硕士研究生课程考试试题矩阵论答案
研究生矩阵论试题及答案与复习资料大全

1 4
1 3
0 0
的
Jordan
标准形。
1 0 2
解:求 E A 的初等因子组,由于
1 1 E A 4 3
0 0
1
3
0
1 3 4
0 0
1 0 2
0
1
2
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E
1 1
0 2
1 1
2 1
1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
0 2
1 0
23
于是有
1 A 1
2
110
1 0
0 2
1 0
23 BC
A C H CC H 1 BH B 1 BH
或
A C H B H AC H 1 B H
六、(10
分)求矩阵
A
行 0
2 0 31
1
0
0 0 0 0 1 1 1
可求得:
1 0 0 P 1 1 0
1 1 1
1 0 0
P 1
1
1
0
2 1 1
1 B 1
2
0 1 1
,
C
1 0
对任意 k F ,有 k V1 ,且 k V2 ,因此知 k V1 V2 ,故知V1,V2 为 V 的子空 间。
南航矩阵论研究生试卷及答案

(2)求广义逆矩阵 ;
(3)求该线性方程组的极小最小二乘解.
解答:(1) 矩阵 , 的满秩分解为
.…………………(5分)
(2) .……………………(10分)
(3)方程组的极小最小二乘解为 .…………(5分)
共6页第5页
四、(20分)已知幂级数 的收敛半径为3,矩阵 .
(1) 求 ;
,
证明 是 的一个内积;
(3)求 在题(2)所定义的内积下的一组标准正交基;
(4)证明 是 的线性变换,并求 在题(1)所取基下的矩阵.
解答:(1) 的一组基为 维数为3.
……………………………………(5分)
(2)直接验证内积定义的四个条件成立.……………………………(4分)
(3) 标准正交基 .…………(5分)
(4)由于 ,所以 是 的一个变换.又直接验证,知
,
因此 是 的一个线性变换.………………………………(3分)
线性变换 在基 下的矩阵为
.……………………………………………(3分)
二、(20分)设三阶矩阵 , , .
(1)求 的行列式因子、不变因子、初等因子及Jordan标准形;
(2)利用 矩阵的知识,判断矩阵 和 是否相似,并说明理由.
南京航空航天大学2012级硕士研究生
共6页 第1页
2012~2013学年第1学期《矩阵论》课程考试A卷
考试日期:2013年1月15日课程编号:A080001命题教师:阅卷教师:
学院专业学号姓名成绩
一、(20分)设 是 的一个线性子空间,对任意 ,定义: ,其中 .
(1)求 的一组基和维数;
(2)对任意 ,定义:
解答: ( 的行列式因子为 ;…(3分)
2009南华大学硕研课程矩阵论试题答案及评分标准

南华大学 2009 级硕士研究生课程考试试题答案及评分标准考试科目: 矩阵论 所属学院 考试时间 考生姓名: 考生学号 任课教师 王礼广 考试成绩一.(本题10分)(§1.2,P79:19(3))矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=0167121700140013A ,求A 的若当标准型. 评分标准:计算出特征值2分,给出初等因子或特征向量7分,写出若当标准形3分; 若求出特征值,未给出依据,只给标准型,给5分;因为()41167121700140013||-=----+--=-λλλλλλA I ,()44211)(,1)(,1)(-===λλλλD D D ,(2分) A I -λ的第2,3,4行与1,2,4列的三阶子式为1747671170142--=---+λλλλ与)(4λD 互质,所以,1)(3=λD 从而A 的不变因子为4)1(,1,1,1-λ,A 的初等因子为()41-λ(7分),所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111111J 。
(3分)(§3.5,3) 二.(本题共30分)设矩阵[][]TTtc e t b A 111,121)(,101024012-=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=,1.(本小题15分)求Ate;评分标准:给出零化多项式的带余除法假设形式或相关等价步骤5分,求出系数w v u ,,5分,计算出Ate结果5分;若用幂级数方法或若当块方法变换方法,给出相应步骤的分数,有相应正确方法的给5-8分;()=λf ()211124012λλλλλλ-=----+=-A I ,设()w v u f q et+++=λλλλλ2)(因为()()v u f q f q ted ed tt++'+'==λλλλλλλλ2)()()(,所以取1=λ,得w v u e t++=,取0=λ,得w =1,v t =, 解得1--=t e u t,t v =,1=w因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1110000002A 取A =λ,得 ()=++--=++=I tA A t e wI vA uA etAt221()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--++-+-+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---t ttt e t e t e t t t t t t e 11201240121111010240121110000001 2.求初值问题⎪⎩⎪⎨⎧=+=cx t b Ax dt dx)0()(的解。
《矩阵论》习题答案,清华大学出版社,研究生教材习题 1.2

C=( e1 , e2 , e3 ) 1 (1 , 2 , 3 )
1 2 1 0 1 1 1 0 1 1 1 2 2 2 2 1 1 1 1
2
=
=
1 1
3 2 3 2 1 2
3 2 3 2 5 2
(2) 故
(
(e1 ) ,
(e 2 ) ,
(e3 ) )=( 1 , 2 , 3 ) = ( e1 , e2 , e3 ) C
(4) 据题设:
( f (t )) f ' (t )
则
4
( x1 ) =( e at cos bt ) ' = ae at cos bt be at sin bt = ax1 bx2 ( x 2 ) =( e at sin bt ) ' = ax2 bx1
( x3 ) =( te at cos bt ) ' = x1 ax3 bx4
14. 解:
7
(1) 由于
1
E11
a 0 aE11 cE 21 0 c 0 a aE12 cE 22 0 c b d 0 bE11 dE 21 0
1
E12
1
E 21
1
E 22
2
(e 1 )+k 2
(e 2 )=
2
(α)
故
1
=
2
.
8. 解:(1) 因为 i, j 在 xoy 平面上,其投影不变,故有
3
(i)=i , 又 k 垂直 xoy 平面,则 ( (i), (j),
(k ) 0 , 得
(j)=j ,
(k))=( i , j , k )
华北电力大学硕士研究生课程考试试题A卷矩阵论答案

华北电力大学硕士研究生课程考试试题〔A卷〕(2021-2021)一、判断题〔每题2分,共10分〕1. 方阵A的任意一个特征值的代数重数不大于它的几何重数。
(X)见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n,后者小于等于n2. 设12,,,m ααα是线性无关的向量,那么12dim(span{,,,})m m ααα=.正确,线性无关的向量成一组基3.如果12,V V 是V 的线性子空间,那么12V V ⋃也是V的线性子空间.错误,按照线性子空间的定义进展验证。
Aλ是可逆4.n阶-矩阵()Aλ的充分必要条件是()的秩是n.见书60页,需要要求矩阵的行列式是一个非零的数5.n阶实矩阵A是单纯矩阵的充分且必要条件是A的最小多项式没有重根. 见书90页。
二、填空题〔每题3分,共27分〕(6)210021,003A⎛⎫⎪= ⎪⎪⎝⎭那么Ae的Jordan标准型为223e100e0, 00e⎛⎫⎪⎪⎪⎝⎭。
首先写出Ae然后对于假设当标准型要求非对角元局部为1.(7)301002030λλλ-⎛⎫ ⎪+ ⎪ ⎪-⎝⎭的Smith标准型为10003000(3)(2)λλλ⎛⎫ ⎪- ⎪ ⎪-+⎝⎭见书61-63页,将矩阵做变换即得(8)设1000.10.30.200.40.5A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,那么100lim 000000n n A →+∞⎛⎫ ⎪=⎪ ⎪⎝⎭。
见书109页,可将A 对角化再计算即得。
(9)2345⎛⎫ ⎪-⎝⎭在基11120000,,,00001321⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭下的坐标为(1,1,2,1)T 。
见书12页,自然基下坐标为〔2,3,4,-5〕T ,再写出过渡矩阵A,坐标即A的逆乘以自然基下坐标。
对于此题来说。
由于第一行实际上只和前两个基有关,第二行只和后两个基有关。
因此不用那么麻烦,只需要计算〔1,1〕x+〔1,2〕y=〔2,3〕就可得解为1,1.再解〔1,-3〕x+〔2,1〕y=〔4,-5〕就可以得解为2,1.整理一下即得坐标。
矩阵论考试试题含答案

矩阵论试题一、(10分)设函数矩阵 求:()⎰tdt t A 0与(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 000sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 二、(15分)在3R 中线性变换σ将基变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:因此σ在321,,ααα下矩阵表示为(2)设()⎪⎪⎪⎭⎫⎝⎛=321321,,k k k αααξ,即解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得(3)ξ在基321,,βββ下坐标为()ξσ在基321,,βββ下坐标为三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
解:容易算得由于()λm 是2次多项式,且2,121==λλ,故()λg 是1次多项式,设由于()t e f λλ=,且()()11λλg f =,()()22λλg f =,故于是解得:⎩⎨⎧-=-=tt tt ee a e e a 21202 从而:四、(15分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=000110101A 的奇异值分解。
解:⎪⎪⎪⎭⎫⎝⎛==211110101A A B T的特征值是0,1,3321===λλλ对应的特征向量依次为于是可得 2=rankA ,⎪⎪⎭⎫⎝⎛=∑1003 计算: ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∑=-0021212121111AV U 构造 ⎪⎪⎪⎭⎫⎝⎛=1002U ,则 ()⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==100021210212121U U V 则A 的奇异值分解为: 五、(15分)求矩阵的满秩分解: 解: 可求得:于是有 BC A =⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=30202101121101或 ()H H H H B AC B C A 1-+=六、(10分)求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的Jordan 标准形。
上海交大研究生矩阵理论答案

习题 一cosnx sin nxcosx sin x cos(n 1)x sin( n 1)x1.( 1)因=sin(n1)x cos(n ,故由概括法知sin nx cosnx sin x cosx1)xA n cosnx sin nx。
sin nx cosnx( 2)直接计算得 A 4 E ,故设 n 4k r (r 0,1,2,3) ,则 A nA 4 k A r( 1)k A r ,即只要算出 A 2, A 3 即可。
0 10 1(3)记 J=,则,1 0a n C n 1a n 1 C n 2 a n 2C n nna nC n 1 a n 1C n n 1aA nJ )n C n i a i J n ia n(aE。
i 0 C n 1a n 1a n2.设 AP1a1 则由2E 得P(a 1,0),A2a1时,11111221 不行能。
10 121而由 a 0时, 1112知i1 因此所求矩阵为 PB i P 1 ,2222此中 P 为随意满秩矩阵,而B 11 0 1 01 00 , B 2, B 3。
111注: A 2E 无实解, A n E 的议论同样。
3.设 A 为已给矩阵,由条件对随意n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2个未知数时线性方程 AXXA=0 有 n 2 个线性没关的解, 由线性方程组的理论知其系数矩阵为零矩阵,经过直接查验即发现 A 为纯量矩阵。
a n a n 1 a 1 0A 4.分别对( AB )和作行(列)初等变换即可。
C5.先证 A 或 B 是初等到阵时有 AB * B * A * ,进而当 A 或 B 为可逆阵时有 *ABB *A * 。
考虑到初等变换 A 对 B 的 n1 阶子队列式的影响及 A * A 1 即可得前方提到的结果。
下设 PAQE r 0,(这里 P , Q 满秩),则由前议论只要证下式建立刻可: 0E r 0 *E r 0 *BB *,0 0( 1) r<n-1 时,因秩小于n-1 的 n 阶方阵的 n-1 阶子式全为 0,结论明显;Bn1**Bn2( 2) r=n-1 时, E r 00 0 , B * E r 0 00 B nn,但0 00 1 0 0b 11b12b1 nb 11b12b1nE r 0b 21b22b2nb 21b 22b2n,故0 0b n1bn2bnn0 0*Bn1Bn 2*E r 0B* E r 0。
研究生矩阵理论课后答案矩阵分析所有习题

其中1,…,n是A的特征值的任意排列. ∵ A2=E=Udiag(1,…,1)U* 和
A2=Udiag(1,…,n)U*Udiag(1,…,n)U* =Udiag(12,…,n2)U*
∴ i2=1,即i=1,i=1,…,n,. 取1,…,n的排列使特征值1(设共有r个)全排在
2 5
5 0 1 5
0 1 0
1
5
0
2 5
习题3-9
#3-9:若S,T分别为实对称,反实对称矩阵,则 A=(E+T+iS)(E-T-iS)-1为酉矩阵.
证: A*A=((E-T-iS)*)-1(E+T+iS)*(E+T+iS)(E-T-iS)-1
=((E+T+iS)-1(E-(T+iS))(E+(T+iS))(E-T-iS)-1 =(E+T+iS)-1(E+T+iS)(E-T-iS)(E-T-iS)-1 =E
∴ A+B是正定Hermite矩阵.
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*,
其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列.
证:因为A是正规矩阵,所以存在UUnn 使得 其中1,…, ArA=n是=UUdAdi的iaag特g((征1r1,,值…….,,于nn是r))U,U**,=0 蕴∴涵Air==U0d,iia=g1(,0…,…,n,.0后)U者*=又0.蕴涵 1=…=n=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华北电力大学硕士研究生课程考试试题(A 卷)
2013~2014学年第一学期
课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页
特别注意:所有答案必须写在答题册上,答在试题纸上一律无效
一、判断题(每小题2分,共10分) 1. 方阵
A 的任意一个特征值的代数重数不大于它的几何重数。
见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,
,m ααα是线性无关的向量,则12dim(span{,,,})m m ααα=.
正确,线性无关的向量张成一组基
3.如果12,V V 是V 的线性子空间,则12V V ⋃也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。
4. n 阶λ-矩阵()A λ是可逆的充分必要条件是
()A λ的秩是n .
见书60页,需要要求矩阵的行列式是一个非零的数
5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根.
二、填空题(每小题3分,共27分)
(6)210021,003A ⎛⎫
⎪= ⎪
⎪⎝⎭则A e 的Jordan 标准型为223e 1
00e 0
,00
e ⎛⎫ ⎪
⎪ ⎪⎝
⎭。
首先写出A
e 然后对于若当标准型要求非对角元部分为1.
(7)301002030λλλ-⎛⎫ ⎪+ ⎪ ⎪-⎝⎭的Smith 标准型为10003000(3)(2)λλλ⎛⎫
⎪- ⎪
⎪-+⎝⎭
见书61-63页,将矩阵做变换即得
(8)设1000.10.30.200.40.5A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则100lim 000000n n A →+∞⎛⎫
⎪= ⎪ ⎪⎝⎭。
见书109页,可将A 对角化再计算即得。
(9)2345⎛⎫
⎪-⎝⎭ 在基11120000,,,00001321⎛⎫⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭
下的坐标为(1,1,2,1)T 。
见书12页,自然基下坐标为(2,3,4,-5)T ,再写出过渡矩阵A,坐标即A 的逆乘以自然基
下坐标。
对于本题来说。
由于第一行实际上只和前两个基有关,第二行只和后两个基有关。
因此不用那么麻烦,只需要计算(1,1)x+(1,2)y=(2,3)就可得解为1,1.再解(1,-3)x+(2,1)y=(4,-5)就可以得解为2,1.整理一下即得坐标。
(10)设423243537A -⎛⎫ ⎪= ⎪ ⎪--⎝⎭
,则A ∞= 15。
见书100页,计算每行的绝对值的和。
(11)20211123x x x
x x e x x →-⎛⎫ ⎪+-
⎪ ⎪+⎝⎭
sin cos ln()
lim sin =20
03⎛⎫
⎪⎝⎭。
对矩阵中的每个元素求极限。
(12)设,,m n p q m q A R B R C R ⨯⨯⨯∈∈∈是已知矩阵,则矩阵方程AXB C =的极小范数最小二乘解是+()T X A B C =⊗
见书113-115页,将矩阵方程拉直,再用广义逆的定义去算。
(13)若n 阶方阵A 满足30A =,则cos A = 2
12
E A - 。
见书121页,30A =,所以后面的项都为零。
(14)方阵A 的特征多项式是33(2)(3)(5)λλλ---,最小多项式是2(2)(3)(5)λλλ---,则A 的Jordan 标准形是3((2,1),(2,2),3,5)diag J J E 。
特征多项式决定了A 的阶数以及各个特征值的重根数,即有3个2,3个3,1个5.最小多项式
决定了若当块的大小,如2有1个1阶和1个2阶,3和5都只有1阶的若当块。
三(7分)、设1213200102171,012225018202140A B C -⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭
, 证明AX XB C +=有唯一解。
见书114页,本题需要验证A 和-B 没有相同的特征值,具体解法如下。
证明: 33+T A E E B ⊗⊗非奇异。
显然, B - 的特征值为2,1,2--,下证明:2,1,2--不是A 的特征值:
(1) 方法1:用圆盘定理。
A 的三个行圆盘分别是(12,4),(7,2),(8,1)B B B - , 2,1,2--都不在
(12,4)(7,2)(8,1)B B B ⋃⋃-中,因此A 与B -没有相同的特征值,从而0不是
33+T A E E B ⊗⊗的特征值,故33+T A E E B ⊗⊗可逆,从而AX XB C +=有唯一解。
(2) 方法2:求出A 的特征多项式,再证明2,1,2--不是A 的特征值。
方法3:直接写出33+T A E E B ⊗⊗,再证明它非奇异。
四(8分)、设3维内积空间在基123,,ααα下的矩阵211150103A -⎛⎫
⎪= ⎪
⎪-⎝⎭。
求123{++}span ααα 的正交补空间。
见书28页,内积空间在基下的矩阵是指度量矩阵。
按照内积定义给出正交补空间中元素应该满足的条件。
然后求解。
解:设112233123=++({++})x x x span βαααααα⊥∈,则123(,,)T x x x 满足方程
123(,,)(1,1,1)0T x x x A =
1232+6+2=0x x x
它的基础解系为12=(-3,1,0),=(0,1,3)T T ξξ-,因此
1231223({++})={3+,3}span span ααααααα⊥--
五(10分)、设5阶实对称矩阵A 满足23(3)(5)0A E A E -+=,(3)1rank A E -=,求A 的
谱半径和Frobenius 范数F
A。
注意A 满足的方程说明那个式子是零化多项式,并不是最小多项式,也不是特征多项式。
只说明A 的特征根为3和-5,再根据后面的条件才知道有4个3和1个-5.然后根据范数定义得到结果。
解:因为实对称矩阵
A 是
5阶矩阵,且满足23(3)(5)0A E A E -+=,(3)1rank A E -=,
因此存在正交矩阵P ,使得
(3,3,3,3,5)T P AP diag =-
由于正交变换不改变矩阵的Frobenius 范数,因此
(3,3,3,3,5)
F
F
A
diag =-==六(10分)、求+
502145513305127⎛⎫ ⎪
- ⎪ ⎪--⎝⎭。
见书184页,首先对矩阵满秩分解,再按广义逆的计算公式计算得到结果。
七(14分)、3()P t 的线性变换
2323012302132031()()()()()T a a t a t a t a a a a t a a t a a t +++=-+-+-+- (1)求()()R T N T ,的基。
(2)求T 的一个三维不变子空间。
见书34-37页,要求相空间及零空间的基即对线性变换在自然基下的矩阵做初等行变换。
然后观察可得。
解:(1)求T 在下的矩阵。
解:基2
3
1,,,t t t ,因为
2
3
2
2
3
3
(1)1,(),()1,()1T t T t t t T t t T t t =-=-=-+=-+
所以T 在基231,,,t t t 下的矩阵1010010110100101A -⎛⎫
⎪-
⎪= ⎪- ⎪-⎝⎭。
1010101001010
101~1010000001010
000A --⎛⎫⎛⎫ ⎪ ⎪--
⎪ ⎪= ⎪ ⎪
- ⎪ ⎪
-⎝⎭⎝⎭
因此231,t t t --是()R T 的基,231+,+t t t 是()N T 的基。
(2)取232{1,1+}U span t t t t =--,
,易见2321,1+t t t t --, 线性无关,因此232{1,1+}U span t t t t =--,是三维的,且()=()T U R T U ⊂ ,因此U 是T 的一个三维不变子空间。
八(14分)、已知321141123A ⎛⎫ ⎪= ⎪
⎪⎝⎭
, 本题为三阶矩阵,因此首先计算A 的特征多项式,发现特征根为2和6,然后判断最小多项式,
即可得到若当标准型。
见书72-75页。
求ln A的方法见书127页。
或者126页,或者123页。
(1)求A的Jordan标准型。
(2)求ln A .
解:
6
2
2
A
J
⎛⎫
⎪
= ⎪
⎪
⎝⎭
12
()(6)(2)
f A f A f A
=+
12
11
(2),(6)
44
A A E A A E
=-=--
ln6ln2
ln(2)(6)
44
A A E A E
=---。