第1章达标检测卷
【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)

人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。
人教版七年级数学上册第一章达标检测卷附答案

人教版七年级数学上册第一章达标检测卷一、选择题(每题3分,共30分)1.如果温度上升3 ℃记作+3 ℃,那么温度下降2 ℃记作( )A .-2 ℃B .+2 ℃C .+3 ℃D .-3 ℃ 2.-12 022的相反数是( )A .12 022B .-12 022 C .2 022 D .-2 022 3.下列各数中,最小的数是( )A .-3B .0C .1D .24.有理数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m |<1B .1-m >1C .mn >0D .m +1>05.下列计算中,正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32 D .0-7-2×5=-176.我国渤海、黄海、东海、南海海水含有不少化学元素,其中铝、锰元素总量均约为8×106 吨.用科学记数法表示铝、锰元素总量的和,接近值是( )A .8×106B .16×106C .1.6×107D .16×10127.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .MB .NC .PD .O 8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-11 10.已知有理数a ≠1,我们把11-a 称为a 的差倒数.如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( )A .-7.5B .7.5C .5.5D .-5.5 二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 022的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A ,B ,C 三地的海拔高度分别是-102米,-80米,-25米,则最高点比最低点高________米. 14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________. 17.有5袋苹果,以每袋50千克为标准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下(单位:千克):+4,-5,+3,-2,-6,则这5袋苹果的总质量是________. 18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 023的值为________.19.按照如图所示的计算程序,若x =2,则输出的结果是________.20.某校建立了一个身份识别系统,图①是某名学生的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行所代表的数字从左往右依次记为a ,b ,c ,d ,那么可以转换为该生所在的班级序号,其序号为a ×23+b ×22+c ×21+d ,如图①,第一行数字从左往右依次为0,1,0,1,序号为0×23+1×22+0×21+1=5,表示该生为5班学生,则图②识别图案的学生所在班级序号为________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分) 21.将下列各数在数轴上表示出来,并按从小到大的顺序排列.(用“<”号连接起来)-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122;(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +ba +b +c+m 2-cd 的值.24.若“⊗”表示一种新运算,规定a ⊗b =a×b +a +b ,请计算下列各式的值. (1)-6⊗2; (2)[(-4)⊗(-2)]⊗12.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上). (1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10 m(不包括10 m),则对方球员极可能挑射破门.请问在这段时间内,对方球员有几次挑射破门的机会?27.观察下列等式并回答问题.第1个等式:a1=11×3=12×⎝⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝⎛⎭⎪⎫13-15;第3个等式:a3=15×7=12×⎝⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝⎛⎭⎪⎫17-19;….(1)按发现的规律分别写出第5个等式和第6个等式;(2)求a1+a2+a3+a4+…+a100的值.答案一、1.A2.A3.A4.B5.D6.C 7.A8.C9.B10.A二、11.-3;-1 2 02212.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-2620.6三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|. 22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)-6⊗2=-6×2+(-6)+2=-16.(2)[(-4)⊗(-2)]⊗12=[-4×(-2)+(-4)+(-2)]⊗12=2⊗1 2=2×12+2+12 =312.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m).所以守门员最后回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m),第三次:8+5=13(m),第四次:13-6=7(m),第五次:7+12=19(m),第六次:19-9=10(m),第七次:10+4=14(m),第八次:14-14=0(m).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m.(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×(1199-1201)=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.。
教科版初二八年级物理上册《第一章达标检测卷》(附答案)

第一章达标检测卷(100分,90分钟)题号一二三总分得分一、选择题(每题3分,共42分)1.如图所示,在以下的测量仪器中,属于电学测量仪器的是()2.元旦早晨,小雷在家中发现暖水瓶的瓶盖打开不冒“白气”,小雷问自己为什么?想到可能是暖水瓶不保温,倒了一碗尝尝发现“烫”。
又想到可能是因为房间的温度较高,将暖水瓶拿到屋外,看到很多“白气”。
小雷倒了一碗尝尝属于科学探究中的哪个环节()A.提出问题B.猜想与假设C.进行实验、收集证据D.交流与合作3.下列说法正确的是()A.测量时,测量工具越精密,测量越准确越好B.用分度值不同的两把刻度尺测量同一物体的长度,测量结果是相同的C.测量长度的准确值只与刻度尺的分度值有关,与刻度尺的长短无关D.测量长度要估读数字,估计的数字越多越好4.一次课堂计算比赛中,四位同学的计算过程如下,其中正确的是() A.7.2 mm=7.2 mm×10-3=7.2×10-3 mB.15 m=15×106=1.5×107μmC.2.5 km=2.5 km×104 cm=2.5×104 cmD.3.0×106 cm=3.0×106×10-2m=3.0×104 m5.下列说法中正确的是()A.认真测量可以消除误差B.选择精密的测量工具可以避免误差C.测量时应避免产生错误D.测量中错误和误差都是不可避免的6.下面哪个部位最接近10 mm()A.成人食指指甲的宽度B.成人拳头的宽度C.成人脚的长度D.成人眉毛的长度7.为了检验人躺着和站立时身体长度是否有差异,选用下列哪种尺最合适()A.量程是0~3 m,分度值是 1 mm B.量程是0~10 m,分度值是 1 dm C.量程是0~30 cm,分度值是 1 mm D.量程是0~15 cm,分度值是0.5 mm8.小明用分度值为 1 mm的刻度尺测量某物体的长度,以下是他所记录的数据:17.86 cm,17.88 cm,17.87 cm,18.85 cm,则该物体的长度应该是() A.17.86 cm B.17.87 cm C.18.85 cm D.18.115 cm9.测得某同学的身高是 1.650 m,下列说法中正确的是()A.所用尺的分度值是1毫米B.测量结果准确到厘米C.0.650 m是估计值D.末位数字零可以省去不写10.在考试中,婉彤同学对考场内一些物理量的估测,下列数据最接近实际的是()A.试卷纸的厚度是0.005 mm B.课桌的高度约 1.4 mC.教室门的高度约 2 m D.2B铅笔的长约30 cm11.现要测量某圆柱体的直径,如图所示,几种测量方法中正确的是()12.如图所示为用A、B两把刻度尺同时测量一个木块的长度,则A、B的读数分别为()A.刻度尺A:3.80 cm,刻度尺B:3.80 cmB.刻度尺A:3.80 cm,刻度尺B:2.8 cmC.刻度尺A:2.80 cm,刻度尺B:2.80 cmD.刻度尺A:2.80 cm,刻度尺B:2.8 cm(第12题图)(第14题图) 13.有下列器材:a.白纸条;b.钟;c.大头针;d.刻度尺;e.重锤;f.圆柱体。
湘教版七年级下册数学第1章达标检测试卷(含答案)

湘教版七年级下册数学第1章达标检测试卷(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)第Ⅰ卷 (选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.若方程■x -2y =x +5是二元一次方程,■是被弄污的x 的系数,请推断■的值的情况是( )A .不可能是-1B .不可能是-2C .不可能是1D .不可能是22.(博兴县期中)若方程3x |m|-2=3y n +1+4是二元一次方程,则m ,n 的值分别为( )A .2,-1B .-3,0C .3,0D .±3,03.(广丰区期末)二元一次方程2x +y =10的正整数解有( )A .2个B .3个C .4个D .5个4.下列各方程组中是二元一次方程组的是 ( )A .⎩⎪⎨⎪⎧a +13b =1,a =b 2B .⎩⎪⎨⎪⎧3x -2y =5,2y -z =10C .⎩⎪⎨⎪⎧x 3+y 2=1,xy =1D .⎩⎪⎨⎪⎧x -y =27,x +11y =405 5.用加减法解下列四个方程组:(1)⎩⎪⎨⎪⎧2.5x +3y =1,①-2.5x +2y =4;② (2)⎩⎪⎨⎪⎧3x +4y =7,①4x -4y =8;②(3)⎩⎪⎨⎪⎧14x +5y =32,①y =0.5x +11.5;② (4)⎩⎪⎨⎪⎧3x -5y =7,①3x -6y =8.② 其中方法正确且最适宜的是 ( )A .(1)①-②B .(2)②-①C .(3)①+②D .(4)②-①6.七年级有两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x 棵,y 棵,那么可列方程组( )A .⎩⎪⎨⎪⎧x +y =30,x =2yB .⎩⎪⎨⎪⎧x +y =30,2x =y C .⎩⎪⎨⎪⎧x =30-y ,y =2+x D .⎩⎪⎨⎪⎧x +y =30,x =y +27.若|3x +2y -4|+27(5x +6y)2=0,则x ,y 的值分别是 ( )A .⎩⎪⎨⎪⎧x =6,y =-5B .⎩⎪⎨⎪⎧x =3,y =-52 C .⎩⎪⎨⎪⎧x =8,y =10 D .⎩⎪⎨⎪⎧x =5,y =-1128.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +2y =5k +2,x -y =4k -5 的解满足x +y =9,则k 的值是 ( )A .1B .2C .3D .49.方程组⎩⎪⎨⎪⎧x +y =-1,x +z =0,y +z =1的解是( ) A .⎩⎪⎨⎪⎧x =-1,y =1,z =0 B .⎩⎪⎨⎪⎧x =1,y =0,z =-1 C .⎩⎪⎨⎪⎧x =0,y =1,z =-1 D .⎩⎪⎨⎪⎧x =-1,y =0,z =110.(郯城县期末)如果方程组⎩⎪⎨⎪⎧ax -by =13,4x -5y =41 与⎩⎪⎨⎪⎧ax +by =3,2x +3y =-7有相同的解,则a ,b 的值是 ( )。
2022春八年级数学下册第1章三角形的证明达标检测新版北师大版(含答案)

八年级数学下册新版北师大版:第一章达标检测卷一、选择题(每题3分,共30分)1.若等腰三角形的顶角为40°,则它的底角度数为( )A.40° B.50° C.60° D.70°2.以下列各组数为边长能组成直角三角形的是( )A.4,5,6 B.2,3,4 C.11,12,13 D.8,15,173.下列命题的逆命题是真命题的是( )A.若a>0,b>0,则a+b>0 B.直角都相等C.两直线平行,同位角相等 D.若a=b,则|a|=|b|4.如图,∠C=∠D=90°,添加一个条件,可使用“H L”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是( )A.AC=AD B.AC=BC C.∠ABC=∠ABD D.∠BAC=∠BAD5.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,垂足为D,则BD AD的值为( )A.12B.25C.13D.146.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE.若AC=5,BC=3,则BD的长为( )A.2.5 B.1.5 C.2 D.17.有A,B,C三个社区(不在同一直线上),现准备修建一座公园,使该公园到三个社区的距离相等,那么公园应建在下列哪个位置上?( )A.△ABC三条角平分线的交点处 B.△ABC三条中线的交点处C.△ABC三条高的交点处 D.△ABC三边垂直平分线的交点处8.如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 ( )A.4 cm B.3 cm C.2 cm D.1 cm9.如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD 等于( )A.10 B.12 C.24 D.4810.如图,在△ABC中,BC的垂直平分线与△ABC的外角∠CAM的平分线相交于点D,DE⊥AC于点E,DF⊥AM于点F,则下列结论:①△CDE≌△BDF;②CA-AB=2AE;③∠BDC+∠FAE=180°;④∠DAF+∠CBD=90°.其中正确的是( )A.①②③ B.①②④ C.②③④ D.①③④二、填空题(每题3分,共24分)11.用反证法证明一个三角形中不能有两个角是直角,第一步是假设这个三角形中____________________.“两直线平行,内错角相等”的逆命题是______________________.12. 如图,在△ABC中,AB=AC=BC=4,AD平分∠BAC,点E是AC的中点,则DE的长为________.13.如图,AB=AC,AD=AE,AF⊥BC于F,则图中全等的直角三角形有________对.14.如图,在△ABC中,高AD,CE相交于点H,且CH=AB,则∠ACB=________.15.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=3,AB=10,则△ABD的面积为________.16.如图,在等边三角形ABC中,AD是BC边上的高,且AD=4,E是AB边的中点,点P在AD上运动,则PB+PE的最小值是________.17. 如图,在等腰三角形ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF折叠后与点O重合,则∠OEC=________.18. 如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A6B6A7的边长为________.三、解答题(23题10分,24,25题每题12分,其余每题8分,共66分)19.如图,在△ABC中,已知AB=5,AC=9,BC=7.(1)尺规作图:作AC的垂直平分线DE,与AC交于点D,与BC交于点E,连接AE;(2)求△ABE的周长.20.如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.21.如图,在长方形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.22.已知:如图,锐角三角形ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.23.如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为点E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点P是等边三角形ABC内一点,AD⊥BC于点D,PE⊥AB于点E,PF⊥AC于点F,PG⊥BC于点G.求证:AD=PE+PF+PG.25.如图,在平面直角坐标系中,已知点A(0,2),△AOB为等边三角形,P是x轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形APQ.(1)求点B的坐标.(2)在点P运动过程中,∠ABQ的大小是否发生改变?若不改变,求出其大小;若改变,请说明理由.(3)连接OQ,当OQ∥AB时,求点P的坐标.答案一、1.D 2.D3.C 点拨:A 项的逆命题:若a +b >0,则a >0,b >0,是假命题;B 项的逆命题:相等的角是直角,是假命题;C 项的逆命题:同位角相等,两直线平行,是真命题;D 项的逆命题:若|a |=|b |,则a =b ,是假命题.故选C. 4.A 5.C 6.D 7.D 8.C 9.A10.A 点拨:由题意得BD =CD ,DE =DF ,∠DFB =∠DEC =90°,∴Rt △CDE ≌Rt △BDF ,∴①正确;易知AE =AF ,BF =CE ,∴CA -AB =AE +CE -(BF -AF )=AE +AF =2AE ,∴②正确;∵∠BDC =180°-∠DBC -∠DCB ,∠FAE =∠ABC +∠ACB ,∠FBD =∠ECD ,∴∠BDC +∠FAE =180°-∠DBC -∠DCB +(∠FBD +∠DBC )+(∠DCB -∠ECD )=180°,∴③正确;由已知条件无法得到∠DAF +∠CBD =90°,∴④错误.故正确的结论有①②③,故选A.二、11.有两个角是直角;内错角相等,两直线平行 12.2 13.214.45° 点拨:如图,∵CE ⊥AB 于点E ,AD ⊥BC 于点D ,∴∠AEC =90°,∠5=∠6=90°.∴∠1+∠2=90°,∠3+∠4=90°.∵∠2=∠3,∴∠1=∠4. 在△ABD 和△CHD 中,⎩⎪⎨⎪⎧∠5=∠6,∠1=∠4,AB =CH ,∴△ABD ≌△CHD (AAS).∴AD =CD .∴△ADC 为等腰直角三角形.∴∠ACB =45°.(第14题)15.1516.4 点拨:如图,连接EC,交AD于点P,连接BP,此时PB+PE的值最小,且PB+PE =EC.因为点E是AB的中点,所以CE是等边三角形ABC的高,所以CE=AD=4,即PB +PE的最小值为4.(第16题)17.100°18.32 点拨:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠A1B1A2=∠B1A1A2=∠A1A2B1=60°.∴∠OA1B1=120°.∵∠MON=30°,∴∠OB1A1=180°-120°-30°=30°.∴OA1=A1B1=A2B1=1.又∵∠A1B1A2=60°,∴∠A2B1B2=180°-60°-30°=90°.∵△A2B2A3是等边三角形,∴∠B2A2A3=60°.∴∠B1A2B2=60°.∴∠B1B2A2=90°-∠B1A2B2=30°.∴A2B2=2B1A2=2.同理得出B3A3=2B2A3,∴A3B3=4B1A2=4.以此类推,A6B6=32B1A2=32.三、19.解:(1)作图如图所示.(第19题)(2)∵DE垂直平分AC,∴AE=EC,∴AB+BE+AE=AB+BE+EC=AB+BC. ∵AB=5,BC=7,∴AB+BE+AE=5+7=12,即△ABE的周长为12.20.解:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一).∵∠ADC=125°,∴∠CDE=55°.∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°.∴∠BAC=180°-(∠B+∠ACB)=40°. 21.证明:∵四边形ABCD是长方形,∴∠B=∠C=90°.∵EF⊥DF,∴∠EFD=90°.∴∠EFB+∠CFD=90°.∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD.在△BEF和△CFD中,⎩⎪⎨⎪⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA ). ∴BF =CD .22.(1)证明:∵OB =OC , ∴∠OBC =∠OCB .∵锐角三角形ABC 的两条高BD ,CE 相交于点O , ∴∠BEC =∠BDC =90°.∴∠BCE +∠ABC =∠DBC +∠ACB =90°, ∴∠ABC =∠ACB , ∴AB =AC ,∴△ABC 是等腰三角形.(2)解:点O 在∠BAC 的平分线上. 理由:在△EOB 和△DOC 中,OB =OC ,∠BEO =∠CDO ,∠EOB =∠DOC , ∴△EOB ≌△DOC , ∴OE =OD .又∵∠AEO =∠ADO =90°, ∴OE ⊥AE ,OD ⊥AD .∴点O 在∠BAC 的平分线上.23.(1)证明:∵AB =AC ,∴∠B =∠C . ∵DE ⊥AB ,DF ⊥AC , ∴∠DEB =∠DFC =90°. ∵D 是BC 边的中点, ∴BD =CD .在△BED 与△CFD 中, ∵∠DEB =∠DFC , ∠B =∠C ,BD =CD ,∴△BED ≌△CFD (AAS ). (2)解:∵AB =AC ,∠A =60°, ∴△ABC 是等边三角形. ∴AB =BC =CA ,∠B =60°. 又∵DE ⊥AB , ∴∠EDB =30°.∴在Rt △BED 中,BD =2BE =2. ∴BC =2BD =4.∴△ABC 的周长为AB +BC +AC =3BC =12. 24.证明:连接PA ,PB ,PC ,如图.(第24题)∵AD ⊥BC 于点D ,PE ⊥AB 于点E ,PF ⊥AC 于点F ,PG ⊥BC 于点G ,∴S △ABC =12×BC ×AD ,S △PAB =12×AB ×PE ,S △PAC =12×AC ×PF ,S △PBC =12×BC ×PG .∵S △ABC =S △PAB +S △PAC +S △PBC ,∴12×BC ×AD =12(AB ×PE +AC ×PF +BC ×PG ). ∵△ABC 是等边三角形, ∴AB =BC =AC ,∴BC ×AD =BC ×(PE +PF +PG ), ∴AD =PE +PF +PG .25.解:(1)如图①,过点B 作BC ⊥x 轴于点C . ∵△AOB 为等边三角形,且OA =2, ∴∠AOB =60°,BO =OA =2. ∴∠BOC =30°. 又∵∠OCB =90°,∴BC =12OB =1,∴OC = 3.∴点B 的坐标为(3,1).(第25题)(2)∠ABQ 的大小始终不变.∵△APQ ,△AOB 均为等边三角形,∴AP =AQ ,AO =AB ,∠PAQ =∠OAB =60°.∴∠PAO =∠QAB .在△APO 与△AQB 中,⎩⎪⎨⎪⎧AP =AQ ,∠PAO =∠QAB ,AO =AB ,∴△APO ≌△AQB (SAS ).∴∠ABQ =∠AOP =90°.(3)如图②,当OQ ∥AB 时点P 在x 轴的负半轴上,点Q 在点B 的下方,∵AB ∥OQ ,∴∠BQO =180°-∠ABQ =90°,∠BOQ =∠ABO =60°.∴∠OBQ =30°.又OB =OA =2,∴OQ =12OB =1,∴BQ = 3.由(2)可知,△APO ≌△AQB , ∴OP =BQ = 3.∴此时点P 的坐标为(-3,0).。
北师大版数学八年级下册第一章达标检测卷参考答案及试卷解析(2套)

北师大版数学八年级下册第一章达标检测卷(1)一、选择题1.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE2.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.47.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.68.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°9.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A .40°B .36°C .30°D .25°10.如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点N 是OB 上的任意一点,则线段PN 的取值范围为( )A .PN <3B .PN >3C .PN ≥3D .PN ≤311.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD=4,AB=15,则△ABD 的面积是( )A .15B .30C .45D .6012.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5二、填空题13.等腰三角形的一个内角为100°,则顶角的度数是 .14.如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD的周长是.15.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.三、解答题18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.北师大版数学八年级下册第一章达标检测卷(1)参考答案与试卷解析1.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【考点】KH:等腰三角形的性质.【专题】选择题【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.2.若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【专题】选择题【分析】分为两种情况:2cm是等腰三角形的腰或2cm是等腰三角形的底边,然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:若2cm为等腰三角形的腰长,则底边长为10﹣2﹣2=6(cm),2+2<6,不符合三角形的三边关系;若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°【考点】KP:直角三角形斜边上的中线;KW:等腰直角三角形.【专题】选择题【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.【解答】解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选B.【点评】本题考查了直角三角形的性质,等腰直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为()A.48°B.40°C.30°D.24°【考点】KH:等腰三角形的性质;JA:平行线的性质.【专题】选择题【分析】先根据平行线的性质,由AB∥CD得到∠1=∠BAE=45°,然后根据三角形外角性质计算∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠BAE=48°,∵∠1=∠C+∠E,∵CF=EF,∴∠C=∠E,∴∠C=∠1=×48°=24°.故选D.【点评】本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.【点评】本题考查了直角三角形斜边上的中线,三角形内角和定理的应用,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.4【考点】KF:角平分线的性质.【专题】选择题【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3 B.4 C.5 D.6【考点】KI:等腰三角形的判定.【专题】选择题【分析】根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.8.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】选择题【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.9.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【考点】KH:等腰三角形的性质.【专题】选择题【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.10.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【考点】KF:角平分线的性质.【专题】选择题【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.11.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线的性质.【专题】选择题【分析】判断出AP 是∠BAC 的平分线,过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE=CD ,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP 是∠BAC 的平分线,过点D 作DE ⊥AB 于E ,又∵∠C=90°,∴DE=CD ,∴△ABD 的面积=AB•DE=×15×4=30,故选B .【点评】本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.12.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【考点】KF :角平分线的性质.【专题】选择题【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.13.等腰三角形的一个内角为100°,则顶角的度数是.【考点】KH:等腰三角形的性质.【专题】填空题【分析】根据100°角是钝角判断出只能是顶角,然后根据等腰三角形两底角相等解答.【解答】解:∵100°>90°,∴100°的角是顶角,故答案为:100°.【点评】本题考查了等腰三角形两底角相等的性质,先判断出100°的角是顶角是解题的关键.14.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是.【考点】KG:线段垂直平分线的性质.【专题】填空题【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为:15.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A=度.【考点】KH:等腰三角形的性质.【专题】填空题【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵OA=OB,∠AOB=30°,∴∠A=(180°﹣30°)=75°,故答案为:75.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.16.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】填空题【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长为:AB+AC+BC=2a+3b故答案为:2a+3b.【点评】本题考查线段垂直平分线的性质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.17.如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段.【考点】KG:线段垂直平分线的性质;KF:角平分线的性质.【专题】填空题【分析】根据线段的垂直平分线的性质解答即可.【解答】解:∵DE垂直平分AB,∴BE=EA,故答案为:BE=EA.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【专题】解答题【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.【解答】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等边对等角的性质,熟记性质是解题的关键.19.如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质.【专题】解答题【分析】(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论.【解答】解:(1)∠ABE=∠ACD;在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.【点评】本题考查了等腰三角形的性质及垂直平分线段的性质的知识,解题的关键是能够从题目中整理出全等三角形,难度不大.20.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.【考点】KF:角平分线的性质;JA:平行线的性质.【专题】解答题【分析】根据角平分线的定义得到∠1=∠2,根据角平分线的性质得到DE=BD,∠3=∠4,由平行线的性质得到3=∠5,于是得到结论.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定和性质,熟练掌握角平分线的性质是解题的关键.21.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题【分析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.【解答】证明:∵DE∥AC,∴∠1=∠3,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠2=∠3是解题关键.22.已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.(1)求证:BD平分∠ABC;(2)若∠DAC=45°,OA=1,求OC的长.【考点】KF:角平分线的性质;JB:平行线的判定与性质.【专题】解答题【分析】(1)根据等腰三角形的性质、平行线的性质以及角平分线的定义证明;(2)过点O作OE⊥BC于E,根据角平分线的性质得到OE=OA,根据勾股定理计算即可.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∴∠DAC=∠ACB.∴AD∥BC,∴∠ADB=∠CBD.又∵AB=AD,∴∠ADB=∠ABD.∴∠ABD=∠CBD.∴BD平分∠ABC;(2)解:过点O作OE⊥BC于E,∵∠DAC=45°,∠DAC=∠ABC,∴∠ABC=∠ACB=45°,∴∠B AC=90°,∵BD平分∠ABC,∴OE=OA=1.在Rt△OEC中,∠ACB=45°,OE=1,∴OC=.【点评】本题考查的是角平分线的性质、等腰三角形的性质、勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.23.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.【考点】KF:角平分线的性质;KD:全等三角形的判定与性质;KG:线段垂直平分线的性质;KN:直角三角形的性质.【专题】解答题【分析】由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,而AD平分∠BAC,利用等腰三角形三线合一定理可知AD⊥CE,即得证.【解答】证明:∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.【点评】本题考查了线段垂直平分的定义、全等三角形的判定和性质、等腰三角形三线合一定理,解题的关键是证明AE=AC.北师大版数学八年级下册第一章达标检测卷(2)一、选择题1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A.35°B.65°C.55°D.25°3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则∠A的度数是()A.30°B.36°C.50°D.60°5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF ⊥AC于点F,则∠EDF的度数为()A.90°B.100°C.110° D.120°6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm10.10(1分)(2014春•九龙坡区校级期中)等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.1512.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°13.在Rt△ABC中,∠C=90°,AB=2,则AB2+BC2+CA2的值为()A.2 B.4 C.8 D.1614.如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()A.1 B.C.D.215.如图,在Rt△ABC中,CD是斜边AB上的中线,则图中与CD相等的线段有()A.AD与BD B.BD与BC C.AD与BC D.AD、BD与BC16.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.1317.如图,在Rt△ABC中,∠C=90°,AB=5cm,D为AB的中点,则CD等于()A.2cm B.2.5cm C.3cm D.4cm二、填空题18.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=.19.如图,△ABC中,∠C=90°,AC﹣BC=2,△ABC的面积为7,则AB=.20.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=.21.如图:△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=3cm,则AD=cm.22.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为.23.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.24.已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.25.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的面积为.三、解答题26.如图,在△ABC中,∠B=2∠C,且AD⊥BC于D,求证:CD=AB+BD,27.如图,已知在△ABC中,∠ACB=90°,CD为高,且CD,CE三等分∠ACB,(1) 求∠B的度数;(2) 求证:CE是AB边上的中线,且CE=AB,28.如图,AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,求:(1) AD的长;(2) 四边形ABCD的周长.29.已知锐角△ABC中,CD,BE分别是AB,AC边上的高,M是线段BC的中点,连接DM,EM.(1) 若DE=3,BC=8,求△DME的周长;(2) 若∠A=60°,求证:∠DME=60°;(3) 若BC2=2DE2,求∠A的度数.北师大版数学八年级下册第一章达标检测卷(2)参考答案与试卷解析1.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】K8:三角形的外角性质.【专题】选择题【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.2.如图,将三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是()A.35°B.65°C.55°D.25°【考点】R2:旋转的性质.【专题】选择题【分析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,则∠A度数可求.【解答】解:∵△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°.故选C.【点评】本题考查了旋转的性质,根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.3.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对【考点】KF:角平分线的性质;KW:等腰直角三角形.【专题】选择题【分析】由∠C=90°,根据垂直定义得到DC与AC垂直,又AD平分∠CAB交BC 于D,DE⊥AB,利用角平分线定理得到DC=DE,再利用HL证明三角形ACD与三角形AED全等,根据全等三角形的对应边相等可得AC=AE,又AC=BC,可得BC=AE,然后由三角形BED的三边之和表示出三角形的周长,将其中的DE换为DC,由CD+DB=BC进行变形,再将BC换为AE,由AE+EB=AB,可得出三角形BDE的周长等于AB的长,由AB的长可得出周长.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选A.【点评】此题考查了角平分线定理,垂直的定义,直角三角形证明全等的方法﹣HL,利用了转化及等量代换的思想,熟练掌握角平分线定理是解本题的关键.4.已知:如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB上的中线,将△ACM沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则∠A的度数是()A.30°B.36°C.50°D.60°【考点】PB:翻折变换(折叠问题).【专题】选择题【分析】首先证明∠ACN=∠ANC=2∠ACM,然后证明∠A=∠ACM即可解决问题.【解答】解:由题意知:∠ACM=∠NCM;又∵AN=AC,∴∠ACN=∠ANC=2∠ACM;∵CM是直角△ABC的斜边AB上的中线,∴CM=AM,∴∠A=∠ACM;由三角形的内角和定理知:∠A+2∠A+2∠A=180°,∴∠A=36°,故选:B.【点评】该命题考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;灵活运用有关定理来分析、判断、推理或解答.5.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF ⊥AC于点F,则∠EDF的度数为()A.90°B.100°C.110° D.120°【考点】KN:直角三角形的性质.【专题】选择题【分析】由三角形内角和定理求得∠A=70°;由垂直的定义得到∠AED=∠AFD=90°;然后根据四边形内角和是360度进行求解.【解答】解:如图,∵在△ABC中,∠C=60°,∠B=50°,∴∠A=70°.∵DE⊥AB于点E,DF⊥AC于点F,∴∠AED=∠AFD=90°,∴∠EDF=360°﹣∠A﹣∠AED﹣∠AFD=110°.故选:C.【点评】本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角形内角和是180°、四边形的内角和是360°.6.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个 B.1个 C.2个 D.3个【考点】KN:直角三角形的性质.【专题】选择题【分析】由“直角三角形的两锐角互余”,结合题目条件,找出与∠A互余的角.【解答】解:∵∠ACB=90°,CD是AB边上的高线,∴∠A+∠B=90°,∠A+∠ACD=90°,∴与∠A互余的角有2个,故选C.【点评】此题考查了直角三角形的性质,直角三角形的两锐角互余.7.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.在直角△ABC中,∠C=30°,斜边AC的长为5cm,则AB的长为()A.4cm B.3cm C.2.5cm D.2cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】由题意可得,∠B是直角,AB=AC,直接代入即可求得AB的长.【解答】解:∵△ABC为直角三角形,∠C=30°,∴AB=AC=2.5,故选C.【点评】此题考查的是直角三角形的性质,30°的直角边所对的直角边等于斜边的一半.9.如果直角三角形中30°角所对的直角边是1cm,那么另一条直角边长是()A.1cm B.2cm C.cm D.3cm【考点】KO:含30度角的直角三角形.【专题】选择题【分析】根据勾股定理和直角三角形中30°角所对的直角边是斜边的一半求另一条直角边长.【解答】解:∵直角三角形中30°角所对的直角边是1cm,∴该直角三角形的斜边是2cm,∴另一条直角边长是:=;故选C.【点评】本题考查了含30度角的直角三角形.在直角三角形中,30°角所对的直角边是斜边的一半.10.等腰三角形一腰上的高等于这腰的一半,则这个等腰三角形的顶角等于()A.30°B.60°C.30°或150°D.60°或120°【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【专题】选择题【分析】分为两种情况:①高BD在△ABC内时,根据含30度角的直角三角形性质求出即可;②高CD在△ABC外时,求出∠DAC,根据平角的定义求出∠BAC 即可.【解答】解:①如图,∵BD是△ABC的高,AB=AC,BD=AB,∴∠A=30°,②如图,∵CD是△ABC边BA 上的高,DC=AC,∴∠DAC=30°,∴∠BAC=180°﹣30°=150°,综上所述,这个等腰三角形的顶角等于30°或150°.故选:C.【点评】本题考查了等腰三角形性质和含30度角的直角三角形性质的应用,主要考查学生能否求出符合条件的所有情况,注意:一定要分类讨论.11.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM 的周长是()A.21 B.18 C.13 D.15【考点】KP:直角三角形斜边上的中线.【专题】选择题【分析】根据“BE、CF分别是△ABC的高,M为BC的中点”得到FM=EM=BC,所以△EFM的周长便不难求出.【解答】解:∵BE、CF分别是△ABC的高,M为BC的中点,∴在Rt△BCE中,EM=BC=4,在Rt△BCF中,FM=BC=4,∴△EFM的周长=EM+FM+EF=4+4+5=13,故选C.【点评】本题利用直角三角形斜边上的中线等于斜边的一半.12.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()。
高中生物第1章人体的内环境与稳态达标检测卷新人教版选择性必修1

第1章达标检测卷一、选择题:本题共14小题。
每小题2分,共28分。
每小题给出的四个选项中,只有一个选项是最符合题目要求的。
1.除哪项外,均为内环境概念的要素( )A.细胞液B.主要组成成分为血浆、组织液和淋巴C.细胞外液D.体内细胞赖以生存的液体环境【答案】A 【解析】A项中的细胞液存在于植物细胞的液泡中。
2.下列属于人体内环境的成分的是( )①血浆、组织液和淋巴液②血红蛋白、O2和葡萄糖③葡萄糖、CO2和胰岛素④激素、载体和呼吸酶A.①③B.③④C.①②D.②④【答案】A 【解析】内环境由血浆、组织液和淋巴液组成,血红蛋白是红细胞中的蛋白质,呼吸酶是细胞中催化呼吸作用的酶,载体存在于细胞膜上,它们都不是内环境的成分,而O2、CO2、胰岛素和葡萄糖都可以存在于内环境中,属于内环境的成分。
3.下列说法正确的是( )A.在人体的体液中,细胞内液约占1/3,细胞外液约占2/3B.组织液是体内所有细胞直接生活的环境C.肾上腺、胰岛、卵巢和唾液腺的分泌物均直接排放到内环境D.泪液、汗液、消化液、尿液等来源于体液,但不属于内环境【答案】D 【解析】在人体的体液中,细胞内液约占2/3,细胞外液约占1/3,A错误;血细胞生活的环境是血浆,淋巴细胞生活的环境是淋巴液和血浆,毛细血管壁细胞生活的环境是血浆和组织液,毛细淋巴管壁细胞生活的环境是淋巴液和组织液,B错误;唾液腺分泌唾液到口腔,口腔是外界环境,C错误。
4.(2021·湖北适应性考试)人体内含有大量以水为基础的液体,这些液体统称为体液。
下列相关叙述错误的是( )A.细胞外液的理化性质主要包括渗透压、酸碱度和温度等方面B.由细胞外液构成的液体环境为外环境,主要包括血浆、组织液和淋巴液C.组织液又叫细胞间隙液,主要存在于组织细胞间隙,为组织细胞提供营养物质D.若局部毛细血管通透性增加,则组织液生成增多【答案】B 【解析】细胞外液的理化性质主要包括渗透压、酸碱度和温度等,且理化性质是在正常范围内波动的,A正确;由细胞外液构成的液体环境为体内细胞直接生活的内环境(不是外环境),主要包括血浆、组织液和淋巴液,B错误;组织液又叫细胞间隙液,主要存在于组织细胞间隙,为绝大多数组织细胞提供营养物质,C正确;血浆和组织液之间的物质交换是双向的,毛细血管壁有一定的通透性,正常情况下除血细胞和大部分血浆蛋白外,其他物质都可以通过毛细血管壁;故若局部毛细血管通透性增加,会导致组织液生成增加,D正确。
部编版四年级语文上册第1单元 达标测试卷附答案

部编版四年级语文上册第一单元达标检测卷时间:90分钟满分:100分第一部分:积累运用(40分)一、选择题。
下面各小题均有A、B、C、D四个备选答案,请按题目要求选择一个正确的答案,将字母填在“()”里。
(18分) 1.下列词语中加点字的读音有错的一项是( )A.鼎沸.(fèi) 霎.时(shà) B.愚昧.(mèi) 卵.石(nuǎn)C.霸占.(zhàn) 屹.立(yì) D.顿.时(dùn) 民俗.(sú)2.下列加点字的读音与“闷雷滚动”中“闷”的读音相同的一项是( ) A.闷.热B.沉闷.C.闷.头儿D.闷.声不响3.下列词语书写完全正确的一项是( )A.振耳欲聋浩浩荡荡B.鸦鹊无声响彻云宵C.人生鼎沸悄无声息D.坑坑洼洼风平浪静4.“箪”是古代盛饭用的圆形竹器,下列与“箪”字读音相同的一项是( )A.竹B.单C.甲D.笔5.下面四个字中,最可能与“玉器”有关的一项是( ) A.决B.诀C.玦D.抉6.下列句子运用的修辞手法不同于其他三项的一项是( ) A.月盘是那样明亮,月光是那样柔和,照亮了高高的点苍山,照亮了村头的大青树,也照亮了,照亮了村间的大道和小路……B.看,稻谷就要成熟了,稻穗低垂着头,稻田像一块月光镀亮的银毯。
C.海上的夜是柔和的,是静寂的,是梦幻的。
D.我们到溪边去吧,去看看小水塘,看看水塘里的月亮,看看我采过野花的地方。
7.下列关于本单元课文的内容理解不正确的一项是( ) A.钱塘江大潮变化的过程是:一条白线→一堵水墙→犹如千万匹白色战马齐头并进→恢复平静。
B.《走月亮》一文中题目的意思是“和月亮一起走”。
C.《现代诗二首》中的两首诗都运用了拟人的修辞手法,做到了诗画结合,情景交融。
D.《繁星》一文表达了作者对繁星的喜爱和赞美之情。
8.厦门实验小学的王老师要求每个同学办一份以“保护环境”为主题的手抄报,下列宣传标语中不适合作为本次手抄报标题的一项是( )A.善待地球就是善待自己B.讲文明,讲卫生,讲科学,树新风C.保护环境,从我做起D.追求绿色时尚,拥抱绿色生活9.将句子“早晨雾气迷蒙,但在这白茫茫的雾气中,许多的生机已经开始迸发了”插入下面的语段中,位置最恰当的一项是( )①你瞧,一簇簇的花儿在争奇斗艳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章达标检测卷
(120分,90分钟)
一、选择题(每题3分,共48分)
1.如果用+0.02克表示一个乒乓球质量超出标准质量0.02克,那么一个乒乓球质量低于标准质量0.02克记作( )
A .+0.02克
B .-0.02克
C .0克
D .+0.04克
2.计算(-3)+4的结果是( )
A .-7
B .-1
C .1
D .7
3.下列各式中,成立的是( )
A .22=(-2)2
B .23=(-2)3
C .-22=|-2|2
D .(-2)3=|(-2)3|
4.(-2)3的相反数是( ) A .-6 B .8 C .-16 D .1
8
5.计算-47-6的结果,A 种型号计算器的按键顺序是( )
A .(-)47-6
B .(-)47-6=
C .(-)y x 47-6 D.(-)4y x 7-6=
6.如图,在数轴上点A 表示的数可能是( )
(第6题)
A .-1.5
B .1.5
C .-2.4
D .2.4
7.若某数的绝对值是1
2,则这个数的立方是( )
A .18
B .-18
C .18或-1
8
D .8或-8 8.有理数a ,b 在数轴上对应点的位置如图所示,则( )
(第8题)
A .a +b <0
B .a +b >0
C .a -b =0
D .a -b >0
9.已知|a|=5,|b|=2,且a <b ,则a +b 的值为( )
A .3或7
B .-3或-7
C .-3
D .-7
10.数轴上的点A 到原点的距离是10,则点A 表示的数为( )
A .10或-10
B .10
C .-10
D .5或-5
11.下面的数轴被墨点盖住一部分,被盖住的表示整数的点有( )
(第11题)
A.7个B.8个C.9个D.10个
12.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐杨梅的总质量是( )
(第12题)
A.19.7千克B.19.9千克
C.20.1千克D.20.3千克
13.下列说法中正确的是( )
A.两个数的和必定大于每一个加数
B.如果两个数的和是正数,那么这两个数中至少有一个正数
C.两个数的差一定小于被减数
D .0减去任何数,仍得这个数
14.一个正整数a ,与其倒数1
a
,相反数-a 比较大小关系正确的是( )
A .-a <1a
≤a B .-a <1a
<a C .1a
>a >-a D .-a≤a≤1a
15.若x ,y 为有理数,且|x +2|+(y -2)2
=0,则⎝ ⎛⎭
⎪⎫x y 2 015
的值为( )
A .1
B .-1
C .2 015
D .-2 015
16.观察下列算式,用你所发现的规律得出22 016的个位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……
A .2
B .4
C .6
D .8
二、填空题(每题3分,共12分)
17.-3的倒数是________;|-3|=________.
18.平方等于它本身的数是________;立方等于它本身的数是________;一个数的平方等于它的立方,这个数是________.
19.定义新运算:对任意有理数a 、b ,都有a ⊗b =a 2-b ,例如3⊗2=32-2=7,那么2⊗1=________.
20有一列数:-12,25,-310,4
17,…,那么第7个数是________,第n 个数是________.
三、解答题(22题20分,24题8分,25,26题每题10分,其余每题6分,共60分) 21.在如图所示的数轴上表示下列各数对应的点,并按从小到大的顺序把这些数用“<”连接起来.
3.5,-3.5,0,2,-2,-1
3
,0.5.
(第21题)
22.计算:(1)-5-(-3)+(-4)-[-(-2)];
(2)-14
+⎝ ⎛⎭
⎪⎫
-112-38+712×(-24);
(3)-62
×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭
⎪⎫-1123
×3;
(4)⎪⎪⎪⎪
⎪⎪
-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).
23.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求a +b
a +
b +
c +m 2-c
d 的值.
24.已知有理数a 、b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求⎪⎪⎪⎪
⎪⎪
a -13+(
b -1)2的
值.
25.一货车司机小张某天上午的营运路线全部是在南北走向的向阳大街上进行的,如果规定向南为正,那么他在这天上午的行车路程如下(单位:km ):+18,-15,+36,-48,
-3.
(1)上午停工时,小张在上午出发地点的什么位置上?
(2)若货车的耗油量为0.3 L /km ,则这天上午该货车共耗油多少升?
26.观察下列各式: -1×12=-1+12;
-12×13=-12+13; -13×14=-13+14
; (1)你发现的规律是____________________________(用含n 的式子表示); (2)用以上规律计算:⎝ ⎛⎭⎪⎫-1×12+⎝ ⎛⎭⎪⎫-12×13+⎝ ⎛⎭⎪⎫-13×14+…+⎝ ⎛
⎭⎪⎫-12 017×12 018.
答案
一、1.B 2.C 3.A 4.B 5.D 6.C 7.C 8.A 9.B 10.A 11.B 12.C 13.B 14.A 15.B
16.C 点拨:四位数为一组,将2 016除以4,若余数为1,则末位数字为2;若余数为2,则末位数字为4;若余数为3,则末位数字为8;若余数为0,则末位数字为6.因为2 016除以4余数为0,所以22 016的末位数字是6.故选C .
二、17.-1
3
;3
18.0,1;0,±1;0,1 19.3
20.-750;(-1)n ·n
n 2+1
三、21.解:数轴上表示略. -3.5<-2<-1
3<0<0.5<2<3.5.
22.解:(1)原式=-5+3-4-2=-8.
(2)原式=-1+⎝ ⎛⎭⎪⎫-32×(-24)+⎝ ⎛⎭⎪⎫
-38×(-24)+712×(-24)=-1+36+9-14=30.
(3)原式=-36×94-9×⎝ ⎛⎭⎪⎫
-827×3=-81+8=-73.
(4)原式=1-1+(-2.45-2.55)×8=-40.
23.解:由题意,得a +b =0,cd =1,m =±2,所以m 2=4. 所以a +b a +b +c +m 2
-cd =00+c
+4-1=0+4-1=3.
24.解:由ab 2<0,知a <0; 因为a +b >0,所以b >0.
又因为|a|=2,|b|=3,所以a =-2,b =3. 所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪
⎪⎪⎪⎪⎪-2-13+(3-1)2
=73+4=613.
25.解:(1)18-15+36-48-3=-12(km ),由题意知向南为正,故他在上午出发地点的北边,距出发地点12 km .
答:小张在上午出发地点的北边,距出发地点12 km . (2)18+15+36+48+3=120(km ),共耗油:120×0.3=36(L ). 答:这天上午该货车共耗油36升. 26.解:(1)-1n ×1n +1=-1n +1
n +1
(2)原式=-1+12-12+13-13+14-…-12 017+12 018=-1+12 018=-2 017
2 018.。