初中数学教案范例

合集下载

初中数学优秀教学设计范文(精选10篇)

初中数学优秀教学设计范文(精选10篇)

初中数学优秀教学设计初中数学优秀教学设计范文(精选10篇)作为一名教职工,就不得不需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。

教学设计应该怎么写呢?下面是小编为大家整理的初中数学优秀教学设计范文,仅供参考,欢迎大家阅读。

初中数学优秀教学设计篇1一、教学目标:1、知道一次函数与正比例函数的定义。

2、理解掌握一次函数的图象的特征和相关的性质。

3、弄清一次函数与正比例函数的区别与联系。

4、掌握直线的平移法则简单应用。

5、能应用本章的基础知识熟练地解决数学问题。

二、教学重、难点:重点:初步构建比较系统的函数知识体系。

难点:对直线的平移法则的理解,体会数形结合思想。

三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。

正比例函数:对于y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。

基础训练:1、写出一个图象经过点(1,—3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。

3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:4、已知正比例函数y=(3k—1)x,,若y随x的增大而增大,则k是:5、过点(0,2)且与直线y=3x平行的直线是:6、若正比例函数y=(1—2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:7、若y—2与x—2成正比例,当x=—2时,y=4,则x=时,y=—4。

初中数学教案(优秀8篇)

初中数学教案(优秀8篇)

初中数学教案(优秀8篇)初中数学优秀教案篇一一、教学目标:1、知识目标:①能准确理解绝对值的几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2、能力目标:①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3、情感目标:①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法启发引导式、讨论式和谈话法四、教学过程(一)复习提问问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?(二)新授1、引入结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2、数a的绝对值的意义①几何意义一个数a的绝对值就是数轴上表示数a的点到原点的距离。

数a的绝对值记作|a|。

举例说明数a的绝对值的几何意义。

(按教材P63的倒数第二段进行讲解。

)强调:表示0的点与原点的距离是0,所以|0|=0.指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的`相反数,0的绝对值是0.用字母a表示数,则绝对值的代数意义可以表示为:指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3、例题精讲例1.求8,-8的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|。

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3例3.已知一个数的绝对值等于2,求这个数。

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇

初中数学教学设计优秀5篇初中数学教学设计篇一一、案例实施背景本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。

本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点1、重点:正确运用科学记数法表示较大的数2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数五、案例教学用具1、教具:多媒体平台及多媒体课件、图片六、案例教学过程一、创设情境,兴趣导学:1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?2、展示课本第63页图片,现实中,我们会遇到一些比较大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)

初中数学教学设计案例(热门18篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!初中数学教学设计案例(热门18篇)范文范本可以帮助我们发现和分析自己写作中的问题和不足,促进我们的自我评价和提高。

初中数学备课教案 模板(优秀7篇)

初中数学备课教案 模板(优秀7篇)

初中数学备课教案模板(优秀7篇)初中数学教案格式篇一课程编码:______________________________________总学时/周学时:/开课时间:年月日第周至第周授课年级、专业、班级:___________________________使用教材:_______________________________________授课教师:_______________________________________1、章节名称2、教学目的3、课时安排4、教学重点、难点5、教学过程(包括教学内容、教师活动、学生活动、教学方法等)6、复习巩固与作业要求7、教学环境及教具准备8、教学参考资料9、教学后记初中数学教学教案篇二教学目标1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。

运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。

对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。

对代数式的概念可以从三个方面去理解:(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性。

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式。

初中七年级数学教案(优秀12篇)

初中七年级数学教案(优秀12篇)

初中七年级数学教案(优秀12篇)七年级数学教案篇一一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小。

(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力。

(三)德育渗透点培养学生良好的学习习惯。

二、教学重点、难点和疑点1、重点:由锐角的正弦值或余弦值,查出这个锐角的大小。

2、难点:由锐角的正弦值或余弦值,查出这个锐角的大小。

3、疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错。

三、教学步骤(一)明确目标1、锐角的。

正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆。

答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大)。

2、若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______。

3、不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°。

学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案。

3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算。

(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值。

反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小。

因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑。

而且通过逆向思维,可能很快会掌握已知函数值求角的方法。

(三)重点、难点的学习与目标完成过程。

例8已知sinA=0.2974,求锐角A。

初中数学优秀教案【精选6篇】

初中数学优秀教案【精选6篇】

初中数学优秀教案【精选6篇】作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。

那么优秀的教案是什么样的呢?牛牛范文的小编精心为您带来了6篇初中数学优秀教案,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

初中数学优秀教案篇一【教学目标】1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。

2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。

3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。

【教学重点与教学难点】1、重点:多边形的内角和公式。

2、难点:多边形内角和的推导。

3、关键:。

多边形"分割"为三角形。

【教具准备】三角板、卡纸【教学过程】一、创设情景,揭示问题1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力二、探索研究学会新知1、回顾旧知,引出问题:(1)三角形的内角和等于_________。

外角和等于____________(2)长方形的内角和等于_____,正方形的内角和等于__________。

2、探索四边形的内角和:(1)学生思考,同学讨论交流。

(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。

)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。

以四边形的内角和作为探索多边形的。

突破口。

(3)引导学生用"分割法"探索四边形的内角和:方法一:连接一条对角线,分成2个三角形:180°+180°=360°从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。

初中数学教案(通用15篇)

初中数学教案(通用15篇)

初中数学教案初中数学教案(通用15篇)作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,教案是教学蓝图,可以有效提高教学效率。

那么问题来了,教案应该怎么写?以下是小编收集整理的初中数学教案,仅供参考,欢迎大家阅读。

初中数学教案1教学目标:利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:(一)引入:分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?可引导学生从几个方面进行讨论:(1)如何画图(2)顶点、图象与坐标轴的交点(3)所形成的三角形以及四边形的面积(4)对称轴从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。

例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

(三)提高练习根据我们学校人人皆知的船模特色项目设计了这样一个情境:让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教案范例第五课时课题§2.2.3配方法(三)教学目标(一)教学知识点1.利用方程解决实际问题.2.训练用配方法解题的技能.(二)能力训练要求1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.2.能根据具体问题的实际意义检验结果的合理性.3.进一步训练利用配方法解题的技能.通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.教学重点利用方程解决实际问题教学难点对于开放性问题的解决,即如何设计方案教学方法分组讨论法教具准备投影片二张第一张:练习(记作投影片§2.2.3A)第二张:实际问题(记作投影片§2.2.3B)教学过程Ⅰ.巧设情景问题,引入新课[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3A)用配方法解下列一元二次方程:(1)x2+6x+8=0;(2)x2-8x+15=0;(3)x2-3x-7=0;(4)3x2-8x+4=0;(5)6x2-11x-10=0;(6)2x2+21x-11=0.[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6).[师]各组做完了没有?[生齐声]做完了.[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x 1=-2,x 2=-4.解方程(3)时,在配方的时候,他配错了,即x 2-3x-7=0,x 2-3x=7,x 2-3x+32=7+32应为(-23)2.[师]很好,这里一次项-3x 的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?[生乙]方程(3)的解为x 1=2373,23732−=+x .[师]好,继续.[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x 1=25,x 2=-23.[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即方程(2)的解:x 1=5,x 2=3,方程(4)的解:x 1=2,x 2=23,方程(6)的解:x l =21,x 2=-11.[师]利用配方法求解方程时,一定要注意:①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.这节课我们就来解决一个实际问题.Ⅱ.讲授新课[师]看大屏幕.(出示投影片§2.2.3B)在一块长16m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.[生甲]我们组的设计方案如右图所示,其中花园四周是小路,它们的宽度都相等.这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2m或12m.[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.[生乙]甲组的设计符合要求.我们可以假设小路的宽度为x m,则根据题意,可得方程(16-2x)(12-2x)=21×16×12,也就是x 2-14x-24=0.然后利用配方法来求解这个方程,即x 2-14x+24=0,x 2-14x=-24,x 2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.∴x 1=12.x 2=2.因此,小路的宽度为2m 或12m.由以上所述知:甲组的设计方案符合要求.[生丙]不对,因为荒地的宽度是12m,所以小路的宽度绝对不能为12m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2m.[师]大家来作判断,谁说的合乎实际?[生齐声]丙同学说得有理.[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.[生丁]我们组的设计方案如右图.我们是以矩形的四个顶点为圆心,以约5.5m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得1×12×16.πx2=296≈±5.5.解得x=±π因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.[生戊]由丁同学组的启发,我又设计了一个方案,如右图.以矩形的对角线的交点为圆心,以5.5m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?[生庚]我们组设计的方案如右图.顺次连结矩形各边的中点,所得到的四边形即是作为花园的场地.因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的1×6×8),所以四个直角三角形的面积之和为96m2,面积是24m2(即2则剩下的面积也正好是96m2,即等于矩形面积的一半.因此这个设计方案也符合要求.[生辛]我们组设计的方案如下图.图中的阴影部分可作为建花园的场所.因为阴影部分的面积为96m2,正好是矩形面积的一半,所以这个设计也符合要求.[生丑]我们组设计的方案如右图.图中的阴影部分可作为建花园的场地.经计算,它符合要求.[生癸]我们组的设计方案如下图.图中的阴影部分是作为建花园的场地.[师]噢,同学们能帮癸组求出图中的x吗?[生]能,根据题意,可得方程2×21(16-x)(12-x)=21×16×12,即x2-28x+96=0,x2-28x=-96,x2-28x+142=-96+142,(x-14)2=100,x-14=±10.∴x1=24,x2=4.因为矩形的长为16m,所以x1=24不符合题意.因此图中的x只能为4m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.接下来,我们再来看一个设计方案.Ⅲ.课堂练习(一)课本P 55随堂练习11.小颖的设计方案如图所示,你能帮助她求出图中的x 吗?解:根据题意,得(16-x)(12-x)=21×16×12,即x 2-28x+96=0.解这个方程,得x 1=4,x 2=24(舍去).所以x=4.(二)看课本P 53~P 54,然后小结.Ⅳ.课时小结本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.另外,还应注意用配方法解题的技能.Ⅴ.课后作业(一)课本P 55习题2.51、2(二)1.预习内容:P 56~P 572.预习提纲如何推导一元二次方程的求根公式.Ⅵ.活动与探究汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S 甲(米)与车速x(千米/时)之间有下列关系:S 甲=0.1x+0.01x 2;乙种车的刹车距离S 乙(米)与车速x(千米/时)的关系如下图所示.请你就两车的速度方面分析相碰的原因.[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连.由甲车的刹车距离和车速的关系式S 甲=0.1x+0.01x 2,又S 甲=12,从而可求得甲车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关系,因而可设为x 乙=kx,又其过点(60,15),从而得到k 值,由10<s乙<12,可得乙车车速,进而可确定事故的原因.[结果]解:对于甲车:∵甲车刹车距离为12米,根据题意,得12=0.1x+0.01x 2.解这个方程,得x 1=30或x 2=-40(舍去),即甲车的车速为30千米/时,不超过限速.对于乙车:由图象知,其关系是一个正比例函数,设此函数为x 乙=kx∵经过点(60,15),∴15=60k,∴k=41,即此函数解析式为S 乙=41x根据题意,得10<41x<12.∴40<x<48.∴乙车超过限速40千米/时的规定.∴就速度方面分析,两车相碰的原因在于乙车超速行驶.板书设计§2.2.3配方法(三)一、实际问题的设计方案:设计方案一:设计方案二:设计方案三:设计方案四:二、课堂练习三、课时小结四、课后作业。

相关文档
最新文档