2012矩阵论A卷
南航矩阵论研究生试卷及答案

(2)求广义逆矩阵 ;
(3)求该线性方程组的极小最小二乘解.
解答:(1) 矩阵 , 的满秩分解为
.…………………(5分)
(2) .……………………(10分)
(3)方程组的极小最小二乘解为 .…………(5分)
共6页第5页
四、(20分)已知幂级数 的收敛半径为3,矩阵 .
(1) 求 ;
,
证明 是 的一个内积;
(3)求 在题(2)所定义的内积下的一组标准正交基;
(4)证明 是 的线性变换,并求 在题(1)所取基下的矩阵.
解答:(1) 的一组基为 维数为3.
……………………………………(5分)
(2)直接验证内积定义的四个条件成立.……………………………(4分)
(3) 标准正交基 .…………(5分)
(4)由于 ,所以 是 的一个变换.又直接验证,知
,
因此 是 的一个线性变换.………………………………(3分)
线性变换 在基 下的矩阵为
.……………………………………………(3分)
二、(20分)设三阶矩阵 , , .
(1)求 的行列式因子、不变因子、初等因子及Jordan标准形;
(2)利用 矩阵的知识,判断矩阵 和 是否相似,并说明理由.
南京航空航天大学2012级硕士研究生
共6页 第1页
2012~2013学年第1学期《矩阵论》课程考试A卷
考试日期:2013年1月15日课程编号:A080001命题教师:阅卷教师:
学院专业学号姓名成绩
一、(20分)设 是 的一个线性子空间,对任意 ,定义: ,其中 .
(1)求 的一组基和维数;
(2)对任意 ,定义:
解答: ( 的行列式因子为 ;…(3分)
【备战2013】高考数学 5年高考真题精选与最新模拟 专题18 矩阵变换 理

【备战2013】高考数学 5年高考真题精选与最新模拟 专题18 矩阵变换 理【2012高考真题精选】(2012·江苏卷]已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412 -12,求矩阵A 的特征值.(2012·福建卷)设曲线2x2+2xy +y 2=1在矩阵A =⎝⎛⎭⎫a b 01(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.(1)求实数a ,b 的值; (2)求A 2的逆矩阵.(2012·上海卷)函数f (x )=⎪⎪⎪⎪⎪⎪2 cos x sin x -1的值域是________.【答案】⎣⎢⎡⎦⎥⎤-52,-32 【解析】 考查二阶矩阵和三角函数的值域,以矩阵为载体,实为考查三角函数的值域,易错点是三角函数的化简.f (x )=-2-sin x cos x =-2-12sin2x ,又-1≤sin2x ≤1,所以f (x )=-2-12sin2x 的值域为⎣⎢⎡⎦⎥⎤-52,-32. 【2011高考真题精选】(2011·江苏卷) 选修4-2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.(2011年高考上海卷理科)行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
(2011·福建卷)(1)选修4-2:矩阵与变换 设矩阵M =⎝⎛⎭⎫a 00 b (其中a >0,b >0).①若a =2,b =3,求矩阵M 的逆矩阵M -1;(2011·上海)行列式⎪⎪⎪⎪⎪⎪a b c d (a ,b ,c ,d ∈{-1,1,2})所有可能的值中,最大的是________.【2010高考真题精选】1.(2010年高考上海市理科4)行列式cos sin36 sincos36ππππ的值是。
2.(2010年高考上海市理科10)在n行n列矩阵12321234113451212321n n nn nnn n n n⋅⋅⋅--⎛⎫⎪⋅⋅⋅-⎪⎪⋅⋅⋅⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪⋅⋅⋅---⎝⎭中,记位于第i行第j列的数为(,1,2,)ija i j n=⋅⋅⋅。
研究生期末试题矩阵论a及答案

,
可得谱分解式 (10分)
六、当 时, ;当 时,存在 与 使得 ,从而有
,(4分)
对于 ,有
,(7分)
对于 ,有
所以 是 中的矩阵范数.(10分)
七、解
,
, ,
.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 ,于是
由此知 的内插多项式表示为
.(6分)
将矩阵A代入上式得
.
当 时, ,故
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为
,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵,判断该变换是否为可逆变换.
解:因 , ,故 为 上的变换, 不是 上的变换。(4分)
又对于线性空间 中任意矩阵 , , ,故为线性变换。(6分)
七、(10分)已知函数矩阵
,
其中 ,试求 , , , .
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 .
.
长 春 理 工 大 学
研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2013 ——2014 学年第 一 学期□开卷 √闭卷
一、(10分) 为数域,对于线性空间 中任意矩阵 ,规则 , 分别为 ,问 , 是否为 上的变换,如果是,证明该变换为线性变换,并求该变换在基 , , , 下的矩阵.
矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
矩阵论练习题

练习一一﹑选择题1、对于()212,x x R ∀∈,下列变换是2R 上的线性变换的是 ( D ).(A) ()()21212,,T x x x x =; (B) ()()21212,,T x x x x =;(C) ()()1212,,0T x x x x =; (D) ()()1212,,T x x x x =-. 2、设()(),A B λλ为两个n 阶λ-矩阵,则 ( D ).(A) 若()A λ满秩,则()A λ必可逆; (B) ()A λ可逆当且仅当()0A λ≠;(C) 若()A λ与()B λ秩相等,则()A λ与()B λ等价;(D) 若()A λ与()B λ等价,则()A λ与()B λ具有相同的不变因子. 3、设()n n ij A a C ⨯=∈,则下列不能构成矩阵范数的是( A ).(A) ,max ij i ja ; (B) ,max ij i jn a ⋅; (C) 1max nij ij a =∑; (D) 1max nij j i a =∑.4、设n n A C ⨯∈,H A 为A 的共轭转置矩阵,()A ρ为A 的谱半径,A 为A 的范数,则下列说法不正确的是( C ).(A)()[]()kk A A ρρ=; (B) ()()H H A A AA ρρ=;(C) 若()1A ρ<,必有E A -可逆; (D) 若A 为收敛矩阵,必有()1A ρ<. 5、设V 为酉空间,C λ∈,,V αβ∈且(),αβ为α与β的內积,则下列说法不正确的是( B ).(A) ()(),,λαβλαβ=; (B) ()(),,αλβλαβ=; (C) ()()(),,,αβγαβαγ+=+; (D) ()()(),,,βγαβαγα+=+.二﹑填空题1、已知100231120012233002A -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则A 的LDU 分解为 .2、设sin ()2cost t t te A t t ⎛⎫= ⎪⎝⎭,则0()x A t dt ⎰=21cos 1sin x x x xe e xx ⎛⎫--+ ⎪⎝⎭.3、设矩阵2242t tt At tt t e te te e te e te ⎡⎤-=⎢⎥-+⎣⎦ ,则矩阵A =1143-⎛⎫⎪-⎝⎭.4、矩阵100110111A ⎛⎫⎪= ⎪ ⎪⎝⎭ 相对于矩阵范数∞ 的条件数为 6 .5、设11122122⎛⎫=⎪⎝⎭x x X x x ,(),A a b =,则()d AX dX =0000a a b b ⎛⎫⎪⎝⎭. 6、已知101112003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则543258884A A A A A E -+-+- =001102002⎛⎫⎪⎪ ⎪⎝⎭.7、已知⎪⎪⎪⎭⎫⎝⎛=987654321A ,则A 的正奇异值的个数为 2 .三、计算题已知 1(1,3,2,1)T α=-,2(1,0,0,2)T α=,1(0,1,1,3)T β=,2(3,2,1,6)T β=--, 且112{,}V span αα=,212{,}V span ββ=,求12V V +与12V V 的基和维数. 解:因为1212{,}V V span αα+=+12{,}span ββ=1212{,,,}span ααββ而12121103100130120102(,,,)2011001112360000ααββ--⎛⎫⎛⎫⎪ ⎪-⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭初等行变换 由于121,,ααβ是向量组1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ且21212βααβ=--. 由行最简形知12dim()2,dim()2,V V ==又121212dim()dim dim dim()V V V V V V +=+- 故12dim()1V V =311100222110201236001212A ⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭由21212βααβ=--得()12121223,3,2,3TV V ξααββ=-=+=--∈所以()3,3,2,3T--为12V V 的一组基。
矩阵论试题参考答案(2012年)

n n 1 , det X xik X ik xij X ij xik X ik ,其中 X ik 是 xik 的代数 det X k 1 k j
余子式,
det X X ij ,从而 xij
det X 1 xij
xij
1 det X
2012 年矩阵论试题参考答案
一、(16 分) 已知 4 阶方阵 A 的特征值为 1, 2, 2, 2 ,且其一阶和二阶行列式因子分别为
D1 1, D2 2.
1.(6 分) 求 A 的不变因子和最小多项式; 2.(4 分) 求 A 的 Jordan 标准形; 3.(6 分) 求实数 t 的取值范围,使 cos At 为收敛矩阵. 解 . 1 . 因 为 D4 即 为 A 的 特 征 多 项 式 , 且 A 的 特 征 值 为 1, 2, 2, 2 , 故
A 的最小多项式为 mA d 4 1 2 .
2.由 A 的不变因子知, A 的初等因子为
1, 2, 2, 2 ,故 A 的 Jordan 标准形
1 2 . 为 J 2 2
u1 1 , , m , v1 m 1 , , m n , u2 1 , , m , v2 m 1 , , m n ,则
T T T T
x y u1 u2
a
v1 v2
b
u1 a u2
D4 1 2 . 再由行列式因子与不变因子的性质与相互关系知 D3 2 ,
3 2
从而 A 的不变因子为
研究生期末试题矩阵论a及答案

验证 是 中的向量范数.
八、(10分)已知矩阵 ,写出矩阵函数 的Lagrange-Sylvester内插多项式表示,并计算 。
长 春 理Leabharlann 工 大 学研 究 生 期 末 考 试标准答案及评分标准
科目名称:矩阵论命题人:姜志侠
适用专业:审核人:
开课学期:2012——2013学年第 一 学期□开卷√闭卷
计算
,
则得谱分解式
+2 (10分)
六、
.
由于 ,
于是有 ,故
(10分)
七、当 时, ;当 不恒等于零时,由其连续性知 必在 的某个子区间 上不等于零,从而有
,
对于 ,有
,
对于 ,有
,
故 是 中的向量范数.(10分)
八、容易求出矩阵A的最小多项式为 ,所以 , ,于是
由此知 的内插多项式表示为
将矩阵A代入上式得
长 春 理 工 大 学
研 究 生 期 末 考 试试 题
科目名称:矩 阵 论命题人:姜志侠
适用专业:理 工 科审核人:
开课学期:2012——2013学年第 一 学期□开卷 √闭卷
一、(10分)设 是 的一个基,试求由 ,
, 生成的子空间 的基.
二、(10分)在 中,设 ,定义实数 为 ,判断是否为 中 与 的内积。
.
(2) 在基(Ⅱ)的坐标为 ,由坐标变换公式计算 在基(Ⅰ)下的坐标为
.(10分)
四、首先求出A的Jordan标准形
,
所以行列式因子 ;
不变因子 ;(6分)
那么A的初等因子为 ,故A的Jordan标准形为
.(10分)
五、解:求出 的特征根 (二重),计算对角化相似因子 及其逆 为
南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题

2 3 4 A 4 6 8 6 7 8 。 一(20 分) (1)设
2010 ~ 2011 学年《矩阵论》 课程考试 A 卷
(i)求 A 的特征多项式和 A 的全部特征值; (ii)求 A 的行列式因子,不变因子和初等因子; (iii)写出 A 的 Jordan 标准形;
1 A* A2 A* (3)证明: n 。
1 1 1 1 A 0 0 0 0 四、 (20 分)已知矩阵
(1)求矩阵 A 的 QR 分解;
1 2 0 1 b 1 1 2 1 ,向量 ,
(2)计算 A ;
17 6 14 60 A , B 45 16 3 13 ,试问 A 和 B 是否相似?并说明 (2)设
原因。
2 1 A 1 2 3 1 ,求 A 1 , A 2 , A , A F ; 二(20 分) (1)设
(3)用广义逆判断方程组 Ax b 是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、 (20 分)
(1)设矩阵
问当 t 满足什么条件时, A B 成立?
5 3 2 0 1 A 3 2 t , B 1 1 2 t 2 2 0 .5 t
五(20 分)设
A ( a ij )
为 n 阶 Hermite 矩阵,证明:
3
存在唯一 Hermite 矩阵 B 使得 A B ;
2
(2)
(3) 如果 A 0 ,则 tr ( A)tr ( A ) n 。
1
如果 A 0 ,则 tr ( A ) (tr ( A)) ;
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)证明: W 是 R n 的线性子空间; (2)求 W 的维数.
1 2 22 三、(15 分)设 A ,在线性空间 R 上定义映射 0 3 T ( X ) AX XA, X R 22 . (1)证明: T 是 R 22 上的线性变换; (2)求 T 在基 E11 , E12 , E21 , E22 下的表示矩阵,其中 Eij 是 (i, j ) 元为 1、其余元
为 0 的 2 阶方阵. 四、(15 分)设线性空间 F [ x ]4 { f ( x ) a0 a1 x a2 x 2 a3 x 3 | ai R, i 0,1, 2,3} , 对于任意的 f ( x ), g ( x ) F [ x ]4 ,定义 ( f , g ) f ( x ) g ( x )dx .
(1)求矩阵 A 的 Jordan 标准形; (2)求 A 的最小多项式. 六、(15 分)已知线性方程组 AX b 为:
x1 2 x2 3x3 1 x x 0 1 3 , 2 x1 2 x3 1 2 x1 4 x2 6 x3 3
(1)求矩阵 A 的满秩分解; (2)求矩阵 A 的广义逆矩阵 A ; (3)求线性方程组 AX b 的最小二乘解; (4)求线性方程组 AX b 的极小范数最小二乘解. 七、(10 分)已知
(2) m A ( ) ( 1) 2 .
1 1 六、(15 分) (1) A BC 2 2
2 1 5 10 2 0 1 0 1 1 2 4 8 4 ;(3) 最小 ,(2) A 0 0 1 1 30 1 1 2 2 4
5 0 8 A 3 1 6 , 2 0 3 1 , X0 1 1
(1)求矩阵函数 e At ; (2)求微分方程组
dX (t ) AX (t ) 满足初始条件 X (0) X 0 的解. dt
第 2 页,共 4 页
参考答案
一、填空题(共 5 小题,每题 3 分,共 15 分) 1.
1 0 1 2 n(n 1) 1 , 2. 19 , 3. , 4.-1, 5. A 2 A3 2 3 1 0 1 0 2 . 0 0
二、(15 分) (2) n-2;
0 0 2 2 2 0 三、(15 分) (2) T 在基 E11 , E12 , E21 , E22 下的矩阵为 B 0 0 2 0 0 2
0.4 1 1 1 . 二乘解: X 0.5 k 1 ;(4)极小范数最小二乘解: X A b 2 10 0 1 3 8t 1 4t 0 1 12t t . 七、(10 分) e e 1 6t , X (t ) e 1 9t 3t 2t 0 1 4t 1 6t
.
4. 设 是 n 维欧氏空间 V 中一单位向量,定义 T 2( , ) , V . 若 T 在 标准正交基下的矩阵为 A,则 | A | . .
5.设 4 阶方阵 A 的特征值为 , ,0,0 ,则 sin A =
二、(15 分)设 1 , 2 R n 是两个线性无关的向量, W { R n | ( , i ) 0, i 1, 2} .
At t
第 3 页,共 4 页
第 4 页,共 4 页
武汉理工大学研究生课程考试试题纸(A 卷)
课程名称 矩阵论 专业年级 全校 2012 级 备注: (共 2 页,共 7 个大题,答题时不必抄题,标明题目序号) 一、填空题(共 5 小题,每题 3 分,共 15 分) 1. 实数域 R 上所有 n 阶反对称矩阵所构成的线性空间的维数是 2. 设向量 (2i, 1, 3i, 1 2i )T ,则 || ||2 = 1 2 3. 已知矩阵 A ,则 A 的 LU 分解为 3 5 . .
ቤተ መጻሕፍቲ ባይዱ
1 3 四、(15 分) (3)正交基为: 1 1, 2 x, 3 x 2 , 4 x 3 x, 单位化得标准正 3 5 交基
1
2 6 10 14 ,2 (3x 2 1),4 (5 x 3 3x ) x,3 2 2 4 4
1 五、(15 分) (1) , 1 1 1
1 1
第 1 页,共 4 页
(1)证明 ( f , g ) 是 F [ x ]4 的一个内积;
(2)写出此空间的柯西—施瓦兹不等式; (3)由基 1, x, x 2 , x 3 出发,在题目所定义的内积下求 F [ x ]4 的一组标准正交基.
3 0 8 五、(15 分)设矩阵 A 3 1 6 , 2 0 5