三角形的内角和教学设计说明
《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《三角形内角和》教学设计

《三角形内角和》教学设计一、教学目标1. 知识与技能目标通过量、剪、拼等活动发现、证实三角形内角和是180°。
会应用三角形内角和的性质解决一些简单的实际问题。
2. 过程与方法目标经历观察、猜想、验证的过程,提升动手操作能力和逻辑思维能力。
体会转化的数学思想方法。
3. 情感态度与价值观目标在探究活动中,体验学习数学的乐趣,培养合作交流和创新意识。
二、教学重难点1. 教学重点:理解并掌握三角形内角和是 180°。
2. 教学难点:用不同方法验证三角形内角和是180°。
三、教学方法讲授法、探究法、小组合作法、直观演示法。
四、教学过程1. 创设情境,导入新课出示一个三角形,提问:“什么是三角形的内角?”引出三角形内角的概念。
设疑:“三角形三个内角的度数之和是多少呢?”激发学生的好奇心和探究欲望。
2. 自主探究,合作交流猜想:让学生大胆猜想三角形内角和的度数。
验证:量一量:以小组为单位,用量角器测量三角形三个内角的度数,并计算它们的和。
剪一剪、拼一拼:把三角形的三个内角剪下来,拼成一个平角,观察发现三角形内角和是 180°。
折一折:引导学生把三角形的三个角折成一个平角,进一步验证三角形内角和是 180°。
汇报交流:各小组展示自己的验证方法和结果,分享探究过程中的体会和发现。
3. 巩固应用,拓展提高基础练习:出示一些不同类型的三角形,让学生求出它们的内角和,巩固三角形内角和是 180°的知识。
拓展练习:已知三角形两个内角的度数,求第三个内角的度数。
给出一个三角形的内角关系,判断它是什么三角形。
实际应用:解决生活中的实际问题,如三角形窗户玻璃的内角和、三角形支架的角度等。
4. 总结反思,评价反馈总结:引导学生回顾本节课的学习内容,总结三角形内角和的性质和验证方法。
反思:让学生思考在探究过程中遇到的问题和解决方法,以及还有哪些地方可以改进。
评价:对学生的学习表现进行评价,肯定学生的努力和进步,提出改进的建议。
三角形内角和教案优秀5篇

三角形内角和教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、汇报材料、自我鉴定、条据文书、合同协议、心得体会、方案大全、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, presentation materials, self-evaluation, documentary evidence, contract agreements, reflections, comprehensive plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!三角形内角和教案优秀5篇如果教案无法在实际教学中实施,就无法让学生真正理解和应用所学的知识,教案写好了,能够帮助我们更好地与学生和家长进行沟通和交流,本店铺今天就为您带来了三角形内角和教案优秀5篇,相信一定会对你有所帮助。
《三角形的内角和》教学设计

《三角形的内角和》教学设计一、教学目标1、知识与技能目标学生通过测量、剪拼、折叠等操作活动,探索并发现三角形内角和是 180 度,能够应用这一结论解决简单的实际问题。
2、过程与方法目标经历观察、思考、操作、猜想、验证等数学活动,培养学生的动手实践能力、推理能力和创新思维能力。
3、情感态度与价值观目标在探索三角形内角和的过程中,激发学生对数学的好奇心和求知欲,培养学生勇于探索、敢于质疑的科学精神,以及合作交流的意识。
二、教学重难点1、教学重点探索并证明三角形内角和是 180 度。
2、教学难点对三角形内角和是 180 度的推理和验证。
三、教学方法讲授法、直观演示法、小组合作探究法四、教学准备多媒体课件、三角形纸片、量角器、剪刀五、教学过程(一)创设情境,引入新课1、出示一个三角形的图片,提问:同学们,你们知道三角形的三个角分别叫什么吗?(引导学生说出三角形的三个内角)2、接着提问:那你们想不想知道三角形三个内角的度数之和是多少呢?(引发学生的好奇心和求知欲,从而引入新课)(二)自主探索,合作交流1、量一量(1)让学生以小组为单位,用量角器分别测量出准备好的三角形三个内角的度数,并将测量结果记录下来。
(2)小组汇报测量结果,教师将结果填写在表格中。
(3)观察测量结果,引导学生发现:不同三角形的内角和虽然不完全相同,但都接近 180 度。
2、剪一剪、拼一拼(1)让学生把三角形的三个内角剪下来,然后拼在一起,看看能拼成一个什么角。
(2)学生动手操作,教师巡视指导。
(3)小组汇报展示,发现三角形的三个内角可以拼成一个平角,从而得出三角形内角和是 180 度的结论。
3、折一折(1)教师示范将三角形的三个内角折在一起,形成一个平角。
(2)学生模仿操作,再次验证三角形内角和是 180 度。
(三)推理证明1、引导学生思考:我们通过测量、剪拼、折叠等方法得出了三角形内角和是 180 度的结论,但这些方法都存在一定的误差,能不能用数学推理的方法来证明呢?2、出示一个长方形,提问:长方形的四个角都是直角,那么它的内角和是多少度?(360 度)3、沿着长方形的对角线把它剪成两个三角形,提问:每个三角形的内角和是多少度?(引导学生发现长方形的内角和是两个三角形的内角和,所以每个三角形的内角和是 180 度)(四)应用拓展1、基础练习(1)在一个三角形中,∠1 = 40°,∠2 = 60°,求∠3 的度数。
《三角形内角和》教学设计

《三角形内角和》教学设计角形内角和教学设计篇一【设计理念】新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。
这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。
【教材资料】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。
【教材分析】三角形的内角和是三角形的一个重要特征。
本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。
教材很重视知识的探索与发现,安排两次实验操作活动。
教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。
概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。
2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。
3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
三角形内角和教学设计(通用4篇)

三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢。
以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。
三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经验量一量、折一折、拼一拼等动手操作的过程。
通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。
3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学打算】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的新奇心。
然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
老师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。
4.导入新课。
图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形的内角和》教学设计——襄阳市回民小学孟辉教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平等与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握三角形的内角和是180°这一规律具有重要意义。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。
大多数学生会想到用测量角的方法,此时就可以安排小组活动。
每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教师提供的表中。
最后发现,大小、形状不同的三角形,每个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180度。
二是把三个内角折叠在一起,发现也能组成一个平角。
每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于90度,钝角三角形里的两个锐角和小于90度。
学生状况分析:学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级上册教材里已经学习了《角的认识》,也知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
教学目标:1.通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2.发展学生动手操作、观察比较和抽象概括的能力。
通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。
3.通过数学活动使学生获得成功的体验,增强自信心。
培养学生的创新意识、探索精神和实践能力。
教学重、难点:验证三角形的内角和是180°。
因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。
对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。
在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是180°。
因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
教具、学具准备:师:课件,表格若干,三角板,量角器;生:直角三角形、锐角三角形和钝角三角形各一个,量角器,一副三角板。
教学过程:一、复习旧知、谈话导入师:三年级我们学过的角有哪些?什么是平角?平角多少度?猜谜语:形状似座山,稳定性能坚;三竿首尾连,学问不简单。
(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?——学生讲学过的三角形知识。
【设计意图】回忆已经学过的三角形知识为新内容进行铺垫。
同时,也为知识的迁移作了伏笔。
《课标》强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。
二、创设情境,引出课题,以疑激思师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。
每个三角形都有三个内角。
师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。
(播放课件)师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生3:当然是大三角形的内角和大了。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。
那么到底谁说得对呢?这节课我们就一起来研究这个问题。
(板书课题:三角形的内角和)三、动手操作,探究问题,以动启思1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(学生们能够很快求出每块三角尺的3个角的和都是180°,由于学生在四年级上册教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°)师:不用计算,你能用已学过的知识进行推理来验证“直角三角形的内角和是90°”这个结论吗?(师给以提示:还记得上学期在学习《平行与垂直》时,老师提到的“内错角”吗?)课件演示(课件闪动表示相等的∠2与∠5,∠3与∠4),师讲解:因为长方形的四个角都是直角,也就是∠2+∠3=∠4+∠5=90°,又因为内错角∠3=∠4,所以其中一个三角形的∠3+∠5+∠6相当于∠4+∠5+∠6=90°+90°=180°师:其实,只要我们遇到问题,多观察、多分析、多思考,你会发现可能会有多种方法都是可以解决问题的。
【设计意图】以直角三角形内角和入手,以易启难,同时,通过用自己已掌握知识来解决学习新知中遇到的问题,更加激发学生探求新知的欲望和兴趣,从而促进学生对解决问题策略的选择。
师:直角三角形的内角和是180°,那,其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定【设计意图】让学生经历了矛盾,发现问题后,再和小组的同学一起讨论、探究更好的验证方法,教师给予学生足够的时间和空间,让每个学生自主参与剪、拼、撕、折的实践活动,让学生在经历猜想、验证、演示、汇报过程中解决问题,发展空间观念和推理能力。
2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。
看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)、小组合作,讨论验证方法(2)汇报验证方法、结果谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?生A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。
(投影仪展示)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师播放课件:剪(撕)拼法:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。
你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。
生:不管什么三角形三个角都能拼成一个平角。
师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。
生B:我们小组是用撕的方法。
我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。
(真会动脑筋,不用工具也行)生C:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:请这位同学折来给大家看看。
(投影仪展示)生:3个角折成了一个平角。
师:真是个手巧的孩子。
他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折的过程)师:折了几次?想想为什么直角三角形可以只折两次就能证明。
生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。
师:说得真清楚。
3、师:老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:汇报。
问:你们发现了什么?小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。
【设计意图】小组合作,选出不同类型的三角形进行实验。
因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。
学生会完全信服三角形的内角和是180°这一普遍规律。
学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。
4、师小结:刚才同学们用量、剪、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。
5、师:(出示一个大三角形)它的内角和是多少度?生:180°。
师:(出示一个很小的三角形)它的内角和是多少度?生:180°。
师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?师:把大三角形平均分成两份。
它的(指均分后的一个小三角形)内角和是多少度?(生有的答90°,有的180°。
)师:哪个对?为什么?生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。
师:表扬:你真聪明。
(课件演示:)师:三角形不论位置、大小、形状如何,它的内角和总是180°【设计意图】这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。
四、解决问题:学会了知识,我们就要懂得去运用。
下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。
(课件呈现)1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。