矩阵论试题及答案
矩阵理论习题答案

习 题 一1. 设λ为的任一特征值,则因 λλ22- 为A =-A 22O 的特征值, 故022=-λλ. 即 λ=0或2.2. A ~B , C ~D 时, 分别存在可逆矩阵P 和Q , 使得 P 1-AP =B , Q 1-CQ =D .令T =⎪⎪⎭⎫⎝⎛Q O O P 则 T 是可逆矩阵,且T 1-⎪⎪⎭⎫⎝⎛C O O A T =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--Q O O P C O O A Q O O P 11=⎪⎪⎭⎫ ⎝⎛D O O B 3. 设i x 是对应于特征值i λ的特征向量, 则 A i x =i λi x , 用1-A 左乘得i i i x A x 1-λ=.即i i i x x A 11--λ= 故 1-i λ是A 的特征值, i =1,2,, n .4. (1) 可以. A E -λ=)2)(1)(1(-+-λλλ,=P ⎪⎪⎪⎭⎫ ⎝⎛--104003214, ⎪⎪⎪⎭⎫ ⎝⎛-=-2111AP P .(2) 不可以.(3) ⎪⎪⎪⎭⎫ ⎝⎛=110101010P , ⎪⎪⎪⎭⎫⎝⎛=-1221AP P .5. (1) A 的特征值是0, 1, 2. 故A =-(b -a )2=0. 从而 b =a .又11111-λ----λ----λ=-λaa aa A I =)223(22+---a λλλ将λ=1, 2 代入上式求得 a=0.(2) P =⎪⎪⎪⎭⎫ ⎝⎛-101010101.6. A I -λ=)1()2(2+-λλ, A 有特征值 2, 2, -1.λ=2所对应的方程组 (2I -A )x =0 有解向量p 1=⎪⎪⎪⎭⎫ ⎝⎛041, p 2=⎪⎪⎪⎭⎫ ⎝⎛401λ=-1所对应的方程组 (I +A )x =0 有解向量p 3=⎪⎪⎪⎭⎫⎝⎛101令 P =(p ,1p ,2p 3)=⎪⎪⎪⎭⎫ ⎝⎛140004111, 则 P 1-=⎪⎪⎪⎭⎫ ⎝⎛---4416414030121. 于是有A 100=P ⎪⎪⎪⎭⎫ ⎝⎛122100100P 1-=⎪⎪⎪⎭⎫⎝⎛-⋅-⋅-⋅---12412244023012122431100100100100100100100. 7. (1)A I -λ=)1(2+λλ=D 3(λ), λI -A 有2阶子式172111----λ=λ-4λ-4不是D 3(λ)的因子, 所以D 2(λ)=D 1(λ)=1, A 的初等因子为λ-1, 2λ. A 的Jordan 标准形为J =⎪⎪⎪⎭⎫ ⎝⎛-000100001设A 的相似变换矩阵为P =(p 1,p 2,p 3), 则由AP =PJ 得 ⎪⎩⎪⎨⎧==-=23211pAp Ap p Ap 0 解出P =⎪⎪⎪⎭⎫ ⎝⎛-----241231111; (2) 因为),2()1()(23--=λλλD 1)()(12==λλD D ,故A ~J =⎪⎪⎪⎭⎫ ⎝⎛200010011设变换矩阵为 P =(321,,p p p ), 则⎪⎩⎪⎨⎧=+==33212112p Ap p p Ap p Ap ⇒P =⎪⎪⎪⎭⎫ ⎝⎛---502513803 (3) ),2()1()(23-+=-=λλλλA I D ,1)(2+=λλD 1)(1=λD .A 的不变因子是,11=d ,12+=λd )2)(1(3-+=λλdA ~J =⎪⎪⎪⎭⎫ ⎝⎛--211 因为A 可对角化,可分别求出特征值-1,2所对应的三个线性无关的特征向量:当λ=-1时,解方程组 ,0)(=+x A I 求得两个线性无关的特征向量,1011⎪⎪⎪⎭⎫ ⎝⎛-=p ⎪⎪⎪⎭⎫ ⎝⎛-=0122p当λ=2时,解方程组 ,0)2(=-x A I 得⎪⎪⎪⎭⎫ ⎝⎛-=1123p , P =⎪⎪⎪⎭⎫ ⎝⎛---101110221(4) 因⎪⎪⎪⎭⎫ ⎝⎛---+=-41131621λλλλA I ~⎪⎪⎪⎭⎫ ⎝⎛--2)1(11λλ, 故A ~J =⎪⎪⎪⎭⎫ ⎝⎛10111设变换矩阵为P =),,(321p p p , 则⎪⎩⎪⎨⎧+===3232211pp Ap p Ap p Ap 21,p p 是线性方程组 0=-x A I )(的解向量,此方程仴的一般解形为p =⎪⎪⎪⎭⎫ ⎝⎛+-t s t s 3 取⎪⎪⎪⎭⎫ ⎝⎛-=0111p , ⎪⎪⎪⎭⎫ ⎝⎛=1032p为求滿足方程 23)(p p A I -=-的解向量3p , 再取 ,2p p = 根据 ⎪⎪⎪⎭⎫ ⎝⎛------t s t s 3113113622~⎪⎪⎪⎭⎫⎝⎛----t s t s s 00033000311 由此可得 s =t , 从而向量 T 3213),,(x x x =p 的坐标应満足方程s x x x -=-+3213取 T 3)0,0,1(-=p , 最后得P =⎪⎪⎪⎭⎫ ⎝⎛--010001131 8. 设 f (λ)=4322458-++-λλλλ. A 的最小多项式为 12)(3+-=λλλA m ,作带余除法得 f (λ)=(149542235-+-+λλλλ))(λA m +1037242+-λλ, 于是f (A )=I A A 1037242+-=⎪⎪⎪⎭⎫ ⎝⎛----346106195026483.9. A 的最小多项式为 76)(2+-=λλλA m , 设 f(λ)=372919122234+-+-λλλλ,则f (λ)=)()52(2λλA m ++2+λ. 于是 [f (A )]1-=1)2(-+I A .由此求出[f (A )]1-=⎪⎪⎭⎫ ⎝⎛-3217231 10. (1) λI -A =⎪⎪⎪⎭⎫ ⎝⎛---+41131621λλλ标准形⎪⎪⎪⎭⎫ ⎝⎛--2)1(00010001λλ, A 的最小多项式为 2)1(-λ;2) )1)(1(+-λλ; (3) 2λ.11. 将方程组写成矩阵形式:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛321321188034011d d d d d d x x x t x t x t x , ⎪⎪⎪⎭⎫ ⎝⎛=321x x x x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t x t x t x t d d d d d d d d 321x , A =⎪⎪⎪⎭⎫ ⎝⎛----188034011则有J =PAP 1-=⎪⎪⎪⎭⎫ ⎝⎛-100010011, .其中 P =⎪⎪⎪⎭⎫⎝⎛124012001.令 x =Py , 将原方程组改写成 : ,d d Jy y=t 则⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+==3321211d d d d d d yty y y ty y t y 解此方程组得: y 1=C 1e t +C 2T e t , y 2=C 2e t , y 3=C 3e t -. 于是x =Py =⎪⎪⎪⎭⎫ ⎝⎛++++++-t t t tt t t c )t (c c )t (c c t c c e e 24e 4e 12e 2e e 3212121.12. (1) A 是实对称矩阵. A I -λ=2)1)(10(--λλ,A 有特征值 10, 2, 2.当λ=10时. 对应的齐次线性方程组 (10I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--542452228~⎪⎪⎪⎭⎫ ⎝⎛000110102由此求出特征向量p 1=(-1, -2, 2)T , 单位化后得 e 1= (32,32,31--)T . 当λ=1时, 对应的齐次线性方程组 (I -A )x =0的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛-----442442221~⎪⎪⎪⎭⎫ ⎝⎛-000000221 由此求出特征向量 p 2=(-2, 1, 0)T , p 3=(2, 0, 1)T . 单位化后得e 2=(0,51,52-)T , e 3=(535,534,532)T. 令 U =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---53503253451325325231, 则 U 1-AU =⎪⎪⎪⎭⎫⎝⎛1110.(2) A 是Hermit 矩阵. 同理可求出相似变换矩阵U =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---2121212i 2i 2i 21210, U 1-AU =⎪⎪⎪⎭⎫⎝⎛-22. 13. 若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得U H AU =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21, i λ﹥0, I =1, 2, , n . 于是A =U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21U H = U ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ 21U H U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 令B =U ⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21U H 则 A =B 2.反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. (1)⇒(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得U H AU =diag(n λλλ,,,21 )令x =Uy , 其中 y =e k . 则 x ≠0. 于是x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, , n ).(2)⇒(3).A =U diag(n λλλ,,,21 )U H =U diag(n λλλ,,,21 )diag(n λλλ,,,21 )U H令 P =diag(n λλλ,,,21 )U H , 则 A =P H P . (3)⇒(1). 任取x ≠0, 有x H Ax =x H P H Px =22Px ≧0.习 题 二1. 1x =01i 42i 1+++-++=7+2,2x =1i)4i(4)2(i)1i)(1(2+-+-+-+=23, ∞x =max {}1i 42i 1,,,-+=4.2. 当 x ≠0时, 有 x ﹥0; 当 x ﹦0时, 显然有 x =0. 对任意∈λC , 有x λ=x nk kk nk kk λξωλλξω==∑∑==1212.为证明三角不等式成立,先证明Minkowski 不等式: 设 1≦p ﹤∞, 则对任意实数 x k ,y k (k =1, 2, , n )有pnk pk k y x 11)(∑=+≦∑∑==+nk ppk nk ppk y x 1111)()(证 当 p =1时,此不等式显然成立. 下设 p ﹥1, 则有∑=+nk pkk y x 1≦∑∑=-=-+++nk p kk k nk p kk k y x y y x x 1111对上式右边的每一个加式分别使用H ölder 不等式, 并由 (p -1)q =p , 得∑=+nk pkky x1≦qnk q p kk pnk pk qnk q p kk pnk pk y x y y x x 11)1(1111)1(11)()()()(∑∑∑∑=-==-=+++=qnk p k k pnk pk pnk p k y x y x 111111)]()()[(∑∑∑===++再用 qnk p k k y x 11)(∑=+ 除上式两边,即得 Minkowski 不等式.现设任意 y =(n ηηη,,,21 )T ∈C n , 则有∑=+=+nk kk k y x 12ηξω=∑=+nk k k k 12)(ηξω≦∑=+nk k k k k 12)(ηωξω≦∑∑==+nk j k nk k k 1212()(ηωξω=y x +.3. (1) 函数的非负性与齐次性是显然的,我们只证三角不等式.利用最大函数的等价定义:max(A , B )=)(21b a b a -++max(),b a y x y x ++≦max(b b a a y x y x ++,)=)(21b b a a b a b a y x y x y y x x --+++++≦)(21b a b a b a b a y y x x y y x x -+-++++ =)(21)(21b a b a b a b a y y y y x x x x -+++-++ =max( b a x x ,)+max( b a y y ,)(2) 只证三角不等式.k 1a y x ++k 2b y x +≦k 1a x +k 1a y +k 2b x +k 2b y =( k 1a x +k 2b x )+( k 1a y +k 2b y ) .4. 218132i 453i 11m +=+++++++=A ;66132i 453i 1222222F =+++++++=A ; 15m =∞A ;=1A 列和范数(最大列模和)=27+;∞A =行和范数(最大行模和)=9 ;5. 非负性: A ≠O 时S 1-AS ≠O , 于是 m 1AS S A -=>0. A =O 时, 显然A =0;齐次性: 设λ∈C , 则 λλλ==-m1)(S A S A m1ASS -=λA ;三角不等式: m11m1)(BSS AS S S B A S B A ---+=+=+≦B A BSS AS S +=+--m 1m 1;相容性: m11m1)(BS ASS S SAB S AB ---==≦m1m1BSS AS S --=A B .6. 因为I n ≠O , 所以n I >0.从而利用矩阵范数的相容性得:n n n I I I =≦n I n I ,即n I ≧1.7. 设 A =(A ij )∈C n n ⨯, x =∈ξξξT 21),,,(n C n , 且 A =ij ji a ,max , 则∑∑=ikk ik Ax ξa 1≦∑∑ikk ik a ξ=∑∑kiik k a ][ξ≦n A ∑kk ξ=∞m A 1x ;∑∑=ikk ikAx 22ξa≦∑∑ikk ika2][ξ=∑∑ikka 22][ξ=n A 2x ≦n A =∞m A 2x .8. 非负性与齐次性是显然的, 我们先证三角不等式和相容性成立. A =(a ij ), B =(b ij )∈C n m ⨯, C =(c st )∈C l n ⨯且 A =ij ji a ,max , B =ij ji a ,max , C =st ts c ,max . 则MBA +=max{m ,n }ij ij ji b a +,max ≦max{m ,n })(m ax ,ij ij ji b a +≦max{m ,n }(A +B )=max{m ,n }A +max{m ,n }B =M M B A +;MAC=max{m ,l }∑kkt ik ti c a ,max ≦max{m ,n }}{max ,∑kkt ik ti c a ≦max{m ,n }}{max 22,∑∑⋅kkt kikti c a (Minkowski 不等式)=max{m ,n }n AC ≦max{m ,n }max{n ,l }AC =M M C A .下证与相应的向量范数的相容性.设 x =∈ξξξT 21),,,(n C n , d =kmax {k ξ}, 则有∑∑=ikk ik a Ax ξ1≦∑∑ikk ik a ξ=∑∑ki ikka)(ξ≦∑kk na ξ=n A ∑kk ξ≦max{m ,n }A ∑kk ξ=1M x A ;2Ax =∑∑ikkik a2ξ≦∑∑ik k ik a 2)(ξ≦∑∑∑ikkkika )(22ξ(H ölder 不等式)=∑∑∑⋅kk ikik a 22ξ≦mn A 2x≦max{m ,n }A 2x =2M x A ;}{max 1∑=∞=n k k ik iAxξa ≦∑=nk k ik ia 1}{max ξ≦}{max 22∑∑⋅kk kik ia ξ≦}max{22nd na i⋅=n AD ≦max{m ,n }AD =∞x A M .9. 只证范数的相容性公理及与向量2–范数的相容性. 设 A =(a ij )∈C n m ⨯, B =(b st )∈C l n ⨯,x =∈ξξξT 21),,,(n C n 且 A =ij ji a ,max , B =st ts b ,max , 则∑=≤≤≤≤=nk ktik lt m i AB11,1Gmaxb aml ≦}{max ,kt kik t i b a ml ∑≦}{max 22,∑∑⋅kkt kikti b a ml (Minkowski 不等式)≦ml n ab =))((b nl a mn =G G B A .∑∑===m i nk k ikAx1212ξa≦∑∑ik k ika2)(ξ≦∑∑∑⋅ikkk ik a )(22ξ (H ölder 不等式)≦∑∑⋅ikkna )(22ξ=mn A 2x=2G x A .10. 利用定理2.12得122H 2===nI UU U.11.A 1-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0110211214321cond 1(A )=225255111=⋅=-A A ; cond ∞(A )=10251=⋅=∞-∞A A .12.设x 是对应于λ的特征向量, 则A x x m m λ=.又设 v ⋅是C n 上与矩阵范数⋅相容的向量范数,那么vm vm v mx A x x ==λλ≦v m x A因 v x >0, 故由上式可得 mλ≦m A ⇒λ≦m m A .习 题 三1. 2c λc λλ))(2(+-=-A I , 当c λρ=)(﹤1时, 根据定理3.3, A 为收敛矩阵.2. 令S )N (=∑=N0)(k k A , )(lim N N S +∞→=S , 则 0)(lim lim )()()(=-=+∞→+∞→k k k k k S S A .反例: 设 A )(k =k⎪⎪⎭⎫ ⎝⎛0001k, 则因 ∑+∞=01k k发散, 故 ∑+∞=0)(k k A发散, 但)(lim k k A +∞→=O .3. 设 A =⎪⎪⎭⎫⎝⎛6.03.07.01.0, 则 )(A ρ≦=∞A 行和范数=0.9<1, 根据定理3.7,∑∞+=⎪⎪⎭⎫ ⎝⎛06.03.07.01.0k k=(I -A )1-=⎪⎪⎭⎫ ⎝⎛937432.4. 我们用用两种方法求矩阵函数e A : 相似对角化法. 22a λλ+=-A I , a -a i ,i =λ当 =λi a 时, 解方程组 (i a -A )x =0, 得解向量 p 1=(i, 1)T .当 λ=-i a 时, 解方程组 (i a +A )x =0, 得解向量 p 2=(-i, 1)T .令 P =⎪⎪⎭⎫⎝⎛-11i i , 则P 1-=⎪⎪⎭⎫ ⎝⎛-i 1i 1i 21, 于是 e A =P ⎪⎪⎭⎫⎝⎛-a ai 00i P 1-=⎪⎪⎭⎫ ⎝⎛a a a -a cos sin sin cos . 利用待定系数法. 设e λ=(2λ+a 2)q (λ)+r (λ), 且 r (λ)=b 0+b 1λ, 则由⎩⎨⎧=-=+-aaa b b a b b i 10i 10ei e i ⇒b 0=cos a , b 1=a1sin a .于是e A =b 0I +b 1A =cos a ⎪⎪⎭⎫ ⎝⎛11+a 1sin a ⎪⎪⎭⎫ ⎝⎛-a a =⎪⎪⎭⎫ ⎝⎛-a a a a cos sin sin cos . 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设f (λ)=cos λ, 或 sin λ则有⎩⎨⎧=-=+a-a b b aa b b sini i sini i 1010 与 ⎩⎨⎧=-=+aa b b aa b b i cos i i cos i 1010 由此可得⎪⎩⎪⎨⎧-==a a b b sini i 010 与 ⎩⎨⎧==0i cos 10b ab 故 (a 2isini a )A =⎪⎪⎭⎫ ⎝⎛-0isini isini 0a a =sin A 与(cosi a )I =⎪⎪⎭⎫⎝⎛a acosi 00cosi =cos A .5. 对A 求得P = ⎪⎪⎪⎭⎫ ⎝⎛--013013111, P 1-=⎪⎪⎪⎭⎫ ⎝⎛-24633011061, P 1-AP =⎪⎪⎪⎭⎫ ⎝⎛-211根据p69方法二,e At =P diag(e t -,e t ,e t 2)P 1-=⎪⎪⎪⎭⎫⎝⎛+--++---------t t t t tt tt t t t t t t e 3e 3e 3e 30e 3e 3e 3e 30e e 3e 2e e 3e 4e 661222tsin A =P diag(sin(-1),sin1,sin2)P 1-=⎪⎪⎪⎭⎫⎝⎛--01sin 601sin 6001sin 42sin 21sin 22sin 42sin 616. D 3(λ)=101011----λλλ=2)1(-λλ, D 2(λ)=D 1(λ)=1, A ~J =⎪⎪⎪⎭⎫⎝⎛000010011.现设r (λ,t )=b 0+b 1λ+b 2λ2, 则有⎪⎩⎪⎨⎧==+=++1e 2e 021210b t b b b b b t t ⇒b 0=1, b 1=2e t -t e t -2, b 2=t e t -e t +1. 于是e t A =r (A , t )=b 0I +b 1A +b 2A 2=I +(2e `t -t e t -2)⎪⎪⎪⎭⎫⎝⎛100100011+(t e t -e t +1)⎪⎪⎪⎭⎫ ⎝⎛100100111=⎪⎪⎪⎭⎫ ⎝⎛-+--tt e 001e 101e e 1e e tt t t t同理,由⎪⎩⎪⎨⎧=-=+=++1sin 2cos 021210b t t b b t b b b ⇒b 0=1, b 1=t sin t +2cos t -2, b 2=1-t sin t -cos t . 将其代入cos A t =b 0I +b 1A +b 2A 2, 求出cos A t =⎪⎪⎪⎭⎫ ⎝⎛----t t t t t t t cos 001cos 10cos sin 11cos cos7. 设 f (A )=∑+∞=0k k A ka ,S N=∑=Nk k A 0k a .则 f (A )=N N S +∞→lim 并且由于(S N)T=T)(∑=N k k k A a =∑=Nk k k A 0T )(a所以, f (A T )=T )(lim N N S +∞→=f (A )T .8, (1) 对A 求得P =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, P 1-=P , J =⎪⎪⎪⎪⎪⎭⎫⎝⎛1111111 则有e t A =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛t t tt t tt ttt t t t t t t e e e e 2e e e 6e 2e 232eP 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛t ttt t t tt t e e e 2e 60e e e 200e e 000e 232t t t t t t tsin A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin sin 2cos sin cos 6sin 2cos sin 232P 1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---t t t t t t t t t t t t t t t t sin cos sin 2cos 6sin cos sin 2sin cos sin 232cos A t =P ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t tt t t t tt t t t t t t cos sin cos cos 2sin cos sin 6cos 2sin cos 232P=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----t t t t t t t t t t t t t t t t cos sin cos 2sin 60cos sin cos 200cos sin 000cos 232(2) 对A 求出P =P 1-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100100000100001, J =⎪⎪⎪⎪⎪⎭⎫⎝⎛--010212 则有e At =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛---11e e e 222t t tt t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---100010000e 000e e 222t t tt tsin A t =P ⎪⎪⎪⎪⎪⎭⎫⎝⎛--002sin 2cos 2sin t t tt tP 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000002sin 0002cos 2sin t t tt tcos A t =P ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1012cos 2sin 2cos t t t t P 1-=⎪⎪⎪⎪⎪⎭⎫⎝⎛10000100002cos 0002sin 2cos t t t t 9. (1) sin 2A +cos `2A =[)e (e i 21i i A A --]2=[)(e 21i i A A e -+]2=)e e e (e 41)e e e (e 41i 2i 2i 2i 2O O A A O O A A ++++--+---=e O =I(2) sin(A +2πI )=sin A cos(2πI )+cos A sin(2πI )=sin A [I -!21(2πI )2+!41(2πI )4-…]+cos A [2πI -!31(2πI )3+!51(2πI )5-…]= sin A [1-!21(2π)2+!41(2π)4-…]I +cos A [2π-!31(2π)3+!51(2π)5-…]I=sin A cos2π+cos A sin2π (3)的证明同上.(4) 因为 A (2πi I )=(2πi I )A ,所以根据定理3.10可得 e I A i π2+=e A e I πi 2=e A [I +(2πI )+!21(2πi I )2+!31(2πi I )3+…]=e A {[1-!21(2π)2+!41(2π)4-…]+i[2π-!31(2π)3+!51(2π)5-…]}I=e A {cos2π+isin2π}I =e A此题还可用下列方法证明:e I A πi 2+=e ⋅A e I i π2=e ⋅A P ⎪⎪⎪⎪⎪⎭⎫⎝⎛i π2iπ2πi 2e e e P 1-=e ⋅A PIP 1-=e A用同样的方法可证: e I A πi 2-=e A e I πi 2-.10. A T =-A , 根据第7题的结果得 (e A )T =e TA =e A -, 于是有e A (e A )T =e A e TA =e A A -=e O =I11. 因A 是Herm(i A )H =-i A H =-i A , 于是有e A i (e A i )H =e A i e A i -=e O =I12. 根据定理3.13, A 1-tt A e d d =e At , 利用定理3.14得 ⎰tA 0d e ττ=⎰-t A A 01d e d d τττ=A 1-τττd e d d 0A t ⎰=A 1-(e -At I ). 13. t d d A (t )=⎪⎪⎭⎫ ⎝⎛---t t t t sin cos cos sin , t d d (det A (t ))=t d d (1)=0, det(t d dA (t ))=1, A 1-(t )=⎪⎪⎭⎫ ⎝⎛-t t t t cos sin sin cos , t d d A 1-(t )=⎪⎪⎭⎫⎝⎛---t t t t sin cos cos sin14. ⎰t A 0d )(ττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎰⎰⎰⎰⎰⎰-00d 30d e 2d e d d e d e 002002002t t t t t t τττττττττττττ=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---002301e e1311e e )1(e 212232t t t t t t t t 15. 取 m =2, A (t )=⎪⎪⎭⎫⎝⎛t t t 02, 则 A 2(t )=⎪⎪⎭⎫ ⎝⎛+22340t t t t , t d d (A (t ))2=⎪⎪⎭⎫ ⎝⎛+t t t t 2023423≠2A (t )t d dA (t )=⎪⎪⎭⎫⎝⎛+t t t t 2022423. 困为++==--21)]()[(d d)()]()[(d d )]()()([d d )]([d d m m A A A A A A A A A t t tt t t t t t t t t t m +)(d d)]([1t tt A A m -所以当(t d d A (t ))A (t )=A (t )t d dA (t )时, 有)(d d)]([)(d d )]([)(d d )]([)]([d d 111t tt t t t t t t t t A A A A A A A m m m m ---++= =m [A (t )])(d d1t tA m -16. (1) 设 B =(ij b )n m ⨯, X =(ij ξ)m n ⨯, 则 BX =(∑=nk kj ik 1ξb )m m ⨯,于是有tr(BX )=∑∑∑===++++nk km mk n k kj jk n k k k 11111ξξξb b bijBX ξ∂∂)tr(=ji b (i =1,2,…,n ;j =1,2,…,m ) ⎪⎪⎪⎭⎫ ⎝⎛=mn n m BX X b b b b 1111)(tr(d d=T B 由于 BX 与 T T T )(B X BX =的迹相同,所以T T T ))(tr(d d ))(tr(d d B BX XB X X == (2) 设A =(ij a )n n ⨯,f=tr(AX X T ), 则有⎪⎪⎪⎭⎫ ⎝⎛=nm mn X ξξξξ1111T ,AX =⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑∑k km nk k k nk km k k k k ξξξξa a a a 1111f =∑∑∑∑∑∑++++l kkm lk lm l k kj lk lj l kk lk l ξξξξξξa a a 11)]()([][∑∑∑∑∑∂∂⋅+⋅∂∂=∂∂=∂∂k kj lk l k ijlj kj lk ij lj l k kj lk lj ij ij ξξξξξξξξξξa a a f =∑∑+klj li kkj ik ξξa amn ij X ⨯⎪⎪⎭⎫⎝⎛∂∂=ξff d d =X A A X A AX )(T T +=+ 17. 设A =(ij a )m n ⨯, 则 F (x )=(∑∑∑===nk kn k nk k nk k k 1211,,,a a a 1k ξξξ ),且A d F F F x F nn n n n n n =⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a aa a a a a a 21222211121121d d d d d d d ξξξ 18. ()⎪⎪⎪⎭⎫⎝⎛---------=='t t tt t t tt t t t t t t t t tt AtAt A 222222222e 4e 3e 3e 6e 3e 6e 2e e e 4e e 2e 2e e e 2e e 4e e在上式中令t =0, 则有A =⎪⎪⎪⎭⎫ ⎝⎛---=133131113e OA19. A =⎪⎪⎪⎭⎫ ⎝⎛---502613803, x (0)=⎪⎪⎪⎭⎫⎝⎛111, A 的最小多项式为 2)1()(+=λλϕ. 记f (λ)=t λe ,并设f (λ)=g(λ))(λϕ+)(10λb b +, 则⎩⎨⎧==---tte e 110t b b b ⇒ tt --=+=e ,)1(10t b e t b 于是⎪⎪⎪⎭⎫ ⎝⎛--+=++=---t t t t t t t t 41026138041e e e )1(e t t t At A I , x (t )=Ate x (0)=⎪⎪⎪⎭⎫ ⎝⎛-++-t t t 6191121e t20. A =⎪⎪⎪⎭⎫ ⎝⎛--101024012, f (t )=⎪⎪⎪⎭⎫ ⎝⎛-1e 21t , x (0)=⎪⎪⎪⎭⎫ ⎝⎛-111, =)(λϕdet(λI -A)=23λλ-. 根据O A =)(ϕ,可得; 252423,,A A A A A A ===,….于是23232)!31!21()(!31)(!21)(e A A I A A A I At ++++=++++=t t t t t t=2)1(e A A I t t t --++=⎪⎪⎪⎭⎫⎝⎛---++--t t t e 1e e 210124021t t t t ttx (t )=⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+=+⎰⎰-t t t t f e )1(11]02111[e ]d 021)0([]d )(e )0([e 00At t At tA At x e x ττττ习 题 四1. Doolite 分解的说明,以3阶矩阵为例: 11r 12r 13r 第1框 21l 22r 23r 第2框 31l 32l 33r 第3框 计算方法如下: (ⅰ) 先i 框,后i +1框,先r 后l .第1框中行元素为A 的第1行元素; (ⅱ)第2框中的j r 2为A 中的对应元素j a 2减去第1框中同行的21l 与同列的j r 1之积.第3框中的33r 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13r 之积,再减去第2框中同行的32l 与同列的23r 之积; (ⅲ)第2框中的32l 为A 中的对应元素32a 先减去第1框中同行的31l 与同列的12r 之积,再除以22r . 计算如下:1 3 02 -3 0 2 2 -6A =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛600030031122012001 2.Crout 分解的说明,以3阶矩阵为例:11l 12u 13u 第1框 21l 22l 23u 第2框 31l 32l 33l 第3框(ⅰ) 先i 框,后i +1框.每框中先l 后r .第1框中的列元素为A 的第1列的对应元素;(ⅱ)第2框中的2i l 为A 中对应元素2i a 减去第1框中同行的1i l 与同列的12u 之积;(ⅲ)第2框中的23u 为A 中的对应元素23a 减去第1框中同行的21l 与同列的13u 之积,再除以22l .第3框中的33l 为A 中的对应元素33a 先减去第1框中同行的31l 与同列的13u 之积,再减去第2框中同行的32l 与同列的23u 之积.计算如下:1 3 02 -3 02 -6 -6A =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---100010031662032001 2. 先看下三角矩阵的一种写法:⎪⎪⎪⎭⎫⎝⎛333231222111000a a a a a a =⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛332211223211311121000000101001a a a a a a a a a , ii a ≠0 对本题中的矩阵A 求得Crout 分解为A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--1002105452115240512005 利用下三角矩阵的写法对上面的分解变形可得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100051000512540152001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10021054521100510005100051000512540152001=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--10052510545251525405152005 3.对A 的第1列向量)1(β, 构造Householder 矩阵1H 使得 =)1(1βH 12)1(e β, 31C e ∈⎪⎪⎪⎭⎫ ⎝⎛=010)1(β, ⎪⎪⎪⎭⎫ ⎝⎛-=-01112)1()1(e ββ, u =⎪⎪⎪⎭⎫ ⎝⎛-=--01121212)1()1(12)1()1(e e ββββ⎪⎪⎪⎭⎫ ⎝⎛=-=1000010102T 1uu I H , ⎪⎪⎪⎭⎫⎝⎛=2301401111A H , ⎪⎪⎭⎫⎝⎛=23141A对1A 的第1列向量⎪⎪⎭⎫ ⎝⎛=34)2(β, 类似构造Householder 矩阵2H :⎪⎪⎭⎫ ⎝⎛-=--=3110122)2)2(12)2()2ββββe u , 21C e ∈, ⎪⎪⎭⎫ ⎝⎛-=-=4334512T 22uu I H ⎪⎪⎭⎫⎝⎛-=102512A H令12001H H H ⎪⎪⎭⎫⎝⎛=, 则有 ⎪⎪⎪⎭⎫ ⎝⎛-=100250111HA =R 并且⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==---1002501115453000153540001001T2T 112111R H H R H H R H A =QR4. 对A 的第1列向量⎪⎪⎪⎭⎫⎝⎛=202)1(β, 构造Givens 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210210102102113T , ⎪⎪⎪⎪⎭⎫⎝⎛=0022)1(13βT , ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1132221210220232322A O A T 对1A 的第1列向量⎪⎪⎪⎭⎫⎝⎛-=212)2(β, 构造 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=3223131322~12T , ⎪⎪⎪⎭⎫ ⎝⎛=023~)2(12βT , ⎪⎪⎪⎪⎭⎫⎝⎛=34023723~112A T 令 ⎪⎪⎭⎫ ⎝⎛=12T12~1T O O T , 则有 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==34002372302323221312R A T T . 于是 QR R T T A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==340023723023232232231213123403223121H13H 125. 设A =),,(i i 0i 0i 0i 1321ααα=⎪⎪⎪⎭⎫ ⎝⎛----, 对向量组321,,ααα施行正交化, 令⎪⎪⎪⎭⎫ ⎝⎛--==0i 111αβ, ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎭⎫ ⎝⎛=-=i 212i 0i 12i i 0i ],[],[1111222ββββααβ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--=--=323i232i 212i 3i 0i 1211i 0],[],[],[],[222231111333ββββαββββααβ于是⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-==3213212113i 212iβββαββαβα 写成矩阵行式K ),,(1003i 10212i 1),,(),,(321321321ββββββααα=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-= ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=32632316i 203i 612i 316i 21),,(321βββ 最后得A =K ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32632316i 203i 612i 316i 21=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----32006i 630212i 2316i 203i 612i 316i 21=QR 6. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==10005152********T T 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=011000520550114022011000515*******A T 再令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==305061010610305132T T , ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3010305000061061612A T T 最后令⎪⎪⎪⎭⎫⎝⎛=0101000013T , R A T T T =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00030103050610616123 A =⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=0003010305061061603056151302625230161H 3H 2H 3R T T T =QR 7. =)1(β(0, 1)T , 12)1(=β, u =2121)1(1)1(=--e e ββ(-1, 1)T ,H 1=⎪⎪⎭⎫⎝⎛=-01102T2uu I , H =⎪⎪⎭⎫⎝⎛1001H 则有HAH T =⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛010100001111210121010100001=⎪⎪⎪⎭⎫ ⎝⎛--120111211, H 是Householder 矩阵.同理, 对)1(β, 取 c =0, s =1, T 12=⎪⎪⎭⎫⎝⎛-0110, T =⎪⎪⎭⎫ ⎝⎛12001T , 则 ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=='-0101000011112101210101000011TAT T TA=⎪⎪⎪⎭⎫ ⎝⎛---120111211, T 是Givens 矩阵.8. 对 ⎪⎪⎭⎫⎝⎛=1612)1(β, 计算u =⎪⎪⎭⎫ ⎝⎛-=--2151202021)1(1)1(e e ββ, H =I -2uu T=⎪⎪⎭⎫ ⎝⎛-344351 令 Q =⎪⎪⎭⎫⎝⎛H 001, 则⎪⎪⎪⎭⎫⎝⎛=075075600200200TQAQ同理,对)1(β,为构造Givens 矩阵,令c =53, s =54, ⎪⎪⎪⎪⎭⎫ ⎝⎛-=5354545312T ,则当⎪⎪⎭⎫⎝⎛=12001T T 时,='T TA ⎪⎪⎪⎭⎫ ⎝⎛--075075600200200.1. (1) 对A 施行初等行变换⎪⎪⎪⎭⎫ ⎝⎛----100424201011200010321~⎪⎪⎪⎪⎭⎫ ⎝⎛---142000002102121100111201 S=,1420210011⎪⎪⎪⎪⎭⎫ ⎝⎛-- A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2121101201422021(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--------10001111010011110010111100011111~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000000001100000210211110021021001 S=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---11000011021021021021, A =⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛----1110000111111111(3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1000126420100632100101264200016321~⎪⎪⎪⎪⎪⎭⎫⎝⎛---10100000010100000011000000016321 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1010010100110001S, ()63212121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 10. (1) ⎪⎪⎪⎭⎫⎝⎛=000000005T A A 的特征值是5,0,0. 分别对应特征向量321,,e e e ,从而V=I,),(11p V =∑=(5), 11AV U =∑1-=⎪⎪⎭⎫ ⎝⎛2151. 令,12512⎪⎪⎭⎫⎝⎛-=U ()21U U U =, 则I U A ⎪⎪⎭⎫⎝⎛=000005(2)⎪⎪⎭⎫⎝⎛=2112T A A 的特征值是,,1321==λλ对应的特征向量分别为TT11,11⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛.于是 ∑=⎪⎪⎭⎫⎝⎛1003, ⎪⎪⎪⎪⎭⎫⎝⎛-=21212121V =1V , 11AV U =∑1-=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-06221612161取 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=3131312U , 构造正交矩阵()21U U U ==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---31062312161312161‘所以,A 的奇异值分解为T 001003V U A ⎪⎪⎪⎪⎭⎫ ⎝⎛=11. 根据第一章定理1.5, A A H 的特征值之和为其迹,而由第二章2.7 F-范数的定义A A A A A HH2F )tr(==的特征值之和=∑=ri i 12σ习 题 五1.设x =T 21),,,(n ηηη 为对应于特征值λ的单位特征向量,即(QD )x =λx两边取转置共轭:H H H H x Q D x λ=与上式左乘得2H H λ=Dx D x 即 22222221212n n ηηηd d d λ+++= ,由此立即有 2min iid ≤2λ≤2max i id从而i d imin ≤λ≤i d imax .后一不等式的另一证明:根据定理2.13,λ≤)(QD ρ≤2QD i d imax 最大特征值的H 22.11定理==D D D2. A 的四个盖尔园是 1G : 9-z ≤6, 2G : 8-z ≤2, 3G : 4-z ≤1, 4G : 1-z ≤1.由于4G 是一个单独的连通区域,故其中必有一个实特征值.321G G G ⋃⋃是连通区域,其中恰有三个特征值,因而含有一个实特征值 .3. A 的四个盖尔园:1G 1-z ≤2713, :2G 2-z ≤2713, :3G 3-z ≤2713, :4G 4-z ≤2713 是互相隔离的,并且都在右半平面,从而每个盖尔园中恰有一个特征值且为正实数.4.设 =λβαi +为A 的待征值,则有盖尔园k G ,使得k G ∈λ.若α≤0, 则kk a -α≤βαi )(+-kk a ≤k R 故 kk a +-)(α≤k R ,即 kk a ≤α+kk R ≤kk R , 这与A 是严格对角占优的条件矛盾.5. (1)当两个盖尔园的交集中含有两个特征值时; (2) 当两个盖尔园相切且切点是A 的单特征值时.6. A 的盖尔园 2:1-z G ≤3, 10:2-z G ≤2, 20:3-z G ≤10. 因1G 是与32G G ⋃分离的,故1G 中恰有一个实特征值∈1λ[-1, 5].A 的列盖尔园 :'1G 2-z ≤9, 10:'2-z G ≤4, 20:'3-z G ≤2. 因'3G 是与'2'1G G ⋃分离的,故 '3G 中恰有一个实特征值 ∈3λ[18, 22]. 选取 D =diag(1, 1,21), 则 1-DAD 的盖尔园 ''G 1 : 2-z ≤4, :''2G 10-z ≤3, :''3G20-z ≤5. 这三个盖尔园是相互独立的,故必然有∈1λ[-2, 6], ∈2λ[7, 13], ∈3λ[15, 25]与上面所得的结果对照可知利用Gerschgorin 定理,特征值的最隹估计区间为∈1λ[-1, 5], ∈2λ[7, 13], ∈3λ[18, 22]7. 因为det(λB -A )=)23)(2(422+-=----λλλλλλ所以广义特征值为1λ=2, 2λ=-32.分别求解齐次线性方程组0=-x A B )(1λ , 0=-x A B )(2λ可得对应于1λ与2λ的特征向量分别为⎪⎪⎭⎫⎝⎛121k (01≠k ), ⎪⎪⎭⎫ ⎝⎛-122k (02≠k ) 8. 先证明一个结果:若A 是Hermit 矩阵,n λλ,1分别是A 的最大、最小特征值,则)(m ax )(m ax 112x R x R x x =≠==λ, )(m ax )(m ax 12x R x R =≠==x x n λ事实上,Ax x x x x Axx x x x Axx x x x x H 1H 22H 220H H 002max 11max max )(max =≠≠≠===x R下证1λ>1μ, n λ>n μ. 令 Q =A -B , 则)(m ax m ax H H 1H 1122Qx x Bx x Ax x x x +====λ>Bx x x H 12max ==1μ( Q 正定,Qx x H >0 )同理可证 n λ>n μ.现在设 1<s <n , 则根据定理5.10及上面的结果,有)m ax (m in m ax m in H H H 1021Qx x Bx x Ax x x x P s +====λ>s x x P Bx x μ===H 1021max min 9. 显然,A B 1-的特征值就是A 相对于B 的广义特征值. 设为n λλλ,,,21 且j j j Bq Aq λ=, 0≠j q , j =1, 2, …,n 其中 n q q q ,,,21 是按B 标准正交的广义特征向量. 当 )(1A B -ρ<1时,对任意 x =0≠+++n n q q q c c c 2211)()(2211HH 22H 11H n n n n q q q A q q q Ax x c c c c c c ++++++==))((222111HH 22H 11n n n n n Bq Bq Bq q q q λλλc c c c c c ++++++ =2222211n n c c c λλλ+++ ≤i iλmax )(22221n c c c ++⋅=Bx x A B H 1)(-ρ<Bx x H反之,若对任意 x ≠0, Ax x H <Bx x H 成立,并且 )(1A B -=ρλ,Bq Aq λ=,0≠q ,则取 x=q , 于是有λ=Aq q H <1H =Bq q10. 若λ是BA 的特征值,q 是对应于λ的特征向量,即(BA )q =λq =λIq由此可知,λ是BA 的相对于单位矩阵I 的广义特征值 ,因此BAx x Ix x BAxx x R BA x x I x H 1H H 111222max max )(max )(======λ=)(maxH H 12Ax Bxx x x =≤)(max )(max H 1H 122Ax x Bx x x x == =)()(11A B λλ同理)(m in )(m in )(H H 1122Ax Bxx x x R BA x I x n ====λ≥)(m in )(m in H 1H 122Ax x Bx x x x == =)()(A B n n λλ11. 由于x ≠0时,12)()(==x x R x R ,从而5.24式等价于}0,1)(m in{m ax H 22)(2===-⨯∈x P x x R r n n P r C λ我们约定,下面的最小值都是对12=x 来取的. 令x =Qy , 则y y Ax x x R Qy P x P x P ΛH H H 2H 2H 2m in m in )(m in 0=====由于 n r n Q P ⨯-∈)(H 2C , 则在齐次线性方程组 0=Qy P H 2中,方程的个数小于未知量的个数,根据 Cramer 法则,它必有非零解. 设),,,,0,,0(~1n r r y ηηη +=,(1~2=y )为满足方程的解(容易证明这种形式的解必存在),则)(min ~min 22112~H ~H 2H 2n n r r r r y Q P y Q P y y ηληληλ ++=++==0Λ≤r λ 注意到 ⊆==}1~,~~{2H 2y y Q P y 0}1,{2H 2==y Qy P y 0,从而)(min H 2x R x P 0==)(min H 2y R Qy P 0=≤y y y R y Q P y Q P ΛH ~~~m in )~(m in H 2H 20===≤r λ 特别地,取),,(12n r q q P +=时,根据定理5.9)(min H 2x R x P r 0==λ故(5.24)式成立. 12. 我们约定:以下的最小值是对单位向量来取的,即证},1)(min{max H 22)(20C ===-⨯∈Bx P x x R r n n P r λ成立. 令 x =Qy , 则有y y x R BQy P B Bx P ΛHH2H 2m in )(m in === 设齐次线性方程组 0=BQy P H 2有形如 1~),,,,,0,,0(~21==+y y n r r ηηη 的解(不难证明这样的解一定存在),则因})({}~)(~{H 2H 200=⊆=y BQ P y y BQ P y所以)(min H 2x R B BxP ≤22112H ~~~min H 2n n r r r r y BQ P y y ηληληλ+++=++= Λ0≤r λ 特别地,取 ),,,(21H 2n r r q q q P ++=时,根据定理5.12可得r B Bx P x R λ==)(min H 20由此即知(5.44)成立.习 题 六求广义逆矩阵{1}的一般方法: 1)行变换、列置换法利用行变换矩阵S 和列置换矩阵P , 将矩阵A 化成SAP =⎪⎪⎭⎫⎝⎛O O K I r则。
矩阵论复习题 带答案1

矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵理论 (A-B卷)及答案

矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。
《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2
:
2 2 2 2
( ) 2( , ) ,
于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n
矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
11级-矩阵论试题与答案

参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
08级-北航博士-矩阵论试题与答案

一(15分)计算 (1) 已知A 可逆,求10d Ate t ⎰(用矩阵A 或其逆矩阵表示); (2)设1234(,,,)Ta a a a =α是给定的常向量,42)(⨯=ij x X 是矩阵变量,求Td()d X αX ;(3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求kk A A ⎪⎪⎭⎫⎝⎛∞→)(lim ρ。
二(15分)设微分方程组d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,508316203A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,0111x ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求A 的最小多项式)(λA m ; (3)求Ate ; (3)求该方程组的解。
三(15分)对下面矛盾方程组b Ax =312312111x x x x x x =⎧⎪++=⎨⎪+=⎩ (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ;(3)求该方程组的最小2-范数最小二乘解LS x 。
四(10分)设1113A ⎫=⎪⎭求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。
五(10分) 设(0,,2)TnA R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2()tr()m A λλλ=-;(2)求A 的Jordan 形(需要讨论)。
六(10分)设m n r A R ⨯∈,(1)证明rank()n I A A n r +-=-;(2)0Ax =的通解是(),n n x I A A y y R +=-∀∈。
七(10分)证明矩阵2121212311122222224333333644421(1)(1)n n n n n n n n n n ---⎛⎫ ⎪⎪ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪+++⎝⎭A (1)能与对角矩阵相似;(2)特征值全为实数。
八(15分) 设A 是可逆矩阵,11,B A Aαβ-=-=(这里矩阵范数都是算子范数), 如果βα<,证明(1)B 是可逆矩阵;(2)11B αβ-≤-;(3)11()B A βααβ---≤-。
矩阵理论试题答案最终版

阵
G
为
(2, 2) (2, t + 1) (2, t 2 − 1) 2 (t + 1, 2) (t + 1, t + 1) (t + 1, t − 1) (t 2 − 1, 2) (t 2 − 1, t + 1) (t 2 − 1, t 2 − 1)
1 ∫−1 4dt 1 = ∫ 2*(t + 1)dt −1 1 ∫ 2*(t 2 − 1)dt −1 −8 4 8 3 10 −4 = 4 3 3 −8 −4 16 3 15 3
2
x ' −1 0 x 1 = + y ' 0 2 y −1 求多项式 P(x)经此仿射变换所得到的曲线,变换后的曲线是什么曲线? 解:(1)由平面的四个点我们可得如下方程。
a0 + a1 *1 + a2 *12 = 0 2 −1 a0 + a1 *(−1) + a2 *(−1) = 2 1 a0 + a1 * 2 + a2 * 2 = a + a *(−3) + a *(−3) 2 = 2 2 0 1
∫ ∫ ∫
1 −1 1
1
−1
2*(t + 1)dt
−1
(t 2 + 2t + 1)dt
(t + 1) *(t 2 − 1)dt
1 2 ∫−1 (t + 1) *(t − 1)dt 1 2 2 t dt t ( 1) *( 1) − − ∫−1
∫
1
−1
2*(t 2 − 1)dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.(10
分)在复数域上求矩阵
A
=
− −
4 4
2 3
10 7
的若当标准形
J
,并求出可逆
− 3 1 7
矩阵 P 使得 P −1 AP = J .
2 1 0
解:
A
的若当标准形
J
=
0 0
2 0
1 2
.
令 P = ( p1 , p2 , p3 ) ,则有
b
=
0
,
sin(
π 4
A) =
E
;
令 eλ = q(λ )(λ − 2)2 + a + bλ ,则 a + 2b = e2 , b = e2 .
2 1 −1
eA
=
−e2 E
+
e2
A
=
e2
−2 −1
−1 −1
2 2
.
待定系数二:
令 sin
π 4
λ
=
q(λ ห้องสมุดไป่ตู้(λ
−
2)3
+
a
+
证明:设α1 ,α2 , ,αn 为V 的标准正交基, A = {aij }n×n ,下证: aij = −a ji :
由T (α1 ,α 2 , ,α n ) = (α1 ,α 2 , ,α n )A 知
Tα i = a1iα1 + a2iα 2 + + aniα n , Tα j = a1 jα1 + a2 jα 2 + + anjα n ,
+
sin( x2 x5 ) +
x3
x4
,求
df dX
.
∂f ∂f ∂f
解答: df
=
∂x1
dX ∂f
∂x4
∂x2 ∂f ∂x5
∂x3 ∂f ∂x6
=
x6
e
x1
x6
x3
x5 cos( x2 x5 ) x2 cos( x2 x5 )
3 1 −1
五.(10
−4 −3
1 1
7 5
p3
=
p2
解得: p1 = (2, 1, 1)T ,
p2 = (0, 1, 0)T ,
2 0
p3 = (1, − 2, 1)T
,
P
=
1 1
1 0
1
−2 1
.
四.
(10
分)已知
X
=
x1
x
4
x2 x5
x x
3 6
,
f (X)
=
e x1 x6
由若当分解
A1
=
P1
D1 0
0 0
P1−1
,其中
D1
∈
Cr×r
可逆;
当 j = 2, , n 时,由 A1Aj = Aj A1 = 0 可得
0 Aj = P1 0
0 Bj
P1−1
,
Bj ∈ C(n−1)×(n−1) (直接推出的 Bj 为 (n − r ) × (n − r ) 的)
a + 2b + 4c = e2
b
+
4c
=
e2
⇒ a = e2,
2c = e2
b = −e2 ,
c = 1 e2 ; 2
eA
=
e2 (E
−
A
+
1 2
A2
)
=
e2
2 −2 −1
1 −1 −1
−1
2 2
.
0
六.(10
分)设
A
=
− 1 0
1
1
0 2
Ai Aj = 0 (i, j = 1, 2, , n) .试用归纳法证明存在同一个可逆阵 P ∈ Cn×n 使
得对所有的 i (i = 1, 2, , n) 有 Ai = ai PEii P −1 ,其中 ai ∈ C .
证明: n = 1 时,命题显然. 假设 n ≤ k 时,命题成立.
当 n = k +1 时,设 rankA1 = r .
(Tα i ,α j ) = −(α i ,Tα j ) ;
(Tα i ,α j ) = (a1iα1 + a2iα 2 + + aniα n ,α j ) = a ji ,
(α i ,Tα j ) = (α i , a1 jα1 + a2 jα 2 + + anjα n ) = aij ,
所以: aij = −a ji .
再由 Ai Aj = 0 得 Bi Bj = 0 (i ≠ j, i, j = 2, , n) ;
Bj
≠
0 , rank Bj
=
rank
B
2 j
也是明显的.
由 假 设 知 存 在 可 逆 阵 Q C ∈ (n−1)×(n−1) 使 得 Bj = a jQE jjQ−1 , 其 中 a j ∈ C ,
j = 2, , n .
此时,再由 A1Aj = Aj A1 = 0 得到
A1
=
P1
a1 0
0 0
P1−1
=
a1P1
1 0
0 1 Q 0
0 1 0 0
0 Q−1
P1−1
;
记
P
=
P1
1 0
0 Q
,则
Aj
0 = P1 0
0 Bj
1 5
=
−
1 2 0
1
2
1
5
0 2
;
5
0
0
−
U=
1 2
0
1
2
1 5
0
−
2
5
0 2
1 2 0
0 1
;
5
5
0 −1
0
2
0
−
A=
1 2
0
1
1
10.设
A
=
1 −2
2 5
,
B
=
2 2
2 4 4 8
04 ,则
A⊗
B
=
2
−4
−4
0 −8 0
4 10 10
0
.
20
0
二.(10 分)设T 为 n 维欧氏空间V 中的线性变换,且满足: (Tx, y) = −( x,Ty) ,
试证明:T 在标准正交基下的矩阵 A 为反对称阵( A = − AT )
x1
=
0 1, x2
=
1 0
,V
=
0 1
1 0
;
再计算 AAH 的标准正交特征向量,解得分别与 5,2,0,0 对应的四个标准
正交特征向量
1
υ1
=
1
5
0 2
,υ
2
5 0
=
0
−1
2
0 1
=
2 1
−1 −1
0 3
1 7
, V1 , V2 分别为齐次线性方程组
Ax = 0 , Bx = 0 的解空间,则 dim(V1 ∩V2 ) = 1 .
n + (−1)n
8. 设 An =
n n+1
3n
(1 −
11 )n
n
(
2n 2n
+ −
1 1
)n
=
−13 −2
−42 −7
−1 0
.
33
1
∑ ∑ 6 . 设 A∈ C3×3 , A = { m2
aij 2 }2 , AA H 的 非 零 特 征 值 分 别 为 3, 5, 15 ,
j=1 i=1
则 A = 23 . m2
7.
设
A
=
1 −1
2 1
1 1
0 1
,
B
,则 lim n→∞
An
=
1
1 3
1 e
.
2 −1 3
9.
设
A
=
1 2
2 0
1 2
,则
A
的
LDU
分解为
1 0 0 2 0 0 1 −1 2 3 2
A
=
1
2
1
0
0
52
0
0
1
−
1
5
1 2 / 5 1 0 0 −4 / 5 0 0
=
−4 1
3 0
0 2
,则 h( A)
=
A5
−
3 A4
+
A3
+
3 A2
−