锁相放大器综述

合集下载

锁相技术知识点总结

锁相技术知识点总结

锁相技术知识点总结一、锁相放大器的原理锁相放大器是锁相技术的核心设备,其原理是利用相位敏感检测器(PSD)和低通滤波器实现对输入信号的相位测量和提取。

相位敏感检测器是将输入信号和参考信号相乘,然后通过低通滤波器滤除高频信号,得到一个与输入信号相位有关的直流信号。

通过对这个直流信号进行放大和数字化处理,就可以得到输入信号的相位信息。

锁相放大器的原理可以简单地用一个比喻来理解,就是通过将输入信号和参考信号进行“比对”,得到两者之间的相位差,然后通过放大和数字化处理来得到相位信息。

二、锁相放大器的工作原理锁相放大器的工作原理可以分为两个步骤:信号相位的检测和信号的放大和数字化处理。

在信号相位的检测步骤中,输入信号和参考信号经过相位敏感检测器进行相乘,并通过低通滤波器滤除高频信号,得到一个与输入信号相位有关的直流信号。

在信号的放大和数字化处理步骤中,直流信号经过放大器进行放大,然后经过模数转换器进行数字化处理,得到输入信号的相位信息。

整个过程中,锁相放大器可以通过调节参考信号的相位、频率和幅度来对输入信号进行精确的测量和控制。

三、锁相放大器的应用锁相放大器广泛应用于科学研究、通信、医学、生物化学、工业控制等领域。

在科学研究领域,锁相放大器常用于对微弱信号的测量和分析;在通信领域,锁相放大器常用于对调制信号的检测和解调;在医学领域,锁相放大器常用于生物信号的测量和分析;在生物化学领域,锁相放大器常用于对生物信号的检测和分析;在工业控制领域,锁相放大器常用于对工艺参数的测量和控制。

锁相放大器通过提高信噪比和测量精度,可以满足不同领域对信号测量和控制的需求。

四、锁相放大器的发展趋势随着科学技术的发展,锁相放大器的性能不断提高,应用领域不断拓展。

锁相放大器的发展趋势主要包括以下几个方面:一是性能的提高,包括测量精度的提高、频率范围的扩大、动态范围的增加等;二是功能的增强,包括新的信号处理算法、新的控制方式、新的接口标准等;三是应用领域的拓展,包括科学研究、通信、医学、生物化学、工业控制等领域的应用;四是结构的优化,包括体积的缩小、功耗的降低、成本的降低等。

锁相放大器的原理及应用

锁相放大器的原理及应用

锁相放大器的原理及应用1. 原理介绍锁相放大器(Lock-in Amplifier)是一种精密的信号处理仪器,常用于测量微小信号在高噪声环境中的幅度和相位。

其原理基于信号的时域和频域分析。

锁相放大器的工作原理如下:1.输入信号和参考信号分别经过同步检波器和相位补偿器。

同步检波器通过将输入信号和参考信号相乘,得到一个混频输出信号。

相位补偿器则用于调节参考信号的相位,使其与输入信号处于同一相位。

2.混频输出信号经过低通滤波器,滤去高频噪声和杂散信号,得到幅度和相位信息。

3.幅度和相位信息经过放大器放大后,输出到显示器或数据采集系统进行数据处理和分析。

2. 应用领域锁相放大器在各个领域都有广泛的应用,下面列举了几个主要的应用领域:2.1 光学领域2.1.1 光学干涉测量锁相放大器可以应用于光学干涉测量中,通过与参考光信号进行比较,提取出微小的干涉信号。

这对于测量物体表面形貌、薄膜厚度等具有重要意义。

2.1.2 光谱分析在光谱分析中,锁相放大器可以提取出光源的频率和相位信息,对于研究材料的光学性质、标定光谱仪等具有重要应用价值。

2.2 生物医学领域2.2.1 生物传感器生物传感器通常需要对微弱的生物信号进行放大和处理。

锁相放大器可以实现对生物信号的高灵敏度检测,应用于生物传感器的信号放大和分析。

2.2.2 磁共振成像(MRI)在磁共振成像中,锁相放大器可以对磁场感应信号进行放大和处理,提高成像的灵敏度和分辨率。

2.3 物理实验领域2.3.1 基础粒子物理实验在基础粒子物理实验中,需要对微小的粒子信号进行检测和处理。

锁相放大器可应用于实验中对粒子信号的放大和分析,用于寻找新的粒子。

2.3.2 材料科学研究锁相放大器可以应用于材料科学研究中,对材料的电学、热学、磁学等性质进行测量和分析。

3. 优势和限制3.1 优势•高灵敏度:锁相放大器可以放大微弱信号,提高信号与噪声的比值,从而实现对微小信号的检测。

•抗噪声能力强:锁相放大器可以滤除高频噪声和杂散信号,提高信号的纯度和准确性。

锁相放大器基本原理

锁相放大器基本原理

锁相放大器基本原理锁相放大器(lock-in amplifier)是一种高精度的电子测量设备,是利用同步检测技术对弱信号进行放大的一种方法。

它可以通过抑制噪声,增加测量信号的信噪比,从而提高测量精度。

锁相放大器广泛应用于科学研究、精密测量、信号处理等领域。

锁相放大器的基本原理是通过与输入信号进行相位锁定,以获得信号的正弦成分,并通过放大和滤波等处理,最终得到一个精确测量值。

下面将详细介绍锁相放大器的工作原理。

1. 相位锁定锁相放大器需要获取一个参考信号,通常通过输入到参考输入端口上,这个参考信号可以是一个外部信号源产生的参考信号,也可以是输入信号中的某一部分。

锁相放大器将参考信号分成两个信号,一个是正弦波(reference signal),另一个是余弦波(quadrature signal)。

锁相放大器接收到待测信号后,将待测信号与正弦波相乘,经过低通滤波器后输出相干检测信号(in-phase signal),再将待测信号与余弦波相乘,经过低通滤波器后输出正交检测信号(quadrature signal)。

这两个信号的相位差就是输入信号的相位。

将相干检测信号和正交检测信号分别输入到两个输入通道后,通过比例放大器放大信号的幅度,使待测信号和参考信号的相位锁定。

2. 信号放大锁相放大器通过放大信号的幅度来提高测量的灵敏度。

通常情况下,锁相放大器的放大倍数可达到几百万倍。

锁相放大器的放大倍数和滤波器的带宽有密切的关系。

放大倍数越大,需要的滤波器带宽越小。

3. 滤波处理锁相放大器采用低通滤波器对输入信号进行滤波处理。

滤波器的带宽可以通过滤波器控制电路进行调节。

对于较宽的带宽,锁相放大器可以对高频噪声信号进行有效抑制,提高信号的信噪比。

对于较小的带宽,锁相放大器可以提高信号的时域和频域分辨率。

4. 数据输出锁相放大器最终输出的是经过放大和滤波处理后的幅度和相位信息。

通过这些信息,可以得到一个精确的测量值。

锁相放大器介绍

锁相放大器介绍
第四章 锁相放大器
微弱信号检测 (Weak Signal Detection)
第四章 锁相放大器
第四章 锁相放大器
微弱信号检测 (Weak Signal Detection)
1.概述
自从1962年,美国EG&G PARC公司制作了第一台锁相放大器(LIA)的后, 微弱信号检测技术得到了突破性的发展。后来又出现了模拟锁相放大器 (ALIA) 和数字锁相放大器(DLIA) 。对于数字锁相放大器而言,又出现 基于单片机的DLIA 和基于专用DSP的DLIA 。还有基于PC 的系统级模块 化DLIA ,这种锁相的算法是采用C, C++等语言实现的。由于整个系统 运行在PC平台上,所以可以使用各种仿真软件对算法进行研究。
多,从而有可能将深埋于噪声背景中的信号取出,这就是 相关检测方法能提高信噪比的原因。
第四章 锁相放大器
微弱信号检测 (Weak Signal Detection)
相关检测方框图
R12 ( ) lim
T
1 2T

T
T
f1 (t ) f 2 (t )dt
我们可以按照上式来设计一个电路,其方框图如下, f1(t) 和 f2(t) 为周期函数:
测量过程
斩光器 光源 探测器 信号
Lock-in
输出信号
参考信号
I
ωm
λ( t ) I ωm
λ(t)
第四章 锁相放大器
微弱信号检测 (Weak Signal Detection)
在使用过程中须注意对相位的调整,只有在某个恰当的相位 条件下有最大幅度的输出信号。此外,积分时间常数 T 的选 取也很重要,时间常数T 越长,相当于低通滤波器的带宽越窄, 对噪声的抑制能力越强。但由于我们所测量的是一个幅度缓慢 变化的信号 V1(t),它仍然占有一定的频带宽度,因此,低通 滤波器就需要有一定的带宽,保证该信号通过。如果时间常数

锁相放大器 原理

锁相放大器 原理

锁相放大器原理锁相放大器是一种高灵敏度、高稳定性的测量仪器,主要用于测量高精度的弱信号,如光信号和电信号。

其原理是利用参考信号和待测信号的相位差,进行频率选择和信号增益放大。

锁相放大器基本原理是通过一个正弦参考信号和待测信号在相位上的比较来测量待测信号的幅度和相位差。

在锁相放大器中,参考信号经过参考信号发生器产生,同时作为激励信号送入模拟电路,待测信号则在探测器中测量得到,然后送入锁相放大器。

在锁相放大器中,待测信号与参考信号混频,同时将混频信号分为正弦和余弦两路。

正弦和余弦两路信号分别经过相移器和低通滤波器,得到相位和幅度信息,最终输出通过运算放大器得到的结果。

锁相放大器最大特点是可以通过不同相位角的乘法器来进行相位选择,使得信号在不同相角的幅度值得到不同的权重,从而提高锁相放大器的灵敏度和稳定性。

锁相放大器主要有四个部分组成:参考信号发生器、混频器、相位选择器和低通滤波器。

参考信号发生器用于产生基准信号以及参考信号,基准信号一般是一定频率和幅度的正弦波。

混频器用于将待测信号与参考信号进行混频,在混频时需要注意保证混频信号在频率范围内。

相位选择器一般包括相移器、乘法器、运算放大器等,用于对混频信号进行相位角的选择,从而提高锁相放大器的灵敏度和稳定性。

低通滤波器主要用于滤除混频信号中的高频噪声,提高测量精度。

锁相放大器具有很多优点。

首先,相比于其他测量仪器,锁相放大器具有较高的灵敏度和低的噪声;其次,相位选择器可以实现对混频信号相位的选取,提高了系统的稳定性;最后,锁相放大器具备强抗干扰性,能够有效地抑制外部干扰信号,提高测量精度。

锁相放大器广泛应用于生物医学、光学、物理、电学等领域。

其中,在光学领域,锁相放大器主要用于实现光学检测和光学成像;在电学领域,锁相放大器主要用于检测直流信号和交流信号的分量,同时也可以用于测量电容、电感和电阻等电学元件的参数。

在物理领域,锁相放大器主要用于精密时间测量和振动测量等领域。

锁相放大器

锁相放大器

锁相放大器1,基本结构(如右图所示)“于上方的signal input 信号输入端输入待测信号,先后经放大和带通滤波后” 与“从下方的reference input 参考信号输入端输入的设定过相位的参考信号”共同输入乘法器得到的结果再通过低通滤波器滤波后输出。

2,原理锁相放大器实际上是一个模拟的傅立叶变换器,锁相放大器的输出是一个直流电压,正比于是输入信号中某一特定频率(参数输入频率)的信号幅值。

而输入信号中的其他频率成分将不能对输出电压构成任何贡献。

两个正弦信号,频率都为1H z,有90度相位差,用乘法器相乘得到的结果是一个有直流偏量的正弦信号:如果是一个1Hz和一个1.1Hz的信号相乘,用乘法器相乘得到的结果是:从上面的分析看来,只有与参考信号频率完全一致的信号才能在乘法器输出端得到直流偏量,其他信号在输出端都是交流信号。

如果在乘法器的输出端加一个低通滤波器,那么所有的交流信号分量全部被滤掉,剩下的直流分量就只是正比于输入信号中的特定频率的信号分量的幅值。

3.用途即使有用的信号被淹没在噪声信号里面,即使噪声信号比有用的信号大很多,只要知道有用的信号的频率值,就能准确地测量出这个信号的幅值。

锁相放大器原理锁相放大器是以相干检测技术为基础,利用参考信号频率与输入输入信号频率相关,与噪声信号不相关,从而从较强的噪声中提取出有用信号,使得测量精度大大提高,而它的核心部件为相敏检测器(phase sensitive detector ,简称PSD ,又称相关器),图1所示为锁相放大器的原理框图。

图1锁相放大器原理图相敏检测器是由乘法器和积分器组成,其中乘法器一般采用开关乘法器,积分器通常由低通滤波器组成,图2给出相敏检测器的构成原理图。

图2相敏检测器原理图设待测信号()()()()()t n t cos V t n t V t V s s s s1s ++=+=ϕω,其中)t (V s1为待测信号中的有效信号,n ()t 为噪声。

锁相放大器报告

锁相放大器报告

锁相放大器报告1. 引言锁相放大器(Lock-in Amplifier)是一种用于检测和放大微弱信号的仪器。

它的原理是利用参考信号与待测信号进行相位比较,并通过频率调制将待测信号转换成与参考信号频率相同的信号,从而实现信号的放大与解调。

锁相放大器在许多领域都有广泛的应用,例如光学测量、电子学实验、磁学、生物医学等。

本报告将重点介绍锁相放大器的原理、应用以及仪器的使用方法。

2. 原理锁相放大器的核心原理是相位敏感放大技术,它通过与参考信号进行相位比较,实现对待测信号的放大与解调。

具体原理可以分为以下几个步骤:1.信号混频:将待测信号与参考信号进行混频,产生一个电压与参考信号频率相同的交流信号。

2.低通滤波:对混频后的信号进行低通滤波,滤除高频噪声部分。

3.相位移动:通过改变参考信号的相位,实现对待测信号相位的调整。

相位调整后,待测信号与参考信号之间的相位差将被最小化。

4.放大器:对调整后的信号进行放大,增加信号的幅度。

5.解调器:将放大后的信号与参考信号进行相乘,得到待测信号的幅度信息。

锁相放大器将以上步骤组合在一起,能够对微弱信号进行高增益放大和高精度解调,从而提高信号的检测灵敏度和测量精度。

3. 应用锁相放大器在许多领域都有广泛的应用,下面将介绍几个典型的应用场景。

3.1 光学测量在光学测量中,锁相放大器常用于检测光能量、相位差、频率等参数。

例如在光学干涉仪中,通过锁相放大器可以对光的干涉信号进行放大和解调,从而实现对干涉信号的精确测量。

3.2 电子学实验锁相放大器在电子学实验中也有着广泛的应用,可以用于检测微弱信号、分析信号的谐波成分等。

例如在电阻、电容和电感测量中,锁相放大器可以消除噪声的影响,提高测量的精度。

3.3 生物医学在生物医学领域,锁相放大器被广泛应用于生物信号检测和分析。

例如在心电图检测中,锁相放大器可以提取出心电信号的有效部分,并抑制背景噪声干扰,从而实现对心电信号的准确分析和诊断。

锁相放大器

锁相放大器

锁相放大器锁相放大器是一种高性能的通用测量仪器,它能精确地测量被掩埋在噪音中的微弱信号。

随着科学技术的飞速发展,在电子学、信息科学、光学、电磁学、低温物理等许多领域,越来越需要测量深埋在噪音中的微弱信号。

本文介绍了一种低成本,灵活性高的缩相器。

特别在系统检测精确、性能指标、稳定性与抗干扰方面,达到理想效果。

一、锁相放大器锁相放大器是检测淹没在噪声中的微弱信号的仪器。

它作为一种信号恢复仪器,在弱信号测量中的重要作用,已经引起人们越来越广泛的重视。

1·锁相放大器的研究背景锁相放大器(Lock- in Amplifier, LIA)不仅能像选频放大器那样利用信号的频率特性,还抓住了信号的相位特点,即“锁定”了被测信号的相位。

它的等效噪声带宽非常窄,一般可以做到1mHz,远比选频放大器的带宽窄。

因此,基于锁相放大器所具有的输出稳定性、强有力滤除噪声的能力以及能将深埋在噪声中的微弱信号提取出来并加以放大的优良特性,应当选用锁相放大器。

2·锁相放大器的理论分析与设计要求(1)锁相放大器的工作原理锁相放大器采用的是外差式振荡技术,它把被测量的信号通过频率变换的方式转变成为直流。

即利用锁相放大器中的信号相关原理,对两个混有噪声的周期信号进行相乘和积分处理后,将信号从噪声中检测出来,并达到通过互相关运算削弱噪声影响的目的。

设是伴有噪声的周期信号,即X(t)=S(t)+N(t)=Asin(ωt+φ)+N(t)其中,N(t)为随机噪声,S(t)为有用信号,A为其幅值,角频率为ω,初相角为φ。

参考正弦信号为:Y(t)=Bsin(ωt+τ)+M(t)其中,B为其幅值,τ是时间位移,M(t)为随机噪声。

则两者的相关函数为:由于在被测量的信号里所包含的各种信号分量中,参考信号Y(t)的频率只与输入的有用信号频率相关,与随机噪声N(t)的频率不相关,且有用信号S(t)与随机噪声M (t)之间及噪声与噪声之间的频率也均相互独立,所以它们的相关函数为零,即Rny(τ)=0于是,就有从而,令锁相放大器实现了从噪声中提取有用信号的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:锁相放大器的原理及应用姓名:单位:学号:联系方式:摘要锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。

应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。

本文主要介绍了锁相放大器原理,发展过程,基本组成,重要参数和在各方面的应用。

关键词:锁相放大器,噪声,傅立叶变换一、锁相放大器的定义锁相放大器是一种对交变信号进行相敏检波的放大器。

它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。

因此,能大幅度抑制无用噪声,改善检测信噪比。

此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。

锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。

应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。

二、锁相放大器的历史上世纪六十年代美国公司研制出第一台利用模拟电路实现微弱正弦信号测量的锁相放大器,使微弱信号检测技术突破性飞越,为解决大量电子测量做出贡献,在物质表面组份分析以及表面电子能态研宄方面有重大意义。

自上世纪后期开始,国内外越来越多的人开始研宄锁相放大器,随着科技的发展,越来越多性能优良的锁相放大器被研发出来,在各个领域应用广泛,极大程度上推动了各个学科的发展,目前,从提高系统的灵敏度、减小噪声带宽、提高检测精度、改善信噪比上都有了很大的进步。

近年来,数字电子技术飞速发展,锁相放大器也在这一契机下,出现了模数混合的锁相放大器与数字锁相放大器,这在一定程度上弥补了由于物理器件造成的模拟锁相放大器的缺点,极大改善了性能,提升了研究层次与扩大了应用范围。

国外相较于国内而言,起步要早一些,己研发出一系列锁相放大器。

美国公司、美国公司是行业的龙头企业,它们所研制的模拟型:、和数字型:、、、均已有较成熟的发展与应用。

其中公司是世界范围内数字锁相放大器研制的佼佼者,该公司的产品在到的频率带宽内可测,具有自动获取、自动补偿功能,具有谐波抑制功能、度的相位分辨率和大于的动态保留,时间常数位从到可调,它的数字信号处理设计使它具有很大的动态存储,这就减少了使用带通滤波器时带进的噪声以及系统的不稳定性。

就国内而言,南京大学唐鸿宾等对锁相放大器的研宄起步较早,研发出了系列锁相放大器,该校微弱信号检测中心顺势研发出了新一代系列锁相放大器,在著名的唐鸿宾教授带领下,该中心现在仍然在不断出现新的研宄成果。

如:能抑制同频干扰的锁相放大器、型锁相放大器、虚拟锁相放大器等。

在新产品不断出现的同时,越来越多人投入到有关数字锁相算法的研究中,采样方法中反向与正交法、累加法中四、六等分累加法与分段累加法接连出现,这些新的算法的出现,都为微弱信号检测提供了支持与方便。

三、锁相放大器工作原理锁相放大器简称是利用相关原理中的互相关的原理设计的一种可用于微弱信号检测的设备它是一种可对信号进行相敏检波的放大器。

在测量中,噪声是人们不喜欢见到的干扰信号,其中对仪器设备影响较大的是白噪声以及噪声。

系统中噪声的出现会对有用信号造成不利影响,常使有用信号被其覆盖。

为了降低影响,通常会采用窄带滤波器去增大信号的。

但是,滤波器也有局限性:值即中心频率与通带宽度的比值受滤波器硬件部分等的限制,这影响到它不能更高层次的提取有用信号、滤除噪声。

锁相放大器是利用相关原理设计而成,将乘法器与积分器连接在同一条通路上,进行相关运算,去除噪声,可以大大提高抑制噪声的能力。

而这些,如果是采用带通滤波器,则可能产生较大测量误差,直接后果就是把有用信号误当成噪声滤除了。

通过之前的分析知道系统受到噪声中低频段部分的影响,因此可以利用斩波技术,将易受影响的部分变成高频交流信号,从而降低系统受低频部分的影响程度锁相放大器主要利用了参考信号与被测信号同频、同相的关系,也就是通常指的同步,它只对被测信号中的某一部分有响应,因此,就无所谓频率稳定与否。

研究表明,锁相放大器使信噪比提高倍数在级上,换算成信噪比是以上,能在比有用信号强千倍的噪声中将有用信号提取出来,可以使值提高百万倍。

这些都显示了利用锁相放大器进行检测系统设计能使系统具有许多优点,如它可以较强的抑制噪声。

现在的技术日新月异,锁相放大器的性能更加强大:比如新型的双相数字锁相放大器、多通道锁相放大器、精密锁相放大器等。

它们有极高的放大倍数和增益,且增益的精度高。

目前,锁相放大器的核心器件模拟相敏检波器正被数字信号处理器)所取代,这进一步地提升了它的性能由此可见,锁相放大器有许多优点,如良好的抗噪性能与很高的检测灵敏度。

对于锁相放大器,在通频带非常窄的范围内同样能实现检测功能,它是把交流信号放大并将它变成相应的直流信号进行输出。

检测的实现实际上就是在待测信号中找到与参考信号同步的信号并将它放大,最终实现检测有用信号的功能,。

因此,称这种仪器为锁相检测仪和同步检测仪也许更加形象。

但它的学名仍叫锁相放大器。

目前,市面上常用的锁相放大器有模拟的和数字的两类,通过对它们之间进行比较发现:前者具有起步早、速度快、参数稳定性和灵活性差等特点,而后者是随着数字技术的发展而出现的,它常用高速对信号进行高速采样,因此这对微处理器有很高的要求。

四、锁相放大器的构成图为典型锁相放大器的组成:相关器、信号通道、参考通道。

有用信号常常十分微弱,同时存在强的噪声。

图4-1典型的锁相放大器原理1)信号通道信号输入后先经过信号通道,它是由前置放大器、滤波与衰减功能的元器件、放大器等各部分组成,如图中。

它起到将输入信号放大,为后面的相关器工作提供方便的作用。

与此同时,滤波器工作将系统中的干扰信号滤掉,因此,信号通道有低噪声的特点。

将前置放大器作为信号通道中的第一个部分,主要考虑到了输入信号很小,是、级甚至更加微弱,那么输入后首要任务是将输入信号进行放大,它的要求是往往需要高输入阻抗,低输出阻抗以及较高的电压增益。

2)参考信号互相关接收两种信号:分别是被测信号与参考信号。

参考输入信号首先经过参考通道分别经过触发电路、频率变换电路、相移电路、方波驱动电路后以方波信号形式输出。

输入信号与参考信号是同时分别送入到信号通道与参考通道,因此,这两部分的输出也是同步的。

参考信号的来源有两类:一种是来自仪器内部,另一种是来自外部,后者是主要来源。

参考信号的种类繁多,如正弦波、方波、三角波等各种有规律的周期信号都可将其作为参考信号。

3)相关器相关器的作用是对被测信号与参考信号进行互相关函数运算。

它常由乘法器和积分器组成。

它有稳定性好、动态范围大、线性好等优点,这使得相关器的适用范围广。

锁相放大器通常在输入信号为正弦信号或方波信号的条件下使用。

当方波信号作为输入信号时,输入到参考信道的参考信号是受限制的(与输入信号同步的方波)。

在相关检测中相敏检波器是核心器件,然后利用它实现对信号进行与的检测。

相关器中的器件将经信号通道与参考通道输出的两路信号依次进硕士学位论文锁相放大器工作原理行相乘运算与积分运算。

相关器的等效噪声带宽是由积分器的时间常数决定的,在理想分析下,积分时间常取为无限大,积分时间越长,抑制噪声和干扰的能力就越强,但这毕竟不是现实,不存在出现无限大的取值,积分时间存在着上限与下限。

在实际应用中,时间常数的选取是由被测信号变化的响应时间以及系统抑制噪声的要求共同确定的。

相关检测的方法能减小等效噪声带宽,能增大等效值,最终达到增大信噪比的目的。

五、锁相放大器的重要参数影响锁相放大器工作性能的一些参数有1)带宽锁相放大器的决定因素的是带宽〔,因为在实际测量中是无法完全滤去十分接近参考频率的噪音信号,所以带宽成了影响信号检测灵敏度的重要因素。

现在可以提供检测带宽可以达到。

2)参考频率锁相放大器需要一个参考频率。

通常是用振荡器或函数发生器发出的信号驱动实验,用锁相放大器检测该信号在参考频率的响应。

锁相放大器用PLL产生参考信号。

如果用外部参考信号,锁相放大器中的就把内部参考振荡器的相位锁定,产生一个固定相移的正弦信号。

因为可以跟踪外部频率,所以外部频率的变化不会影响测量。

3)品质因数品质因数决定选频特性,其倒数称为相对带宽,也就是增益衰减为的两个截止频率之间的带宽。

通过设定时间常数可以调整滤波器的带宽。

而时间常数尤,其中是信号增益衰减为时的频率。

它可以反应输出响应的速度和输出信号的平滑度。

4)动态延续量动态延续量表示的是所能接受的最大噪音信号与被测量信号的增益之比在这个限度内的信号不会带来输出信号的过载。

为了增加这个比率,输入信号必须很小以防止过载,但是实际情况不允许将这个值变得很高,因为和直流放大器都有一些偏移,如果它们的增益过大,会导致严重的测量误差。

为此可以通过改变时间常数来进行抑制。

六、锁相放大器的应用锁相放大器作为产品问世几十年来,在声、光、电、磁、物理、化学、天文、地学、生物医学、工业生产等领域中得到极为广泛的应用。

在科学技术范围内己有二百多个方面得到了极好的应用,推动了科学技术的发展,它己成为现代科学技术中不可缺少的常备仪器,是微弱信号检测中应用十分广泛的仪器。

1)锁相放大器在电池内阻测量中的应用采用锁相放大技术可以有效地抑制干扰和噪声,使得内阻的测量变的非常精确,且测量速度快、成本低由于它无需放电,施加的交流电流也很小,可以实现完全的在线检测管理,避免了对设备运行安全性的影响。

因此,用锁相放大器实现电池内阻在线测量将有广泛的应用前景。

2)锁相放大器在微波特性研究中的应用随着科学技术的进步,微波技术和微波理论有了长足的发展。

尽管微波辐射对人体有热效应和生物效应,但在加强安全防护后,微波有着更多的优点,与其他电磁波相比,波长短、频率高、频带宽、穿透性高、方向性强、量子特性等,所有这些使得其广泛用于通信系统、遥感系统、雷达系统,此外,已经深入到工业、农业、医疗事业。

因此,微波特性研究己成为一门被人重视的学科。

在传统微波光特性研究的基础上,可以用两台微波分光仪和一台微弱信号检测仪—锁定放大器来研究微波的传输特性。

采用型三厘米固态信号发生器产生微波信号,电源电压采用方波调制,调制电压输出电阻分压作为锁定放大器的参考信号。

微波信号由发射天线发射,接收天线接收后经检波器检波输给锁定放大器作为待测信号,改变接收天线和发射天线的距离和角度,观察锁定放大器输出电压的变化。

采用锁定放大器取代测量放大器和选频放大器是天线方向图测量的一大进步,保证了测量系统的低噪声性能和高灵敏度。

相关文档
最新文档