北京科技大学2007-2008学年第一学期高等数学AI期中试卷
07级高等数学AI2008年1月(有答案)

07级高等数学AI2008年1月(有答案)高等数学AI 2022年.1.21一、填空题(每空3分,共18分) 1.函数y2x arcsinx的自然定义域为。
2.x 2是函数yx 3x 2x 22的第类间断点。
3.设f(x) x(x 1)(x 2) (x 2022年),则f'(0) 。
4.若exf(x) 2x2 3x c。
则f(x) 。
5.由xoy坐标面上的曲线5x2 3y2 8绕y轴旋转一周所成的旋转曲面的方程为6.已知向量a i k,b 2i 3j,则a b 。
二、计算题(每小题6分,共36分) 1.limn[ln(n 1) lnn] 2.limnsinx __tanx2x 03.试讨论函数f(x) sinx在x 0处的可导性。
tx 3e4.求曲线,在t 0相应的点处的切线和法线方程。
ty 2e5.设函数y y(x)由方程ex y cosy 0所确定,求dydx。
6.确定函数y 3x4 4x3 1的单调区间及该函数图形的拐点。
三、计算积分(每小题6分,共18分) 1.ee2xx4dx 2.41ln__3.50x 8x 16dx2四、解答题(每小题7分,共14分)21.求曲线y x 1、x轴及直线x 2三者所围成平面图形绕x轴旋转而成的旋转体体积。
2.求过点A(2,0, 3)且与直线l:x 2y 4z 7 0 3x 5y 2z 1 0垂直的平面方程。
五、证明与综合题(每小题7分,共14分) 1.设f(x)为区间[a,b]上的正值连续函数,F(x)xaf(t)dtxbdtf(t),x [a,b]证明:方程F(x) 0在区间(a,b)内有且仅有一个根。
x x22.已知函数f(x)sint,(x R),(1) 证明:对任意的x R,有f(x ) f(x);(2)试求函数f(x)在R上的最大值。
答案:一、1. 1 x122. 第一类间断点3. -2022年!4. e x(4x 3)5. 5(x2 z2) 3y2 86. 2二、计算题(每小题6分,共36分) 1.limn[ln(n 1) lnn] limln(1nn12.limsinx __tanx2x 0= limsinx __ x2x 0=limncosx 13x2) lne 1nx 0=163.试讨论函数f(x) sinx在x 0处的可导性。
北京科技大学2009-2010学年度第1学期高等数学A试题及答案

北京科技大学2009--2010学年第一学期高 等 数 学A(I) 试卷(A 卷)院(系) 班级 学号 姓名 考场说明: 1、要求正确地写出主要计算或推导过程, 过程有错或只写答案者不得分; 2、考场、学院、班、学号、姓名均需写全, 不写全的试卷为废卷; 3、涂改学号及姓名的试卷为废卷;4、请在试卷上答题,在其它纸张上的解答一律无效.一、填空题(本题共15分,每小题3分)1.设方程y x y =确定y 是x 函数,则d y = .2.设曲线()n f x x =在点(1,1)处的切线与x 轴的交点为(,0)n ξ,则l i m ()n n f ξ→∞= .3.111n n n n -∞=⎛⎫= ⎪⎝⎭∑ .4.设()d arcsin xf x x x C =+⎰,则1d ()x f x =⎰ .5. 2111limnn k nk →∞==∑ .二、选择题(本题共15分,每小题3分)6.设函数21()lim1nn x f x x→∞+=-,讨论函数()f x 的间断点,其结论为( ).()A 不存在间断点 ()B存在间断点是1x=()C存在间断点是0x = ()D存在间断点是1x =-装 订 线 内 不 得 答 题 自觉 遵 守 考 试 规 则,诚 信 考 试,绝 不 作 弊7.设函数561cos 2()sin , ()56x xxf x t dtg x -==+⎰,则当0x →时,()f x 是()g x 的( )()A 低阶无穷小 ()B高阶无穷小()C等价无穷小 ()D同价但不等价的无穷小8.设01,0,()0,0, ()()1,0,x x f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,下列结论正确的是( ).()A ()F x 在0x =处不连续()B ()F x 在(,)-∞+∞内连续,在0x =点不可导()C()F x 在(,)-∞+∞内可导,且()()F x f x '=()D()F x 在(,)-∞+∞内可导,但不一定满足()()F x f x '=9.设函数(),()f x g x 为恒大于0的可导函数,且()()()()0f x g x f x g x ''-<, 则当a x b <<时有( ).()A ()()()()f x g b f b g x < ()B ()()()(f x g a f a g x > ()C()()()()f x g x f b g b >()D ()()()(f x g x f a g a> 10.下列各选项正确的是( ).()A 若级数21nn u ∞=∑与级数21nn v ∞=∑都收敛,则级数21()n n n u v ∞=+∑收敛;()B 若级数1n nn u v ∞=∑收敛,则级数21nn u ∞=∑与21n n v ∞=∑都收敛;()C若正项级数21n n u ∞=∑发散,则1nu n≥;()D若正项级数21nn u ∞=∑收敛,且(1,2,)nn u v n ≥= , 则级数21n n v ∞=∑收敛.三、(本题共63分,每小题7分)11(7分). 设22e sin()xy x y y +=,求(0)y '。
北科高等数学AII 2012-2013 期中试卷

x2 2z 11、设 为平面曲线 绕 z 轴旋转一周形成的曲面与平面 z 8 所围区域,则 y 0
x
2
y 2 dxdydz 的值等于【
(B) 1024
】
一、填空题(每小题 4 分,共 24 分)
3
(A)
2
3
(C)
1024 7
(D)
3 8
】
四、证明题
21、设 f x, y在单位圆域上有连续偏导数,且在边界上取值为零,证明:
sin x
(A) (C)
0
1
dy sin x f x, y dx
dy
arcsin x
(B)
dy
0 1
1
f x, y dx
0
f x, y dx
(D)
1 2
.
(C)
zdxdydz 4 zdxdydz.
1 2
(D)
xyzdxdydz 4 xyzdxdydz.
1 2
1/2
机翔学习中心
15、设函数 f x, y 连续,则二次积分
1
dx
2
1
f x, y dy 等于【
arcsin y
2
x yf x y f (B) yf1 2xf 11 22 12
2 2
3、 设 f x, y具有一阶连续偏导数,且 u f xy, yz ,则 du
. .
2 2 x 3 yf 2 (C) xf 2 2 xy 3 f1 1 2 x y f1 2
07-08(1)高数I(A)参考答案

2007-2008学年第一学期2007级电气、电子、工程管理、机制、教技、土木工程、计算机、农机、网络工程、物理专业高等数学Ⅰ 试卷A 参考答案一、填空题(填对每空得2分,填错或不填每空得0分,计20分) 1.982442424++++x x x x .2.3-e.3. 3 . 4. 3 . 5. ( 0 ,-1 ). 6.21.7.0144=++y x .8.51.9. 0 . 10.14.二、选择题(选对每题得2分,不选、选错或多选每题得0分,计10分) 1.( D ) 2.( B ) 3.( C ) 4.( A ) 5.( B )三、计算题(每小题5分,计20分)1.解: xx x x x x x x sin )sin 21(1lim sin 2cos 1lim 200--=-→→…………………………2分xx xx sin sin 2lim 20→= …………………………………3分 x xx sin 2lim0→=..........................................4分 2=. (5)分2.解:应用洛必达法则得xxx xtd t t x xx 2arctan limarctan lim20-=∞-→∞-→⎰………………………3分x x a r c t a nlim 21∞-→-= ………………………4分 4)2(21ππ=-⨯-=. ………………………5分3.解: ⎰dx xx2sin ⎰-=x xd cot ……………………………………1分 ⎰+-=xdx x x cot cot , …………………………2分 ⎰+-=dx x x x x sin cos cot ……………………………3分 ⎰+-=x d x x x s i n s i n1c o t ………………………4分c x x x ++-=|s i n |ln cot .………………………5分4.解: ⎰-+1021xx dx ⎰+=20cos sin cos sin πtt tdt tx ……………………………1分⎰++=202)cos (sin )cos (sin cos πt t dt t t t (2)分⎰+++=202sin 112cos 2sin 21πdttt t……………………3分⎰⎪⎭⎫ ⎝⎛++=202sin 12cos 121πdt t t ………………………4分 4)2sin 1ln(212120ππ=⎥⎦⎤⎢⎣⎡++=t t .………………5分四、解答题(每小题5分,计20分) 1.解:)sin ()cos 1(t t ad t ad dxdy --= (1)分ttcos 1sin -=. …………………………………………2分)sin (cos 1sin 22t t ad t t d dxy d -⎪⎭⎫ ⎝⎛-= ………………………………………3分)cos 1()cos 1(sin )cos 1(cos 22t a t t t t ----=……………………………4分23)cos 1(1)cos 1(1cos t a t a t --=--=. …………………5分 2.解: 方程两边同时微分得)()(y x e d xy d += ………………………1分即 )(dy dx e xdy ydx y x +=++ ……………………3分 整理得 ydx dx e dy e xdy y x y x -=-++, …………………4分 从而得 dx ex yedy yx yx ++--=.……………………………5分3.解:令u e x=可得u x ln =,代入已知式得 ……………………………1分 u u f ln )(=', c u u u udu +-=⎰ln ln …………………2分 从而有 0ln )(c u u u u f +-= ……………………………………3分 由0)1(=f 得 10=c ……………………………………………4分 因此 1ln )(+-=x x x x f . ……………………………………5分4.解:设所求平面的法线向量为0),,(≠=C B A n ,两个已知平面的法线向量分别为)4,2,1(,)2,5,3(21-=-=n n, ……………………………………1分则有n n n n⊥⊥21, 即有 ⎩⎨⎧=+-=-+0420253C B A C B A ………………………2分得 A C A B 1611,87-=-=,0≠A ……………………………………3分 所以所求平面的方程为 0)3(161187)2(=+---z A Ay x A ,………4分整理得所求平面的方程为 065111416=---z y x . …………………5分五、证明题(6分×2题=12分) 1.证明:由题设有hx f h x f x f h )()(lim)(0000-+='→,所以…………………1分hx f h x f x f h x f hh x f h x f h h )]()5([)()3(lim)5()3(lim 00000000----+=--+→→……………2分⎥⎦⎤⎢⎣⎡----+=→h x f h x f h x f h x f h )()5()()3(lim 00000…………3分hx f h x f h x f h x f h h 5)()5(lim53)()3(lim3000000---+-+=→→……5分)(8)(5)(3000x f x f x f '='+'=. (6)分2.证:设x x x x f -++=)1ln()1()(,则0)0(=f ,………………………1分 又 )1l n ()(x x f +='. ……………………………………………2分 当0>x 时, 0)(>'x f ,函数单调增加, ……………………3分当01<<-x 时, 0)(<'x f ,函数单调减少.………………………4分 从而,当01≠<-x 时有0)(>x f ,且0)0(=f , ………………………5分因此,当1->x 时,x x x ≥++)1ln()1(. ……………………………6分六、综合应用题(6分×3题=18分)解:由⎩⎨⎧=+-=022y x x y 得两曲线交点为)4,2(),1,1(-, …………………1分1.图形面积为 ⎰--+=212)2(dx x x A …………………………3分 29312212132=⎥⎦⎤⎢⎣⎡-+=-x x x , …………………6分2.图形绕x 轴旋转一周所得旋转体的体积为⎰--+=21222])()2[(dx x x V x π……………………………9分 57251)2(312153ππ=⎥⎦⎤⎢⎣⎡-+=-x x ……………………12分3.曲线2x y =交y 轴于点)0,0(,直线02=+-y x 与y 交于点)2,0( ……………………………13分图形绕y 轴旋转一周所得旋转体的体积为⎰⎰--=4422)2(dy y ydy V y ππ, (15)分 316)2(32423402πππ=--=y y ; ………………………18分。
2016-2017 学年第二学期高等数学AII 期末试卷(试卷+A3排版+解析)

¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
13.
设由方程组
y + xyz
z+x =1
=
0
确定的隐函数
y
=
y(x)
及
z
=
z(x),求
dy dx ,
dz dx
.
14.
设连续函数
f (x)
满足方程
f (x)
=
ˆ
3x
f
() t d t + e2x,
求
f (x).
¨(
0
3
)
(
)
15. 计算曲面积分 I = x2 − yz d y d z + y2 − zx d z d x + 2z d x d y, 其中 Σ
xOy ydx
平面上一条简单光滑的正向闭曲线,原点在其所围闭区域之外,则
=
【】
C x2 + 4y2
(A) 4π
(B) 0
(C) 2π
(D) π
6. 微分方程 xy′′ − y′ = 0 满足条件 y′(1) = 1, y(1) = 0.5 的解为
【】
(A) y = x2 + 1 44
(B) y = x2 2
1,
√ − ¨x
⩽
y
⩽
√x},则正确的选x 项为
¨
【】
(A) f (y)g(x) d x d y = 0
(B) f (x)g(y) d x d y = 0
¨D
¨D
(C) [f (x) + g(y)] d x d y = 0
北京科技大学2009-2012高等数学第一学期期中考试题

C
G ( x ) 是 g ( x ) 的高阶无穷小;
D
G ( x) 是 g ( x) 的低阶无穷小.
17.设有下列四个条件:(1) f ( x) 在 a, b 上连续; (2) f ( x) 在 a, b 上有界; (3) f ( x) 在 a, b 上可导; (4) x0 a , b , lim f ( x ) 存在, 则上述 4 个命题的正确关系
A
偶函数
B
奇函数
2.以下哪个说法(
A
非奇非偶函数 )与 lim xn A 的定义等价.
n
C
D
有界函数
(0,1), 存在自然数 N , 当 n N 时,有 xn A 100 . B 1, 存在自然数 N , 当 n N 时,有 xn A . C 对任意的自然数 N , 存在 0, 当 n N 时,有 xn A . D 存在自然数 N , 对任意 0, 当 n N 时,有 xn A .
北京科技大学 2009——2010 学年第一学期
高 等 数 学 A(I) 期中试卷
院(系) 班级 学号 姓名 考场
题号 得分 评阅
一
二
三
课程考核成绩
说明: 1 、考场、学院、班、学号、姓名均需写全 , 不写全的试卷为废卷 ; 2 、涂改学号及姓名的试卷为废卷; 3 、请在试卷上答题,在其它纸张上的解答一律无效.
高等数学 AI 期中试卷
第 3 页 共 7 页
得 分
四、应用题(本题共 5 分)
k3 2 2 x ,其中 x 是箭离原点的水平距离, 20.一射手在原点射出的箭的轨迹方程为 y kx 300 y 是相应的高度( x 轴为地平线, 距离单位为 m), 正数 k 是轨迹曲线在原点处的切线斜率. 问 (1) 正数 k 取何值时, 箭的水平射程最大? (2) 正数 k 取何值时, 箭射中 30m 远处一直立墙面的高度最大?
北京科技大学(已有10试题)

北京科技大学土木与环境工程学院地质学2003——2010工程流体力学2003——2005,2007——2010结构力学2004,2007——2010安全原理2008——2010生物化学2005岩石力学2000——2005,2007——2010晶体光学2004——2006,2008——2010普通化学2006——2010普通化学(A)2004——2005结晶学及矿物学2003——2005,2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)电工技术2003——2005,2008——2010化工原理2003——2005普通地质学2003,2005,2007,2010流体力学2003——2008水处理原理2003——2010钢筋混凝土结构2003——2005工程地质学2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005环境规划与管理2007——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 建筑材料学2004——2005矿床学2003——2004矿山岩石力学2007——2010浮选原理2008——2010土力学2004——2005土力学与地基基础2003液压与液力传动2003——2005环境学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010冶金与生态工程学院传输原理2003——2010冶金物理化学2003——2010普通生态学2006——2010普通物理2008——2010普通物理(A)2004——2005普通化学2006——2010普通化学(A)2004——2005物理化学(A)2003——2010物理化学(B)2005——2010综合科技史2003——2010文物保护基础2004——2006,2008——2010中国古代史2004——2010社会学理论2010社会学2003——2008材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005生物化学2005统计物理2003——2005,2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010材料科学与工程学院物理化学(A)2003——2010物理化学(B)2005——2010材料化学2005金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005统计物理2003——2005,2010传输原理2003——2010冶金物理化学2003——2010普通化学2006——2010普通化学(A)2004——2005综合科技史2003——2010文物保护基础2004——2006,2008——2010社会学理论2010社会学2003——2008设计基础2004——2006,2008——2010设计理论2004——2010传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010电路及数字电子技术2003——2010通信原理2004——2010计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)理论力学(A)2005,2007——2010理论力学(B)2003——2005微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010机械工程学院设计基础2004——2006,2008——2010设计理论2004——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005传热学2003——2005,2007——2010工程热力学2003——2005,2007——2010工程流体力学2003——2005,2007——2010生产运作与管理2003——2004现代生产管理2005,2007——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010信息工程学院自动检测技术2007——2010电路及数字电子技术2003——2010通信原理2004——2010概率统计2004——2005计算机组成原理及数据结构2006——2008计算机组成原理2003计算机组成原理及计算机网络2004——2005计算机组成原理及计算机系统结构2004——2005数据结构1999——2000,2003(2003有答案)数据结构及软件工程2004——2005信号系统与数字电路2008——2010单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010经济管理学院管理学与经济学基础2006——2010(注:2006年缺页)管理学原理2004——2010(2004——2005有答案)数据库原理与管理系统2003单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010应用科学学院高等代数2003——2010数学分析2004——2010常微分方程2003——2005概率统计2004——2005概率与数理统计2003——2005普通物理2008——2010普通物理(A)2004——2005固体物理2007——2010固体物理(A)2003——2005量子力学2007——2010量子力学(B)2003——2005(2004有答案)热力学与统计物理(B)2003——2005基础化学2003——2005无机化学2003——2010分析化学2006——2010物理化学(A)2003——2010物理化学(B)2005——2010有机化学A(分析化学专业)2004有机化学(分析化学专业)2005有机化学(生物化工、环境科学专业)2004有机化学(生物化工专业)2003有机化学B(生物化工、环境科学、环境工程专业)2005有机化学(B)(化学专业)2010有机化学(B)(分析化学、无机化学、有机化学、物理化学专业)2007——2008 综合化学(含有机化学、分析化学)2004模拟电子技术与数字电子技术基础2004——2010(注:2007年试卷共4页,缺P4)材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)理论力学(A)2005,2007——2010理论力学(B)2003——2005生物化学与分子生物学2008——2010细胞生物学2007——2010微生物学A 2008——2010微生物学B 2008——2010微生物学2007环境微生物学2004——2005运筹学2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010文法学院文学原理2010中国语言文学2010民法学2004——2010综合考试(民商法学、经济法学专业)2005——2010合同法2004民事诉讼法2004知识产权法2004社会学研究方法2007——2010社会学理论2010社会学2003——2008马克思主义哲学原理2007——2010马克思主义政治经济学原理2007——2010文艺美学2004文艺学原理2004——2005,2007——2008中国文论史2005,2007——2008历史唯物主义2004——2005思想政治教育原理2003——2010科学技术史2007——2010科学技术概论2007——2010现代科学技术概论2005综合科技史2003——2010行政管理学2003——2010政治经济学2003——2005教育史2005(2005有答案)普通教育学2003——2005,2007——2010(2004——2005有答案)管理学原理2004——2010(2004——2005有答案)普通心理学2003——2005,2007——2010计算机基础2003——2005,2007——2010教育学专业基础综合(全国统考试卷)2007——2008单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010外国语学院二外法语2004——2010二外日语2004——2010二外俄语2004——2010二外德语2004——2008综合英语2003——2006,2008——2010基础英语2004——2010新金属材料国家重点实验室物理化学(A)2003——2010物理化学(B)2005——2010金属学2003——2005,2007——2010材料力学2003(注:试卷上面标注的是:材料加工工程专业)材料力学B 2004——2005(注:试卷上面标注的是:材料加工工程、材料科学与工程专业)材料力学2003(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、固体力学专业)材料力学C 2010(注:试卷上面标注的是:车辆工程、物流工程、机械工程专业)材料力学C 2004——2008(注:试卷上面标注的是:车辆工程、机械制造及自动化、机械电子工程、机械设计及理论、机械工程、物流工程、机械装备及控制专业)材料力学D 2004——2005,2007——2010(注:试卷上面标注的是:固体力学专业)钢筋混凝土结构2003——2005单考数学2003——2004,2008——2010单考俄语2008——2010单考英语2008——2010单考政治2008——2010下面是余秋雨经典励志语录,欢迎阅读。
最新北京科技大学-学年度第1学期高等数学A试题及答案

装 订 线 内 不 得 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊7.设设||3)(23x x x x f +=,则使)0()(n f 存在的最高阶导数n 为 【 】.(A ) 0 ; (B) 1 ; (C) 2 ; (D) 38.积分=+⎰-xdx x x 2sin )sin (224ππ【 】(A) 3/4 (B) 0 (C) 4/3 (D) 19.下列不等式正确的有 【】(A ) ⎰⎰<1210sin sin dx xxdx , (B )⎰⎰<1210c o s c o s dx xxdx ,(C )⎰⎰>ππππ22s i n 2dx e dx e x x, (D )⎰⎰<ππ223s i n s i n x d x x d x10.设yx z =, 则=dz 【 】(A ) )(ln dy x y xdx x y+(B ) )(ln dx x yxdy x y + (C ) )(l n dy x y xdx y x+ (D ) )ln (ydx dy xx x y +三、计算题(每小题9分,共63分)11.dx e xa x a x xx ⎰+∞-→=+-120)(lim ,求a 的值。
12、求dx x x x ⎰-+222)1(13.计算⎪⎪⎭⎫⎝⎛-+-+-+-∞→222222291391291191lim n n n n n n 。
14.求直线⎩⎨⎧=++-=--+0101:z y x z y x L 在平面0:=++∏z y x 上的投影直线L '15. 求不定积分⎰-dx xx1arcsin16.设⎪⎩⎪⎨⎧+-=++=22)1(21)1ln(t arctgt y t x 求.,22dx y d dx dy17.0)11(lim 2=--++∞→b ax x x x ,求a ,b 的值。
四、证明题(7分))(x f = 是在区间]1 ,0[上任一非负连续函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京科技大学2007--2008学年度第一学期
高等数学A 期中试题
一.填空题(40分)
1. ()()2
013sin cos lim __________1cos ln 1x x x x x x →+=++ 2. 设()21
,(0),x x y x e e x -=+>则dy=__________
3. 已知()21220l i m ,1
n n n x a x b x f x x -→++=+且f(x)在1x =±连续,则______,_______.a b ==
4. 设()()0ln 1sin lim ,0,1
x x f x x A A a →⎛⎫+ ⎪⎝⎭=≠-则()20lim __________.x f x x →= 5. ()()tan 201,dy |__________.x x y x x ==+=设则
6.
()()2y sin ,__________.n x x f x y ==设则 7.
()()20,0,e 21_____1.x x a x ax ->>-+设则比较大小 8.
()()()()()0=1,01,x 0,f ,0,_______x f f x f x x f x e '''<><>设且当则当 (比较大小)。
二. 单项选择(32分)
1.
()()()()22x a f x x a x a ϕϕ=-设在点连续,则在点必是( ) A. 可导,但导函数未必连续 B. 可导且导函数连续
C. 连续但不可导
D. 存在二阶导数
2. 设f(x)有二阶连续导数,且()()000,lim 1,n x f x f x
→'==则() A. f(0)是f(x)的极大值 B. f(0)是f(x)的极小值
C. (0,f(0))是曲线y=f(x)的拐点
D. f(0)不是极值点,(0,f(0))也不是是曲线y=f(x)的拐点
3. 设曲线2y ax =与y=lnx 相切,则()()()sin 12e
lim 1x a x x a -→+-为( ) A.1 B. e C. 0 D. a
4. 设()()21cos ,0,0{,
x
x x
x g x x f x ->≤=其中g(x)为有界函数,则f(x)在x=0处( )
A. 极限不存在
B. 极限存在,但不连续
C. 连续但不可导
D. 可导
5. 设()()()1
3lim 1x a f x f a x a →-=-,则f(x)在x=a 处必然( )
A. f(a)是f(x)的极大值
B.f(a)是f(x)的极小值
C. 可导
D. 不可导
6.设()201lim ,1n n x f x x
→+=+则() A. f(x)不存在间断点 B. f(x)存在间断点x=1
C. f(x)存在间断点x=0
D. f(x)存在间断点x=-1
7. 设函数f(x)满足方程()()()()2,f 0=0f x f x x ''''+=且,则()
A. f(0)是f(x)的极大值
B. f(0)是f(x)的极小值
C. (0,f(0))是曲线y=f(x)的拐点
D. (0,f(0))不是曲线的拐点
8. 设()(),00,0{,x g x e x x x f x --≠==其中g(x)有二阶连续函数,且
g(0)=1,()01g '=-,则()()-+f x '∞∞在,上必有( )
A. 不存在
B. 存在但不连续
C. 连续
D. 有时连续,有时不连续
三.证明题(28分)
1. (8分)设x>0,则()
()221ln 1.x x x -≥-
2. (10分)设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0,f(1)=1, 证明对任意给定的正数a 和b ,在(0,1)内存在不相等的实数,ξη,
使得()()
.a b a b f f ξη+=+''
3. 设f(x)在[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,()00f '= ,证明在(-1,1)内有一点(),f 3.ξξ'''
=使
4. 设f(x)在闭区间[a,b]上有定义,(),[,],a f x b x a b ≤≤∈且对任 意,[,],x y a b ∈满足()(),f x f y k x y -≤-其中k 为正常数,且0<k<1,取()1n 1[,b],x n x a f x +∈=,n=1,2,· · ·,
证明:(1) 存在唯一[,]a b ξ∈,使得()f ξξ=;
(2) lim .n n x ξ→∞
=
四.应用题(6分)
矩形ABCD的两个顶点A,B在Ox轴上,另外顶点C,D在抛物线32
=-,求C,D点的坐标使矩形面积最大(a>0,b>0). by a x
23。