高二数学常用公式
高二数学公式大全

以下是高二数学中常见的公式大全:1. 二次函数相关公式:- 顶点坐标公式:对于二次函数y = ax² + bx + c,顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。
- 根的判别式:对于二次方程ax² + bx + c = 0,判别式D = b² - 4ac。
- 根的公式:对于二次方程ax² + bx + c = 0,它的根可以用公式x = (-b ± √D) / 2a 求得。
2. 三角函数相关公式:- 三角函数的周期性:sin(x + 2π) = sin(x),cos(x + 2π) = cos(x),tan(x + π) = tan(x)。
- 三角函数的和差角公式:- sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- cos(x ± y) = cos(x)cos(y) ∓sin(x)sin(y)- tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓tan(x)tan(y))- 三角函数的倍角公式:- sin(2x) = 2sin(x)cos(x)- cos(2x) = cos²(x) - sin²(x)- tan(2x) = 2tan(x) / (1 - tan²(x))- 三角函数的半角公式:- sin(x/2) = ±√((1 - cos(x)) / 2)- cos(x/2) = ±√((1 + cos(x)) / 2)- tan(x/2) = ±√((1 - cos(x)) / (1 + cos(x)))3. 指数和对数相关公式:- 对数换底公式:logᵦa = logᵧa / logᵧb- 对数的乘法公式:logᵦ(a * c) = logᵦa + logᵦc- 对数的除法公式:logᵦ(a / c) = logᵦa - logᵦc- 对数的幂公式:logᵦ(aᶜ) = c * logᵦa4. 排列组合相关公式:- 排列计算公式:P(n, r) = n! / (n - r)!- 组合计算公式:C(n, r) = n! / (r!(n - r)!)5. 三角恒等式:- 余弦定理:c² = a² + b² - 2ab cos(C)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C)- 余正弦定理:sin(A) / a = sin(B) / b = sin(C) / c。
高二期末数学知识点公式

高二期末数学知识点公式一、代数与函数1. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22. 二次方程求解公式:对于二次方程 ax^2 + bx + c = 0:x = (-b ± √(b^2 - 4ac)) / (2a)3. 因式分解公式:完全平方式:a^2 ± 2ab + b^2 = (a ± b)^2平方差公式:a^2 - b^2 = (a + b)(a - b)三项平方法:a^2 + 2ab + b^2 = (a + b)^2立方差公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)4. 二次函数的顶点坐标:对于二次函数 y = ax^2 + bx + c,其顶点的横坐标为 x = -b / (2a),纵坐标为 y = -D / (4a),其中D = b^2 - 4ac。
5. 贝叶斯公式:对于事件 A 和事件 B,且 P(B) > 0,P(A | B) = (P(B | A) ×P(A)) / P(B)。
二、几何与三角函数1. 直角三角形关系:勾股定理:c^2 = a^2 + b^2,其中 c 为斜边,a 和 b 为直角边。
正弦定理:a / sin A = b / sin B = c / sin C,其中 A、B、C 分别表示三角形的角,a、b、c 分别表示对边和斜边的长度。
余弦定理:c^2 = a^2 + b^2 - 2abcosC,其中 a 和 b 表示两边的长度,C 表示夹角。
2. 圆的相关公式:圆的周长:C = 2πr,其中 r 表示半径。
圆的面积:A = πr^2,其中 r 表示半径。
扇形的面积:A = (θ / 360) × πr^2,其中θ 为扇形的弧度。
3. 三角函数:正弦函数:sin(θ) = 对边 / 斜边余弦函数:cos(θ) = 邻边 / 斜边正切函数:tan(θ) = 对边 / 邻边余切函数:cot(θ) = 邻边 / 对边正割函数:sec(θ) = 斜边 / 邻边余割函数:csc(θ) = 斜边 / 对边4. 极坐标和直角坐标的转换:x = rcos(θ)y = rsin(θ)r^2 = x^2 + y^2tan(θ) = y / xθ = arctan(y / x)以上只是高二期末数学知识点公式的一部分,希望对你的学习有所帮助。
高二数学知识点公式总结

高二数学知识点公式总结1. 代数与函数a) 二次函数公式:- 标准型:f(x) = ax² + bx + c,其中a≠0。
- 顶点式: f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。
- 因式分解: f(x) = a(x - x₁)(x - x₂),其中x₁, x₂为根。
b) 判别式:- 二次方程 ax² + bx + c = 0 的判别式:Δ = b² - 4ac。
c) 等差数列公式:- 第n项:an = a₁ + (n - 1)d,其中a₁为首项,d为公差。
- 前n项和:Sn = (a₁ + an)n/2 或 Sn = (2a₁ + (n - 1)d)n/2。
2. 平面几何a) 直角三角形公式:- 勾股定理:c² = a² + b²,其中c为斜边,a、b为直角边。
- 正弦定理:a/sinA = b/sinB = c/sinC。
- 余弦定理:c² = a² + b² - 2ab*cosC。
b) 圆的相关公式:- 圆周长:C = 2πr,其中r为半径。
- 圆面积:S = πr²。
c) 向量公式:- 向量的模:|A| = √(x² + y² + z²),其中(x, y, z)为向量坐标。
- 向量点乘:A·B = ax·bx + ay·by + az·bz,其中(Ax, Ay, Az)为向量A的坐标,(Bx, By, Bz)为向量B的坐标。
- 向量叉乘:A×B = (AyBz - AzBy, AzBx - AxBz, AxBy - AyBx)。
3. 解析几何a) 二次曲线方程:- 椭圆方程:(x²/a²) + (y²/b²) = 1,其中a为x轴半轴长,b为y 轴半轴长。
高二数学公式总结

高二数学公式总结高二数学公式总结一、函数与方程1. 一次函数:y = kx + b,其中k为斜率,b为截距。
2. 二次函数:y = ax^2 + bx + c,其中a为二次项系数,b为一次项系数,c为常数项。
3. 反函数:若y = f(x),则x = f^(-1)(y)。
4. 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x),余切函数cot(x)。
5. 幂函数:y = x^a,其中a为常数。
6. 对数函数:y = loga(x),其中a为底数。
7. 指数函数:y = a^x,其中a为底数。
二、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
2. 等比数列通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3. 等差数列前n项和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为第n项。
4. 等比数列前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。
5. 数学归纳法:若能证明当n=k时命题成立,且当n=k+1时,命题成立,则对于所有自然数n,命题均成立。
三、几何1. 相似三角形:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。
2. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。
3. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中a、b、c为三角形的边长,C为夹角。
4. 钝角余弦定理:c^2 > a^2 + b^2 - 2ab*cosC。
5. 射影定理:在直角三角形中,斜边上的垂直射影等于斜边与直角边的乘积。
6. 平行四边形性质:对角线互相平分,对角线互相交于中点,对角线长度平方和等于边长平方和的两倍。
7. 三角形面积公式:S = 1/2 * a * b * sinC,其中a、b为两边长,C为夹角。
高二数学重要的公式知识点

高二数学重要的公式知识点数学是一门基础学科,对于高中生来说,掌握数学公式是学习数学的重要基础。
下面将介绍高二数学中的一些重要的公式知识点。
1. 二次函数相关公式(1)一般式:y = ax^2 + bx + c其中,a、b、c是实数且a≠0。
(2)顶点式:y = a(x - h)^2 + k其中,(h, k)是顶点坐标。
(3)轴对称式:x = p其中,p是关于y轴对称的直线的方程。
2. 三角函数相关公式(1)正弦定理:在任意三角形ABC中,边长和角度之间的关系式为:a / sinA =b / sinB =c / sinC(2)余弦定理:在任意三角形ABC中,边长和角度之间的关系式为:c^2 = a^2 + b^2 - 2ab * cosC(3)正弦函数的和差角公式:sin(A ± B) = sinA * cosB ± cosA * sinB3. 幂次函数相关公式(1)幂函数的基本形式:y = x^a其中,a是实数且a≠0。
(2)指数函数的相关公式:a^m * a^n = a^(m + n)(a^m)^n = a^(mn)(a * b)^n = a^n * b^n4. 解析几何相关公式(1)距离公式:两点间的距离用两点的坐标表示为:AB = √((x2 - x1)^2 + (y2 - y1)^2)(2)中点公式:两点的中点坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)(3)斜率公式:直线的斜率用两点的坐标表示为:k = (y2 - y1) / (x2 - x1)5. 数列相关公式(1)等差数列的通项公式:an = a1 + (n - 1)d其中,an是第n项,a1是首项,d是公差。
(2)等差数列的前n项和公式:Sn = (a1 + an) / 2 * n其中,Sn是前n项和,a1是首项,an是第n项,n是项数。
(3)等比数列的通项公式:an = a1 * r^(n - 1)其中,an是第n项,a1是首项,r是公比。
高二数学相关公式

一、数学公式之三角函数1、诱导公式公式一:sin(α+2k π)=αsin ,cos(α+2k π)=αcos ,tan(α+2k π)=αtan ,其中k ∈Z .公式二:sin(-α)=αsin -,cos(-α)=αcos ,tan(-α)=αtan 公式三:sin(π-α)=αsin ,cos(π-α)=-αcos ,tan(π-α)=-αtan 公式四:sin(π+α)=-αsin ,cos(π+α)=-αcos ,tan(π+α)=αtan .公式五:sin ⎝⎛⎭⎫π2-α=αcos ;cos ⎝⎛⎭⎫π2-α=αsin . 公式六:sin ⎝⎛⎭⎫π2+α=αcos ;cos ⎝⎛⎭⎫π2+α=-αsin .②、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a (其中b b a a b a b =+=+=ϕϕϕtan ,cos ,sin 2222)③、万能公式⑴αααααααααtan 1tan 1sin cos sin cos sin cos 2cos 22222222+-=+-=-= ⑵αααααααααtan1tan 2sin cos cos sin 2cos sin 22sin 222+=+==二、数学公式之圆的相关性质与定理1.圆的相关定理① 圆周角定理:圆上一条弧所对的圆周角等于它所对的圆心角的一半. ② 圆心角定理:圆心角的度数等于它所对弧的度数.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等. 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. ③ 弦切角定理弦切角等于它所夹的弧所对的圆周角.④ 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.⑤ 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.⑥ 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(PB PA PC .2 )⑦ 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这点的连线平分两条切线的夹角.4.圆的切线的性质及判定定理性质定理 圆的切线垂直于经过切点的半径. 推论1:经过圆心且垂直于切线的直线必经过切点. 推论2:经过切点且垂直于切线的直线必经过圆心.判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线. 5、证明四点共圆的常用方法(1)若四个点到一定点等距离,则这四个点共圆.(2)若一个四边形的一组对角的和等于180°,则这个四边形的四个顶点共圆. (3)若一个四边形的一个外角等于它的内对角,则这个四边形的四个顶点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.(5)若AB ,CD 两线段相交于点P ,且PA ·PB =PC ·PD ,则A ,B ,C ,D 四点共圆. (6)若AB ,CD 两线段延长后相交于点P ,且PA ·PB =PC ·PD ,则A ,B ,C ,D 四点共圆. (7)若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆.。
高二数学公式大全总结

高二数学公式大全总结1. 代数公式四则运算公式•加法法则:a+b=b+a•减法法则:a−b eqb−a•乘法法则:$a \\cdot b = b \\cdot a$•除法法则:$\\frac{a}{b} \ eq \\frac{b}{a}$幂运算公式•幂的乘法:$a^m \\cdot a^n = a^{m+n}$•幂的除法:$\\frac{a^m}{a^n} = a^{m-n}$•幂的乘方:(a m)n=a mn•幂的零次方:a0=1•幂的负次方:$a^{-n} = \\frac{1}{a^n}$根式运算公式•平方根运算:$\\sqrt{a \\cdot b} = \\sqrt{a} \\cdot \\sqrt{b}$•乘方根运算:$\\sqrt[n]{a \\cdot b} = \\sqrt[n]{a} \\cdot\\sqrt[n]{b}$•平方根的乘方运算:$\\sqrt[n]{a^m} = a^{\\frac{m}{n}}$等式和恒等式•等式:若a=b,则a和b称为等式,可以进行等式的四则运算。
•恒等式:对于变量的某些取值范围,等式恒成立。
2. 几何公式点、线和面的关系公式•平行线公理:平行线永不相交。
•垂直线公理:垂直线相交,且相交的角度为90度。
三角形公式•三角形内角和公式:三角形内角和为180度,即$\\angle A +\\angle B + \\angle C = 180^\\circ$。
•直角三角形勾股定理:直角三角形斜边的平方等于两个直角边的平方和,即c2=a2+b2。
•正弦定理:在三角形ABC中,$\\frac{a}{\\sin A} = \\frac{b}{\\sin B} = \\frac{c}{\\sin C}$。
•余弦定理:在三角形ABC中,$a^2 = b^2 + c^2 - 2bc \\cos A$。
•正切定理:在三角形ABC中,$\\tan A = \\frac{a}{h}$。
高二数学必背公式归纳

高二数学必背公式归纳数学中存在很多公式,高中数学特别注重必须背诵的公式,因为在数学学习中公式是非常重要且基础的东西。
下面我们对高二数学中必须背诵的公式进行归纳整理,方便广大学生学习和复习。
一、平面几何公式平面几何是数学中的一个基础分支,它包含了许多公式,而这些公式不仅是考试考点,而且在实际生活中也有重要的应用。
高中数学中平面几何分为两个部分:一是平面图形的性质,二是坐标系和向量,下面对这两部分的公式进行分类。
1.平面图形的公式(1)三角形- 三角形三边关系:$$a^2=b^2+c^2-2bc\cos A$$$$b^2=c^2+a^2-2ac\cos B$$$$c^2=a^2+b^2-2ab\cos C$$- 海伦公式(海龙公式):$$S=\sqrt{p(p-a)(p-b)(p-c)},\ S=\dfrac12bh,\p=\dfrac{a+b+c}{2}$$(2)圆形- 圆的周长公式:$$C=2\pi r$$- 圆的面积公式:$$S=\pi r^2$$- 弧长公式:$$L=\theta r$$(3)多边形公式- n边形的内角和公式:$$S_n=(n-2)\times180^\circ$$- n边形的外角和公式:$$S_n=360^\circ$$- 多边形的对角线公式:$$d=\dfrac{n(n-3)}{2},\ (n\geq3)$$2.坐标系与向量公式坐标系和向量是高中数学中平面几何中的基础知识,它们也需要我们学习和掌握它们的公式。
(1)坐标系公式- 两点之间的距离公式:$$d_{AB}=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$$- 点到直线的距离公式:$$d=\dfrac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$(2)向量公式- 向量加减公式:$$\textbf{a}+\textbf{b}=(a_1+b_1,a_2+b_2),\ \textbf{a}-\textbf{b}=(a_1-b_1,a_2-b_2)$$- 向量点积公式:$$\textbf{a}\cdot\textbf{b}=|\textbf{a}||\textbf{b}|\cos\theta$$- 向量叉积(叉乘)公式:$$\textbf{a}\times\textbf{b}=\textbf{n}|\textbf{a}||\textbf{b}|\sin\ theta$$二、初等代数公式初等代数是数学中一个基础内容,它包含了许多公式和定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高二数学常用公式
同学们有没有发现,把数学知识点编成一句句幽默风趣的口诀,学习起来就轻松多了,下文是2019年高二数学常用公式。
有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;绝对值相等零正好。
【注】大减小是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n1=-(b-a)2n1(a-b)2n=(b-a)2n 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上
若都行不通,拆项、添项看清楚。
代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小中大)
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(,),(-,),(-,-)和(,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x0)b、二次函数的解析式写成y=a(xh)2k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a 断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
数字巧记:=1.414(意思意思而已)=1.7321(三人一起商
量)=2.236(吾量量山路)=2.449(粮食是酒)=2.645(二流是
我)=2.828(二爸二爸)=3.16(山药,六两)
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分跑不了,对角相等也有用,两组对角才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在△延长两腰交一点,△中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,
边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。
同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线
与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
2019年高二数学常用公式就分享到这里了,更多高二数学公式请继续关注查字典数学网高中频道!。