基于Mean Shift的视觉目标跟踪算法综述
《2024年基于MeanShift的运动目标跟踪算法研究》范文

《基于Mean Shift的运动目标跟踪算法研究》篇一一、引言运动目标跟踪作为计算机视觉领域的一项重要任务,被广泛应用于视频监控、智能交通、人机交互等众多领域。
在众多的跟踪算法中,Mean Shift算法因其简单、实时性以及在复杂背景下对目标进行有效跟踪的能力,成为了研究的热点。
本文旨在深入探讨基于Mean Shift的运动目标跟踪算法,并对其性能进行分析与评价。
二、Mean Shift算法概述Mean Shift算法是一种基于核密度估计的迭代算法,通过计算当前帧中目标区域的均值偏移向量,将目标模型与当前帧中的候选区域进行匹配,从而实现目标的跟踪。
该算法具有计算简单、实时性高、对光照变化和部分遮挡具有一定的鲁棒性等优点。
三、Mean Shift算法的原理与步骤Mean Shift算法的原理在于通过迭代计算均值偏移向量,使目标模型与当前帧中的候选区域之间的差异最小化,从而达到跟踪的目的。
其具体步骤如下:1. 初始化:选择视频中的某一帧作为参考帧,并从中提取出目标区域的特征。
这些特征可以是颜色直方图、形状特征等。
2. 匹配:在后续的每一帧中,通过计算目标区域与候选区域的相似度,找出最匹配的候选区域作为当前帧的目标位置。
3. 迭代更新:利用Mean Shift算法计算均值偏移向量,对目标位置进行迭代更新,直至满足收敛条件或达到最大迭代次数。
4. 输出:将更新后的目标位置输出,作为下一帧的参考点,继续进行跟踪。
四、基于Mean Shift的运动目标跟踪算法研究基于Mean Shift的运动目标跟踪算法在应用中表现出了一定的优势,但也存在一些挑战和问题。
例如,在复杂背景下如何准确提取目标特征、如何处理目标遮挡和形变等问题。
针对这些问题,本文进行了如下研究:1. 特征提取:针对不同场景和目标,选择合适的特征提取方法,如颜色直方图、纹理特征等,以提高目标与背景的区分度。
2. 模型更新:为了适应目标的形变和光照变化等问题,需要对目标模型进行实时更新。
基于mean_shift算法的目标跟踪方法

收稿日期 :2005211230 基金项目 : 国家自然科学基金资助 ( 60572023) 作者简介 : 叶 佳 (19822) ,女 ,硕士研究生 ,研究方向为信号处理及应用 ,queenafly @163. com ; 张建秋 (19622) ,男 ,教授 ,博士生导师 ,IEEE 高级会员 ,研究方向为信息处理理论及其在测量和仪器 、 新型传感器 、 控制和通信中的应用 ,jqzhang01 @f udan. edu. cn.
1
2 Mean2shif t 算法
2. 1 密度估计
n x x i ∈S h ( x)
∑[x
2
i
- x] =
1
nx x i ∈S h ( x)
∑x
i
- x ( 5)
同样 , 式 ( 4) 也可以被写为 :
^
密度估计 就是从一组未知概率密度分布的观 测值中估计出其满足的概率密度分布 1 通常有两种 方法 : 参量法和非参量法 1 参量法是假设数据点是 由我们已知的分布 ( 譬如高斯分布) 产生的 , 然后由 已知分布去近似要求分布 ; 而非参量法则是按照实 际情况找出数据点的分布 , 而不在已知各分布中找 与其相近的分布 ,这样估计出来的概率密度分布更 加准确 1 非参量密度估计的方法有很多 , 比如直方 图法 ,最邻近法 , 核密度估计 [ 9 ] 等等 , 其中核密度估 计是应用最为广泛的技术 , 下面给出核密度估计的 式子 . 在 d 维 欧 式 空 间 R d 中 给 定 n 个 数 据 点
预测数据关联以及状态更新1在线性条件下预测以及状态更新都可以由卡尔曼滤波器来完成所以问题的关键在于如何对观测数据进行有效关联1目前的数据关联算法有基于每个目标在每个时刻至多只能产生一个测量值假设的最邻近数据关联法nnda概率数据关联法pdaf联合概率数据关联jpda以及基于每一个测量值都以一定的概率来自每一个目标假设概率的多假设法pmht但前者通常只能就这个观测值是否属于目标作出硬判决在目标密度较大时容易跟错目标而后者通过em算法能在目标值与测量值之间利用后验概率关联做出软判断是一种优于一般的数据关联方法但是计算量比较大1本文将mean2shift的方法应用于数据关联跳出传统的思维框架首次利用概率密度分布的概念来区分服从不同参数分布的数据从整体上对观测数据进行整合分类并结合最邻近法对分类好的数据进行一次性数据关联即可将源于目标的观测值与杂波分开计算速度快而且可以达到em算法相当的效果在杂波密度较大的情况下尤其适用1多目标跟踪问题的描述假设有个目标的状态和测量方程如下
基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究指导教师:摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。
首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。
实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。
关键词:显著图目标跟踪Mean ShiftMean Shift Tracking Based on Saliency MapAbstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability.1 引言Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。
《2024年基于MeanShift的运动目标跟踪算法研究》范文

《基于Mean Shift的运动目标跟踪算法研究》篇一一、引言随着计算机视觉技术的不断发展,运动目标跟踪作为计算机视觉领域的一个重要研究方向,已经得到了广泛的关注和应用。
Mean Shift算法作为一种经典的跟踪算法,在目标跟踪领域具有广泛的应用前景。
本文旨在研究基于Mean Shift的运动目标跟踪算法,分析其原理、优势及不足,并探讨其在实际应用中的优化策略。
二、Mean Shift算法原理Mean Shift算法是一种基于概率密度的迭代算法,其基本思想是通过不断移动目标的质心位置,使得目标模型与场景模型之间的概率密度差异最小化,从而实现目标的跟踪。
具体而言,Mean Shift算法首先通过计算目标模型的颜色直方图和场景中每个像素的颜色直方图之间的相似度,确定目标在场景中的位置。
然后,根据当前位置附近的像素点进行加权平均,得到一个新的位置作为下一次迭代的起点。
通过多次迭代,最终得到目标在场景中的准确位置。
三、基于Mean Shift的运动目标跟踪算法基于Mean Shift的运动目标跟踪算法主要利用Mean Shift算法的原理,通过在视频序列中不断更新目标的位置和大小,实现对运动目标的跟踪。
具体而言,该算法首先在视频序列中选取一个初始的目标区域,并计算该区域的颜色直方图作为目标模型。
然后,在后续的视频帧中,通过计算每个像素点与目标模型之间的相似度,确定目标在当前帧中的位置。
接着,根据目标的形状和大小对目标区域进行适当的缩放和调整,得到更加准确的跟踪结果。
最后,将当前帧的目标位置作为下一次迭代的起点,继续进行跟踪。
四、算法优势及不足基于Mean Shift的运动目标跟踪算法具有以下优势:1. 算法简单易懂,实现起来较为容易;2. 适用于多种类型的运动目标,具有较强的通用性;3. 可以实现对目标的实时跟踪,具有较高的实时性。
然而,该算法也存在一些不足之处:1. 对目标的形状和大小变化较为敏感,当目标发生形状或大小变化时,可能会导致跟踪失败;2. 当目标周围存在与目标颜色相似的干扰物时,可能会产生误判或丢失目标;3. 对于复杂的场景和动态的背景环境,该算法的鲁棒性有待提高。
目标跟踪meanshift算法综述均值漂移

Mean Shift 概述Mean Shift 简介Mean Shift 这个概念最早是由Fukunaga 等人[1]于1975年在一篇关于概率密度梯度函数的估计中提出来的,其最初含义正如其名,就是偏移的均值向量,在这里Mean Shift 是一个名词,它指代的是一个向量,但随着Mean Shift 理论的发展,Mean Shift 的含义也发生了变化,如果我们说Mean Shift 算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.然而在以后的很长一段时间内Mean Shift 并没有引起人们的注意,直到20年以后,也就是1995年,另外一篇关于Mean Shift 的重要文献[2]才发表.在这篇重要的文献中,Yizong Cheng 对基本的Mean Shift 算法在以下两个方面做了推广,首先Yizong Cheng 定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同,其次Yizong Cheng 还设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了Mean Shift 的适用范围.另外Yizong Cheng 指出了Mean Shift 可能应用的领域,并给出了具体的例子.Comaniciu 等人[3][4]把Mean Shift 成功的运用的特征空间的分析,在图像平滑和图像分割中Mean Shift 都得到了很好的应用. Comaniciu 等在文章中证明了,Mean Shift 算法在满足一定条件下,一定可以收敛到最近的一个概率密度函数的稳态点,因此Mean Shift 算法可以用来检测概率密度函数中存在的模态.Comaniciu 等人[5]还把非刚体的跟踪问题近似为一个Mean Shift 最优化问题,使得跟踪可以实时的进行.在后面的几节,本文将详细的说明Mean Shift 的基本思想及其扩展,其背后的物理含义,以及算法步骤,并给出理论证明.最后本文还将给出Mean Shift 在聚类,图像平滑,图像分割,物体实时跟踪这几个方面的具体应用.Mean Shift 的基本思想及其扩展基本Mean Shift给定d 维空间dR 中的n 个样本点i x ,i=1,…,n,在x 点的Mean Shift 向量的基本形式定义为:()()1i hh i x S M x x x k ∈≡-∑ (1)其中,h S 是一个半径为h 的高维球区域,满足以下关系的y 点的集合,()()(){}2:Th S x y y x y x h ≡--≤ (2)k 表示在这n 个样本点i x 中,有k 个点落入h S 区域中.我们可以看到()i x x -是样本点i x 相对于点x 的偏移向量,(1)式定义的Mean Shift 向量()h M x 就是对落入区域h S 中的k 个样本点相对于点x 的偏移向量求和然后再平均.从直观上看,如果样本点i x 从一个概率密度函数()f x 中采样得到,由于非零的概率密度梯度指向概率密度增加最大的方向,因此从平均上来说, h S 区域内的样本点更多的落在沿着概率密度梯度的方向.因此,对应的, Mean Shift 向量()h M x 应该指向概率密度梯度的方向.图1,Mean Shift 示意图如上图所示, 大圆圈所圈定的范围就是h S ,小圆圈代表落入h S 区域内的样本点i h x S ∈,黑点就是Mean Shift 的基准点x ,箭头表示样本点相对于基准点x 的偏移向量,很明显的,我们可以看出,平均的偏移向量()h M x 会指向样本分布最多的区域,也就是概率密度函数的梯度方向.扩展的Mean Shift核函数首先我们引进核函数的概念.定义:X 代表一个d 维的欧氏空间,x 是该空间中的一个点,用一列向量表示. x 的模2T x x x =.R 表示实数域.如果一个函数:K X R →存在一个剖面函数[]:0,k R ∞→,即()2()K x k x=(3) 并且满足:(1)k是非负的.(2)k是非增的,即如果a b<那么()()k a k b≥.(3)k是分段连续的,并且()k r dr∞<∞⎰那么,函数()K x就被称为核函数.举例:在Mean Shift中,有两类核函数经常用到,他们分别是,单位均匀核函数:1 if 1()0 if 1xF xx⎧<⎪=⎨≥⎪⎩(4) 单位高斯核函数:2()xN x e-=(5) 这两类核函数如下图所示.图2, (a) 单位均匀核函数(b) 单位高斯核函数一个核函数可以与一个均匀核函数相乘而截尾,如一个截尾的高斯核函数为,()2 if()0 ifxe xN F xxββλλλ-⎧<⎪=⎨≥⎪⎩(6) 图3 显示了不同的,βλ值所对应的截尾高斯核函数的示意图.图3 截尾高斯核函数(a) 11N F(b) 0.11N FMean Shift 扩展形式从(1)式我们可以看出,只要是落入h S 的采样点,无论其离x 远近,对最终的()h M x 计算的贡献是一样的,然而我们知道,一般的说来,离x 越近的采样点对估计x 周围的统计特性越有效,因此我们引进核函数的概念,在计算()h M x 时可以考虑距离的影响;同时我们也可以认为在这所有的样本点i x 中,重要性并不一样,因此我们对每个样本都引入一个权重系数.如此以来我们就可以把基本的Mean Shift 形式扩展为:()11()()()()()nHi i i i nHi i i Gx x w x x x M x Gx x w x ==--≡-∑∑ (7)其中: ()()1/21/2()H i i G x x HG H x x ---=-()G x 是一个单位核函数H 是一个正定的对称d d ⨯矩阵,我们一般称之为带宽矩阵()0i w x ≥是一个赋给采样点i x 的权重在实际应用的过程中,带宽矩阵H 一般被限定为一个对角矩阵221diag ,...,d H h h ⎡⎤=⎣⎦,甚至更简单的被取为正比于单位矩阵,即2H h I =.由于后一形式只需要确定一个系数h ,在Mean Shift 中常常被采用,在本文的后面部分我们也采用这种形式,因此(7)式又可以被写为:()11()()()()()ni i i i h ni i i x xG w x x x hM x x x G w x h ==--≡-∑∑ (8)我们可以看到,如果对所有的采样点i x 满足(1)()1i w x =(2) 1 if 1()0 if 1 x G x x ⎧<⎪=⎨≥⎪⎩则(8)式完全退化为(1)式,也就是说,我们所给出的扩展的Mean Shift 形式在某些情况下会退化为最基本的Mean Shift 形式.Mean Shift 的物理含义正如上一节直观性的指出,Mean Shift 指向概率密度梯度方向,这一节将证明Mean Shift 向量()h M x 是归一化的概率密度梯度.在本节我们还给出了迭代Mean Shift 算法的详细描述,并证明,该算法会收敛到概率密度函数的一个稳态点.概率密度梯度对一个概率密度函数()f x ,已知d 维空间中n 个采样点i x ,i=1,…,n, ()f x 的核函数估计(也称为Parzen 窗估计)为,11()ˆ()()ni i i n di i x x K w x h f x h w x ==-⎛⎫ ⎪⎝⎭=∑∑ (9)其中()0i w x ≥是一个赋给采样点i x 的权重()K x 是一个核函数,并且满足()1k x dx =⎰我们另外定义: 核函数()K x 的剖面函数()k x ,使得()2()K x kx=(10);()k x 的负导函数()g x ,即'()()g x k x =-,其对应的核函数()2()G x g x= (11)概率密度函数()f x 的梯度()f x ∇的估计为:()2'1212()ˆˆ()()()ni i i i nd i i x x x x k w x h f x f x h w x =+=⎛⎫--⎪ ⎪⎝⎭∇=∇=∑∑(12)由上面的定义, '()()g x k x =-,()2()G x gx=,上式可以重写为()()21212112112()ˆ()()()()2 ()()nii i i nd i i n i n i i i i i i n d n i i i i i x xx x G w x h f x h w x x x x x x x G w x G w x h h x x h h w x G w x h =+=====⎛⎫-- ⎪ ⎪⎝⎭∇=⎡⎤⎛⎫-⎡-⎤⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎢⎥=⎢⎥-⎛⎫⎢⎥⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎣⎦∑∑∑∑∑∑ (13)上式右边的第二个中括号内的那一部分就是(8)式定义的Mean Shift 向量,第一个中括号内的那一部分是以()G x 为核函数对概率密度函数()f x 的估计,我们记做ˆ()Gf x ,而(9)式定义的ˆ()f x 我们重新记做ˆ()Kf x ,因此(11)式可以重新写为: ˆ()f x ∇=ˆ()K f x ∇=()22ˆ()Gh f x M x h(14)由(12)式我们可以得出,()2ˆ()1ˆ2()Kh G f x M x h f x ∇= (15)(15)式表明,用核函数G 在x 点计算得到的Mean Shift 向量()h M x 正比于归一化的用核函数K 估计的概率密度的函数ˆ()Kf x 的梯度,归一化因子为用核函数G 估计的x 点的概率密度.因此Mean Shift 向量()h M x 总是指向概率密度增加最大的方向.Mean Shift 算法 算法步骤我们在前面已经指出,我们在提及Mean Shift 向量和Mean Shift 算法的时候指代不同的概念,Mean Shift 向量是名词,指的是一个向量;而Mean Shift 算法是动词,指的是一个迭代的步骤.我们把(8)式的x 提到求和号的外面来,可以得到下式,()11()()()()ni i i i h n i i i x xG w x x hM x x x x G w x h ==-=--∑∑(16)我们把上式右边的第一项记为()h m x ,即11()()()()()ni i i i h n i i i x xG w x x hm x x x G w x h ==-=-∑∑(17)给定一个初始点x ,核函数()G X , 容许误差ε,Mean Shift 算法循环的执行下面三步,直至结束条件满足, (1).计算()h m x(2).把()h m x 赋给x(3).如果()h m x x ε-<,结束循环;若不然,继续执行(1).由(16)式我们知道, ()()h h m x x M x =+,因此上面的步骤也就是不断的沿着概率密度的梯度方向移动,同时步长不仅与梯度的大小有关,也与该点的概率密度有关,在密度大的地方,更接近我们要找的概率密度的峰值,Mean Shift 算法使得移动的步长小一些,相反,在密度小的地方,移动的步长就大一些.在满足一定条件下,Mean Shift 算法一定会收敛到该点附近的峰值,这一收敛性由下面一小节给出证明.算法的收敛性证明我们用{}j y ,1,2,...j =来表示Mean Shift 算法中移动点的痕迹,由(17)式我们可写为,111()()()()ni ji i i j ni j i i x y G w x x hy x y G w x h =+=-=-∑∑, 1,2,...j = (18) 与j y 对应的概率密度函数估计值ˆ()jf y 可表示为, 11()ˆ()()ni j i i K j n di i x y K w x h f y h w x ==-⎛⎫⎪⎝⎭=∑∑ (19)下面的定理将证明序列{}j y 和{}ˆ()jf y 的收敛性. 定理:如果核函数()K x 有一个凸的,单调递增的剖面函数,核函数()G x 由式(10)和(11)定义,则序列{}j y 和{}ˆ()jf y 是收敛的. 证明:由于n 是有限的,核函数()(0)K x K ≤,因此序列{}ˆ()j f y 是有界的,所以我们只需要证明{}ˆ()jf y 是严格递增的的,即要证明,对所有j=1,2,…如果1j j y y +≠,那么ˆ()j f y 1ˆ()j f y +< (20)不失一般性,我们可以假设0j y =,由(19)式和(10)式,我们可以得到1ˆ()j f y +ˆ()j f y -=221111 ()()n i j i ji ni d i i x y x y k k w x h h h w x +==⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑ (21)由于剖面函数()k x 的凸性意味着对所有12,[0,)x x ∈∞且12x x ≠,有'2121()()()()k x k x k x x x ≥+-(22)因为'()()g x k x =-,上式可以写为,2112()()()()k x k x g x x x -≥-(23)结合(21)与(23)式,可以得到,1ˆ()j f y +ˆ()jf y -222111211()()ni j i j i i n i d i i x y g x y x w x h h w x ++=+=⎛⎫-⎡⎤⎪≥--⎢⎥⎣⎦ ⎪⎝⎭∑∑221111211 2()()ni j T j i j i n i d i i x y g y x y w x h h w x +++=+=⎛⎫-⎡⎤⎪=-⎢⎥⎣⎦ ⎪⎝⎭∑∑12221211112()()()j n nT ii i i j i n d i i i i x x y x g w x y g w x h h h w x +++===⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∑∑∑(24)由(18)式我们可以得出,1ˆ()j f y +ˆ()jf y -2211211()n ij n i d i i x y g hhw x +=+=⎛⎫≥ ⎪ ⎪⎝⎭∑∑(25)由于剖面函数()k x 是单调递减的,所以求和项210ni i x g h =⎛⎫> ⎪ ⎪⎝⎭∑,因此,只要10j j y y +≠= (25)式的右边项严格大于零,即1ˆ()j f y +ˆ()jf y >.由此可证得,序列{}ˆ()j f y 收敛 为了证明序列{}j y 的收敛性,对于0j y ≠,(25)式可以写为1ˆ()j f y +ˆ()jf y -2211211()ni j j jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪≥- ⎪⎝⎭∑∑(26) 现在对于标号j,j+1,…,j+m -1,对(26)式的左右两边分别求和,得到 ˆ()j m f y +ˆ()jf y -22111211...()ni j m j m j m ni d i i x y y y g h h w x +-++-=+=⎛⎫- ⎪≥-+ ⎪⎝⎭∑∑2211211()ni jj jn i d i i x y y y g hhw x +=+=⎛⎫- ⎪+- ⎪⎝⎭∑∑2211211...()j m j m j jndiiy y y y Mh w x++--+=⎡⎤≥-++-⎢⎥⎣⎦∑2211()j m jndiiy y Mh w x++=≥-∑(27)其中M表示对应序列{}j y的所有求和项21n i jix ygh=⎛⎫-⎪⎪⎝⎭∑的最小值.由于{}ˆ()jf y收敛,它是一个Cauchy序列,(27)式意味着{}j y也是一个Cauchy序列,因此,序列{}j y收敛.Mean Shift的应用从前面关于Mean Shift和概率密度梯度的关系的论述,我们可以清楚的看到,Mean Shift 算法本质上是一个自适应的梯度上升搜索峰值的方法,如下图所示,如果数据集{},1,...ix i n=服从概率密度函数f(x),给定一个如图初始点x,Mean Shift算法就会一步步的移动,最终收敛到第一个峰值点.从这张图上,我们可以看到Mean Shift至少有如下三方面的应用:(1)聚类,数据集{},1,...ix i n=中的每一点都可以作为初始点,分别执行Mean Shift算法,收敛到同一个点算作一类;(2)模态的检测,概率密度函数中的一个峰值就是一个模态,Mean Shift 在峰值处收敛,自然可以找到该模态.(3)最优化,Mean Shift可以找到峰值,自然可以作为最优化的方法,Mean Shift算法进行最优化的关键是要把最优化的目标转化成Mean Shift隐含估计的概率密度函数.图4.Mean Shift算法示意图Mean Shift算法在许多领域获得了非常成功的应用,下面简要的介绍一下其在图像平滑,图像分割以及物体跟踪中的应用,一来说明其强大的生命力,二来使对上文描述的算法有一个直观的了解.图像平滑与分割一幅图像可以表示成一个二维网格点上p 维向量,每一个网格点代表一个象素,1p =表示这是一个灰度图,3p =表示彩色图,3p >表示一个多谱图,网格点的坐标表示图像的空间信息.我们统一考虑图像的空间信息和色彩(或灰度等)信息,组成一个2p +维的向量(,)s r x x x =,其中s x 表示网格点的坐标,r x 表示该网格点上p 维向量特征.我们用核函数,s r h h K 来估计x 的分布, ,s r h h K 具有如下形式,22,2s rs r h h p s r sr C x x K k k h h h h ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎝⎭ (28)其中,s r h h 控制着平滑的解析度,C 是一个归一化常数.我们分别用i x 和i z ,i =1,…,n 表示原始和平滑后的图像.用Mean Shift 算法进行图像平滑的具体步骤如下, 对每一个象素点, 1,初始化1j =,并且使,1i i y x =2,运用Mean Shift 算法计算,1i j y +,直到收敛.记收敛后的值为,i c y3.赋值(),,s r i i i c z x y =图5是原始图像,图中40⨯20白框区域被选中来更好的显示基于Mean Shift 的图像平滑步骤,图6显示了这一区域的平滑步骤,x, y 表示这一区域内的象素点的坐标,图6(a)在一个三维空间显示了各个象素点的灰度值,图6(b)显示各点的移动痕迹,黑点是最终收敛值,图6(c)显示了平滑后的各象素点的灰度值,图6(d)是继续分割后的结果.图5.原始图像图6.(a)原始图像的各象素点灰度值.(b)各象素点的Mean Shift移动路径.(c)平滑后的各象素点的灰度值.(d)分割后的结果图7显示了图5经过平滑后的结果,我们可以看到,草地上的草地纹理被平滑掉了,而图像中边缘仍然很好的保持着..图7平滑后的结果h h是非常重要的参数,人们可以根据解析度的在基于Mean Shift的图像平滑中,式(28)中的,s rh h会对最终的平滑结果有一定的影响,图7显示了这两个参数对平要求而直接给定,不同,s rh影响更大一些.滑结果的影响,我们可以看出,s图8,原始图和平滑后的图基于Mean Shift的图像分割与图像平滑非常类似,只需要把收敛到同一点的起始点归为一类,然后把这一类的标号赋给这些起始点,在图像分割中有时还需要把包含象素点太少类去掉,图6(d)显示分割后的灰度值.图8,显示了图5经过分隔后的结果图8,分割后的结果物体跟踪我们用一个物体的灰度或色彩分布来描述这个物体,假设物体中心位于0x ,则该物体可以表示为()21ˆi i s ns u i x xqC k b x u h δ=⎛⎫- ⎪⎡⎤=-⎣⎦ ⎪⎝⎭∑(29)候选的位于y 的物体可以描述为()21ˆ()hn s s i u h i i x ypy C k b x u h δ=⎛⎫-⎡⎤ ⎪=-⎣⎦ ⎪⎝⎭∑(30)因此物体跟踪可以简化为寻找最优的y ,使得ˆ()u py 与ˆu q 最相似. ˆ()u py 与ˆu q 的最相似性用Bhattacharrya 系数ˆ()y ρ来度量分布,即 []ˆ()(),mu y p y q ρρ=≡= (31)式(31)在ˆu p()0ˆy 点泰勒展开可得,[]1111(),(22m mu u u p y q p y ρ==≈∑(32)把式(30)带入式,整理可得,[]2111(),22mnhii u i C y x p y q w k h ρ==⎛⎫-≈ ⎪ ⎪⎝⎭∑ (33)其中,1[()mi i u w b x u δ==-∑对式(33)右边的第二项,我们可以利用Mean Shift 算法进行最优化.在Comaniciu 等人的文章中,他们只用平均每帧图像只用4.19次Mean Shift 迭代就可以收敛,他们的结果很显示在600MHz 的PC 机上,他们的程序可以每秒处理30帧352⨯240象素的图像.下图显示了各帧需要的Mean Shift 迭代次数.图9,各帧需要的Mean Shift迭代次数下图显示了Comaniciu等人的跟踪结果图10,基于Mean Shift的物体跟踪结果结论本文回顾了Mean Shift的发展历史,介绍了它的基本思想,给出了具体的算法步骤,详细证明了它与梯度上升搜索法的联系,并给出Mean Shift算法的收敛性证明,最后给出了Mean Shift在图像平滑,图像分割以及实时物体跟踪中的具体应用,显示Mean Shift强大的生命力.参考文献[1]The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition (1975)[2]Mean shift, mode seeking, and clustering (1995)[3]Mean Shift: a robust approach toward feature space analysis (2002)[4]Real-time tracking of non-rigid objects using mean shift (2000)[5]Mean-shift Blob Tracking through Scale Space (2003)[6]An algorithm for data-driven bandwidth selection(2003)。
基于MeanShift的目标跟踪算法精编

一、绪论(一)课题研究背景及意义视觉系统是人类获取外界信息的最主要途径,但是人类的精力、视野等会受到环境很大的限制,人类自身的视觉系统已经不能满足人类的需求。
随着计算机技术的快速发展,利用计算机处理视觉信息、弥补人类视觉缺憾受到越来越广泛的关注,计算机视觉研究应运而生。
计算机视觉是融合了图形图像处理、计算机、模式识别、人工智能、数学、物理学、计算机图形学等众多学科的交叉性学科。
计算机视觉主要用来对环境中的物体的几何信息——物体的位置、形状、运动等,进行感知、描述、存储和理解。
运动目标跟踪技术在当今社会发挥着越来越显著的作用。
在生活领域,运动目标跟踪可以帮助人类及时、准确地处理异常情况;在军事领域,运动目标跟踪可以提高攻击的准确度,从而提高军事作战能力。
总之,目标跟踪技术的日益成熟对人类社会生活的日益发展有着不可或缺的作用,人类对目标跟踪技术的发展与研究也越来越关注。
(二)国内外研究现状目标跟踪逐渐受到人们的关注与计算机技术的发展是密不可分的。
上世纪80年代之前,由于计算机技术发展不成熟,使得计算机对图形图像的处理和分析主要以静态的为主,而对于动态图形图像的分析、处理、跟踪则带有很强的静态图形图像分析的特点。
动态图形图像序列的分析研究进入一个崭新的阶段则是在光流法被提出之后。
一直到二十世纪90年代中期,光流法一直是人们研究的热点,但由于光流法所需的运算量太大,不能很好地达到实时性的要求,同时,光流法采用假设,这就造成了光流法的局限性,使得光流法对噪声很敏感,很容易产生错误的结果。
在二十世纪80年代后期又相继出现了其他的跟踪算法,主要有Micheal Isare 和Andrew Black 在1998年提出的Condensation算法[1],这是第一次在视频序列目标跟踪中应用粒子滤波的思想;Comaniciu等在2003年提出的Mean Shift 跟踪框架,这种算法计算复杂程度低,理论较严谨,对目标的遮挡、尺寸的变化、外表的变化具有一定的自适应能力。
《2024年基于MeanShift的运动目标跟踪算法研究》范文

《基于Mean Shift的运动目标跟踪算法研究》篇一一、引言随着计算机视觉技术的快速发展,运动目标跟踪作为计算机视觉领域的一个重要研究方向,已经得到了广泛的应用。
Mean Shift算法作为一种有效的跟踪算法,其优点在于对光照变化、目标部分遮挡等情况具有较强的鲁棒性。
本文将详细研究基于Mean Shift的运动目标跟踪算法,探讨其原理、应用及优缺点。
二、Mean Shift算法原理Mean Shift算法是一种基于概率密度的迭代优化算法,其基本思想是通过迭代计算目标模型在特征空间中的均值偏移向量,将目标模型逐渐移动到最匹配的图像位置。
具体来说,Mean Shift 算法通过计算每个像素的权重和位移向量,得到目标区域的中心位置和运动轨迹,从而实现对目标的跟踪。
三、运动目标跟踪算法基于Mean Shift的运动目标跟踪算法主要包含以下几个步骤:初始化目标区域、建立目标模型、寻找最优匹配位置、更新目标区域和输出结果。
首先,需要在初始帧中手动或自动选取目标区域,并提取该区域的特征信息。
然后,根据这些特征信息建立目标模型,用于后续的匹配和跟踪。
在后续帧中,通过计算每个像素的权重和位移向量,寻找与目标模型最匹配的位置,从而实现对目标的跟踪。
当目标发生运动时,根据其运动轨迹更新目标区域,并继续进行下一帧的跟踪。
四、算法应用基于Mean Shift的运动目标跟踪算法广泛应用于智能监控、智能交通、人机交互等领域。
在智能监控中,可以实现对特定人员的实时追踪和监控;在智能交通中,可以实现对车辆的追踪和识别;在人机关互中,则可实现对人机交互中人物的追踪和识别等。
这些应用都充分体现了Mean Shift算法在运动目标跟踪中的优势。
五、算法优缺点分析优点:1. 简单高效:Mean Shift算法具有较高的跟踪效率,能快速实现对目标的跟踪。
2. 鲁棒性强:Mean Shift算法对光照变化、部分遮挡等干扰因素具有较强的鲁棒性。
《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪是计算机视觉领域中的一个重要研究方向,其核心在于通过图像序列分析,实现对特定目标的定位与追踪。
随着深度学习、人工智能等技术的飞速发展,目标跟踪算法在军事、安防、自动驾驶、医疗等多个领域均展现出其巨大应用潜力。
本文将对目标跟踪算法进行全面综述,包括其基本原理、研究现状以及未来发展等方面。
二、目标跟踪算法的基本原理目标跟踪算法的基本原理主要依赖于图像序列中的特征提取与匹配。
其基本步骤包括:初始化目标位置、特征提取、特征匹配与更新、目标位置预测等。
首先,在视频序列的初始帧中确定目标的位置;然后,通过提取目标的特征信息,如颜色、形状、纹理等;接着,利用这些特征信息在后续帧中进行匹配,以实现目标的跟踪;最后,根据匹配结果进行目标位置的预测与更新。
三、目标跟踪算法的研究现状(一)传统目标跟踪算法传统目标跟踪算法主要包括基于特征的方法、基于模型的方法和基于滤波的方法等。
其中,基于特征的方法主要通过提取目标的局部特征进行匹配;基于模型的方法则是通过建立目标的模型进行跟踪;基于滤波的方法则利用滤波器对目标进行预测与跟踪。
这些方法在特定场景下具有一定的有效性,但在复杂场景下往往难以取得理想的跟踪效果。
(二)深度学习在目标跟踪中的应用随着深度学习技术的发展,其在目标跟踪领域的应用也日益广泛。
深度学习能够自动提取目标的深层特征,提高跟踪的准确性与鲁棒性。
基于深度学习的目标跟踪算法主要包括基于孪生网络的方法、基于相关滤波与深度学习的结合方法等。
这些方法在复杂场景下取得了较好的跟踪效果。
四、常见的目标跟踪算法及其优缺点(一)基于相关滤波的跟踪算法该类算法利用相关滤波技术对目标进行跟踪,具有较高的计算效率。
但其缺点是对于复杂场景的适应性较差,容易受到光照变化、形变等因素的影响。
(二)基于深度学习的跟踪算法该类算法通过深度学习技术自动提取目标的特征信息,具有较高的准确性。
但其计算复杂度较高,对硬件设备要求较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, r o e r t i e s A b s t r a c t e a n s h i f t b a s e d v i s u a l t r a c k i n a l o r i t h m s h a v e s e v e r a l d e s i r a b l e s u c h a s c o m u t a t i o n a l e f f i c i e n M - - p p g g p , , , c f e w t u n i n a r a m e t e r s r e l a t i v e l h i h r o b u s t n e s s i n e r f o r m a n c e a n d s t r a i h t f o r w a r d i m l e m e n t a t i o n w h i c h m a k e y g p y g p g p , t h e m t o b e c o m e a n a e a l i n t o i c i n v i s u a l t r a c k i n r e s e a r c h a r e a . F i r s t l o r i i n a l m e a n s h i f t t r a c k i n a l o r i t h m w a s p p g p g y g g g i n t r o d u c e d o i n t e d a n d i t s d e f e c t s w e r e o u t a f t e r w a r d s . T h e n i m r o v e m e n t s o f t h e o r i i n a l a l o r i t h m w e r e e l a b o r a t e l p p g g y , , f r o m f i v e a s e c t s n a m e l e n e r a t i v e a n d d i s c r i m i n a t i v e o b e c t a e a r a n c e m o d e l m o d e l u d a t e m e c h a n i s m, d i s c u s s e d p y g j p p p , s c a l e a n d o r i e n t a t i o n a d a t a t i o n a n t i o c c l u s i o n a n d f a s t m o v i n o b e c t t r a c k i n . B o t h c l a s s i c a l a l o r i t h m s a n d r e c e n t a d - - p g j g g , v a n c e s a r e i n c l u d e d i n e a c h a s e c t . F i n a l l t h e o f m e a n s h i f t b a s e d t r a c k i n w e r e r o s e c t s r e s e n t e d . - p y g p p p , , K e w o r d s i s u a l t r a c k i n M e a n s h i f t O b e c t a e a r a n c e m o d e l V g j p p y 对经典文献和最近的研 S h i f t跟踪算法的若干改进方向 出 发 , 究成果进 行 全 面 综 述 与 分 析 。 本 文 第 2 节 简 要 概 述 M e a n 并指出该框架存在 S h i f t理论与基于 M e a n S h i f t的跟踪框架 , 的缺陷 ; 第3节至第7节从5个不同改进方向对 M e a n S h i f t 跟踪进行详细介绍与评述, 它们分别是基于生成模型与鉴别 模型的目标表达方法 、 目标模型的更新策略 、 目标尺度及方 向 的估计、 基于轨迹预测与目标分块的抗遮挡跟踪算法和快速 运动目标跟踪等 ; 最后总 结 全 文 并 展 望 了 今 后 M e a n S h i f t跟 踪的研究方向与发展趋势 。
第3 9卷 第1 2期 2 0 1 2年1 2月
计 算 机 科 学 C o m u t e r c i e n c e S p
V o l . 3 9N o . 1 2 D e c 2 0 1 2
基于 M e a n S h i f t的视觉目标跟踪算法综述
顾幸方 茅耀斌 李秋洁 ( ) 南京理工大学自动化学院 南京 2 1 0 0 9 4
( , , ) S c h o o l o f A u t o m a t i o n N a n i n U n i v e r s i t o f S c i e n c e a n d T e c h n o l o N a n i n 2 1 0 0 9 4, C h i n a j g y g y j g
S u r v e o n V i s u a l T r a c k ie d o n M e a n S h i f t y g g
GU X i n f a n Y a o b i n I Q i u i e - MAO - L - g g j