecular modeling of structures of new compounds, to the control of analytical instruments in the laboratory.Individual manufacturing plants have capacities ranging from just a few tones per year in the fine chemicals area to the real giants in the fertilizer and petrochemical sectors which range up to 500,000 tonnes. The latter requires enormous capital investment, since a single plant of this size can now cost $520 million! This, coupled with the widespread use of automatic control equipment, helps to explain why the chemical industry is capital-rather than labor-intensive.The major chemical companies are truly multinational and operate their sales and marketing activities in most of the countries of the world, and they also have manufacturing units in a number of countries. This international outlook for operations, or globalization, is a growing trend within the chemical industry, with companies expanding their activities either by erecting manufacturing units in other countries or by taking over companies which are already operating there.化学工业1.化学工业的起源尽管化学品的使用可以追溯到古代文明时代,我们所谓的现代化学工业的发展却是非常近代(才开始的)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Highly Efficient One-Pot Three-Component Mannich Reaction in Water Catalyzed by Heteropoly AcidsCarrying out organic reactions in water has become highly desirable in recent years to meet environmental considerations.The use of water as a sole medium for organic reactions would greatly contribute to the development of environmentally friendly processes. Indeed, industry prefers to use water as a solvent rather than toxic organic solvents. In this context, in recent years, much attention has been focused on Lewis acid catalyzed organic reactions in water.Heteropoly acids (HPAs) are environmentally benign and economically feasible solid catalysts that offer several advantages.Therefore, organic reactions that exploit heteropoly acid catalysts in water could prove ideal for industrial synthetic organic chemistry applications, provided that the catalysts show high catalytic activity in water.Mannich reactions are among the most impo rtant carbon−carbon bondforming reactions in organic synthesis.They provide β−amino carbonyl compounds, which are important synthetic intermediates for various pharmaceuticals and natural products.The increasing popularity of the Mannich reaction has been fueled by the ubiquitous nature of nitrogen-containing compounds in drugs and natural products.However, the classical Mannich reaction is plagued by a number of serious disadvantages and has limited applications. Therefore, numerous modern versions of the Mannich reaction have been developed to overcome the drawbacks of the classical method. In general, the improved methodology relies on the two-component system using preformed electrophiles, such as imines, and stable nucleophiles, such as enolates, enol ethers, and enamines.But the preferable route is the use of a one-pot three-component strategy that allows for a wide range of structural variations. In this context, recent developments of asymmetric synthesis, using a three-component protocol, have made the Mannich reaction very valuable.However, despite the diverse synthetic routes so far developed for the asymmetric Mannich reaction, only a few one-pot procedures on the use of unmodified aldehydes or ketones in water have been reported in the literature. Furthermore, most of the reported Mannich reactions in water have been carried out in the presence of surfactants such as SDS. Unfortunately, normal-phase separation is difficult during workup due to the formation of emulsions because of the SDS.There is increasing interest in developing environmentally benign reactions and atom-economic catalytic processes that employ unmodified ketones, amines, and aldehydes for Mannich-type reaction in recent years. In continuation of our studies on the new variants, of one-pot, three-component Mannich-type reactions for aminoalkylation of aldehydes with different nucleophiles, and our ongoing green organic chemistry program that uses water as a reaction medium, performs organic transformations under solvent-free conditions, herein we describe a mild, convenient, and simple procedure for effecting the one-pot, three-component reaction of an aldehyde, an amine, and a ketone for the preparation of β-amino carbonyl compounds in water using a heteropoly acid catalyst.Initially, the three-component Mannich reaction of 4-chlorobenzaldehyde (3.0 mmol), aniline (3.1 mmol), and the cyclohexanone (5 mmol) was examined (Scheme 1).Scheme 1. Direct Mannich Reaction Catalyzed by Heteropoly Acids in Different SolventsAs a preliminary study, several Lewis acids and solvents were screened in the model reaction. The results of extensive Lewis acid and solvent screening and optimization are shown in a table in the Supporting Information. Heteropolyacids (HPAs) catalyze Mannich reactions in organic solvents such as acetonitrile, 1,2-dichloroethane, methanol, ethanol, toluene and mixtures of toluene/water and gave the desired products in low yield with the foramtion of aldol side products. Among the screened solvent systems, water was the solvent of choice, since in this solvent the Mannich-type reactions proceeded smoothly and afforded the desired adducts in high yields at room temperature. Consequently, we conclude that the HPAs are much more reactive in water than in other organic solvents. At room temperature, the Mannich reaction proceeded to completion affording the Mannich adduct in good to excellent yield and relatively good diastereoselectivity. Addition of surfactants such as sodium dodecyl sulfate (SDS) or cetyltrimethylammonium bromide (CTAB) wasnot effective, and they did not improve diastereoselectivity. The reaction in pure water without using any catalyst gave a low yield of the product. Furthermore, we were excited to find that only 0.12 mol % of the catalyst gave good yields at room temperature. In the some cases, even 0.06 mol % of HPA was sufficient for the completion of the reaction. Furthermore, simple workup in water opened the route for an entirely green highly efficient one-pot Mannich reaction in water. In addition, H3PMo12O40has been compared with H3PW12O40, and we found the same results for both heteropoly acids in this reaction in water.Encouraged by the remarkable results obtained with the above reaction conditions, and in order to show the generality and scope of this new protocol, we used various aldehydes and amines and the results. T able 2 clearly demonstrates that HPAs are excellent catalysts for Mannich reactions in water. Thus, a variety of aromatic aldehydes, including electron-withdrawing and electron-donating groups, were tested using our new method in water in the presence of H3PW12O40or H3PMo12O40. The results are shown in T able 2. Generally, excellent yields of α-amino ketones were obtained for a variety of aldehydes including those bearing an electron-withdrawing group. Furthermore, several electron-rich aromatic aldehydes led to the desired products in good yield. However, under the same reaction conditions aliphatic aldehydes, such as isobutyaldehyde, gave a mixture, due to enamine formation; the desired product was obtained in low yield (Table 2, entry 22). The scope of our method was extended to other amines. In the case of amines having an electron-donating group, such as 4-isopropylaniline, the corresponding amino ketones were obtained in good yields. Furthermore, amines with electron-withdrawing groups, such as 4-chloroaniline and 3,4-dichloroaniline, gave the desired product in good yields.The high yield, simple reaction protocol, and originality of this novel process prompted us to use other ketones under these conditions (Table 1). Thus, the three-component coupling reactions were carried out with acyclic ketones such as 2-butanone and acetophenone. The expected products were obtained in moderate yields under these conditions. Acyclic ketones were less reactive than cyclohexanone and needed much more catalyst to afford the desiredproducts (T able 1). Table 1. HPA-Catalyzed Three-Component MannichReaction a(5mmol), acetophenone (3 mmol), and H3PW12O40 (0.02 g).b Yield of isolated a Reaction conditions: aldehyde (3 mmol), amine (3.1 mmol), 2-butanone products.c Syn/anti ratio.d Syn/anti ratio was determined by 1H NMR analysis of crude products. Table 2. One-Pot, Three-Component Direct MannichReaction aa Reaction conditions: aldehyde (3 mmol), amine (3.1 mmol), and cyclohexanone (5 mmol) were successively added to a solution of catalyst (10 mg) in water (5 mL) placed in a test tube, and the reaction mixture was vigorous stirred at room temperature for 3−16 h.b Yields ofisolatedproducts.c Diastereomeric ratio mearsured by 1H NMR spectroscopy analysis of the crude reaction mixture.The regioselectivity was determined by 1H and 13C NMR spectroscopy and by comparison with known compounds reported in the literature.8 In general, anti selectivity was observed in the reaction of cyclohexanone and 2-butanone.Despite of the low solubility of aldehydes, ketones, and amines in water, the heteropoly acid-catalyzed Mannich reactions still proceed efficiently at ambient temperature. The reaction might take place at the interface of organic materials with water in the heterogeneous system. It was found that vigorous stirring was required for the success of these reactions.The possibility of recycling the catalyst was examined. For this reason, the reaction of 4-chlorobenzaldehyde, aniline and cyclohexanone in water at room temperature in the presence of H3PW12O40was studied. When the reaction was complete, ethyl acetate was added and organic materials were extracted and the aqueous solution was saved for the next reaction. When the same reaction was carried out in this solution, containing the used catalyst, low yields (ca. 60%) of the product were obtained.Another characteristic feature of the present protocol is the high chemoselectivity of cyclohexanone toward aldimines, prepared in situ from the reaction of aldehydes and amines, in preference to aldehydes as shown in Scheme 2. Although conventional Lewis acids activate aldehydes preferentially, in this media, aldehydes do not undergo aldol reaction by means of HPAs in water. The high chemoselectivity is rationalized by considering the higher basicity of nitrogen over oxygen. A related phenomenon was recently reported in the reactivity between aldimines and aldehydes by the use of proline, HBF4, and dibutyltin dimethoxide.11Scheme 2. Aldole and Mannich Reaction in WaterIn conclusion, this procedure offers several advantages including low loading of catalyst, improved yields, clean reaction, use of unmodified ketones, which make it a useful and attractive strategy for the multicomponent reactions of combinational chemistry. In addition, a very easy workup has been realized that does not require organic solvents. When the products are solid and insoluble in water, the pure products can be obtained directly by filtration and washing the filtrate with water and by crystallization from ethanol or diethyl ether. No extraction or separation by column chromatography is necessary in some cases. Current efforts in our research group are attempting to expand the application of heteropoly acids in water for other reactions.AcknowledgmentWe are grateful to the Research Council of Sharif University of Technology for financial support. We thank “Volkswagen-Stiftung, Federal Republic of Germany” for financial supp ort toward the purchase of chemicals. We also thank Professor J. Ipaktschi (University of Giessen) for his valuable advice and suggestions.翻译稿杂多酸高效催化三组分共混曼尼希反应Najmodin艾则孜,Lalleh Torkiyan ,穆罕默德R •赛迪*谢里夫理工大学化学系,PO 11465-9516箱,伊朗,德黑兰11365ORG 。