2017_2018学年高中物理第二章原子结构第4节玻尔的原子模型能级教学案教科版
玻尔的原子模型能级物理教案

玻尔的原子模型能级物理教案目标class=Normal vAlign=top colSpan=31.知道玻尔理论,并能用以对氢原子进行解释、计算2.初步建立量子化模型,了解现代物理思想3.加强自学能力培养,进行科学思想教育class=Normal vAlign=top width=39教学重点class=Normal vAlign=top colSpan=3玻尔理论对氢原子的解释class=Normal vAlign=top width=39教学难点class=Normal vAlign=top colSpan=3玻尔理论及量子化模型建立class=Normal vAlign=top width=39教学方法class=Normal vAlign=top colSpan=3教师讲解、学生自学、计算机模拟class=Normal vAlign=top width=39教学设想class=Normal vAlign=top colSpan=3初步建立量子化模型,了解现代物理思想,使学生在掌握知识的同时,进行自学能力培养和近代科学思想教育class=Normal vAlign=top width=39教具class=Normal vAlign=top colSpan=3投影仪、计算机、挂图class=Normal vAlign=top width=39 rowSpan=4教学过程class=Normal vAlign=top width=321 rowSpan=2一、玻尔的原子模型1.模型建立背景(卢瑟福的核式结构遇到障碍)2.三点假设a.定态假设:原子只能处于一系列不连续能量状态,在这些状态时原子稳定,不辐射能量b.跃迁假设:原子从一个定态跃迁到另一个定态,吸收或放出光子能量由两定态能量差决定c. 轨道量子化假设:原子不同能量状态与电子不同的绕核圆形轨道相对应,轨道不连续。
class=Normal vAlign=top width=72class=Normal vAlign=top width=37时间class=Normal vAlign=top width=72简单讲述模型建立背景后,学生自学(阅读)玻尔理论的假设以量子理论的不连续性对比传统理论的连续性对学生进行思想教育以能量观点解释跃迁近代电子云理论class=Normal vAlign=top width=3710分class=Normal vAlign=top width=321二、玻尔的氢原子模型1、氢原子半径及能量关系,n =0 , 1, 2 , 3 。
2017-2018学年高中物理 第2章 原子结构 3 玻尔的原子模型学案 鲁科版选修3-5

第3节 玻尔的原子模型[目标定位] 1.知道玻尔原子理论基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子发光问题.一、玻尔的原子模型 1.定态原子只能处于一系列不连续的能量状态中,在这些状态中,原子是稳定的.电子虽然做加速运动,但并不向外辐射能量,这些状态叫定态. 2.跃迁假设原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,即h ν=E 2-E 1. 3.轨道假设原子的不同能量状态对应于电子不同的运行轨道,原子的定态是不连续的,因而电子的可能轨道也是不连续的.轨道半径r 跟电子动量mv 的乘积满足下式的这些轨道才是可能的.m e vr =nh2π(n =1,2,3,…)式中n 是正整数,称为量子数.想一想 氢原子从高能级向低能级跃迁时,是不是氢原子所处的能级越高,释放的光子能量越大?答案 不一定.氢原子从高能级向低能级跃迁时,所释放的光子的能量一定等于能级差,氢原子所处的能级越高,跃迁时能级差不一定越大,释放的光子能量不一定越大. 二、氢原子的能级结构1.氢原子的能级公式和轨道半径公式E n =E 1n 2(n =1,2,3,…)r n =n 2r 1(n =1,2,3,…)式中E 1=-13.6 eV ,r 1=0.53×10-10m.2.氢原子能级图 如图1所示图13.解释氢原子光谱的不连续性原子从较高能级向低能级跃迁时放出光子的能量等于前后两能级差,由于原子的能级是不连续的,所以放出的光子的能量也是不连续的,因此原子的发射的光频率也不同.一、对玻尔理论的理解1.轨道量子化(1)轨道半径只能够是一些不连续的、某些分立的数值.(2)氢原子的电子最小轨道半径为r1=0.053 nm=0.53×10-10m,其余轨道半径满足r n=n2r1,式中n称为量子数,对应不同的轨道,只能取正整数.2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.(2)基态:原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6 eV.(3)激发态:除基态之外的其他能量状态称为激发态,对应的电子在离核较远的轨道上运动.氢原子各能级的关系为:E n=1n2E1(E1=-13.6 eV,n=1,2,3,…)3.跃迁原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即高能级低能级E n【例1】(多选)按照玻尔原子理论,下列表述正确的是( )A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=|E m-E n|D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量答案BC解析根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,应辐射能量,D错误.【例2】氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中( ) A.原子要吸收光子,电子的动能增大,原子的电势能增大B.原子要放出光子,电子的动能减小,原子的电势能减小C .原子要吸收光子,电子的动能增大,原子的电势能减小D .原子要吸收光子,电子的动能减小,原子的电势能增大 答案 D解析 根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B 错;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k e 2r 2=m v 2r ,又E k =12mv 2,所以E k =ke 22r.由此式可知:电子离核越远,即r 越大时,电子的动能越小,故A 、C 错;由r 变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D 正确.借题发挥 当氢原子从低能量态E n 向高能量态E m (n <m )跃迁时,r 增大,E k 减小,E p 增大(或r 增大时,库仑力做负功,电势能E p 增大),E 增大,故需吸收光子能量,所吸收的光子能量h ν=E m -E n .二、原子能级和能级跃迁的理解 1.氢原子能级图 如图2所示图22.根据氢原子的能级图可以推知,一群量子数为n 的氢原子跃迁到基态时,可能辐射出不同频率的光子数可用N =C 2n =n n -2计算.3.原子从低能级向高能级跃迁:只能吸收一定能量的光子,即当一个光子的能量满足h ν=E 末-E 初时,才可能被某一个原子吸收,而当光子能量h ν大于或小于E 末-E 初时都不能被原子吸收;原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.【例3】 如图3所示,氢原子从n >2的某一能级跃迁到n =2的能级,辐射出能量为2.55 eV 的光子,问最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?请在图中画出获得该能量后的氢原子可能的辐射跃迁图.图3答案12.75 eV 跃迁图见解析图解析氢原子从n>2的某一能级跃迁到n=2的能级,满足:hν=E n-E2=2.55 eVE n=hν+E2=-0.85 eV所以n=4基态氢原子要跃迁到n=4的能级,应提供的能量为ΔE=E4-E1=12.75 eV.跃迁图如图所示.借题发挥(1)如果是一个氢原子,从某一激发态向基态跃迁时,可能发出的不同频率的光子数为n-1.(2)如果是一群氢原子,从某一激发态向基态跃迁时,发出不同频率的光子数为:N=n n -.2针对训练如图4所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光子中,波长最长的是( )图4A.n=4跃迁到n=1时辐射的光子B .n =4跃迁到n =3时辐射的光子C .n =2跃迁到n =1时辐射的光子D .n =3跃迁到n =2时辐射的光子 答案 B解析 根据玻尔理论:E m -E n =h ν=h cλ,能级差越小,发射光子的ν越小,λ越长,故B对.对玻尔理论的理解1.(多选)玻尔在他提出的原子模型中所作的假设有( )A .原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B .原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C .电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D .电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率 答案 ABC解析 A 、B 、C 三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能量跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.2.(多选)对氢原子能级公式E n =E 1n2的理解,下列说法中正确的是( ) A .原子定态能量E n 是指核外电子动能与核之间的静电势能的总和 B .E n 是负值C .E n 是指核外电子的动能,只能取正值D .从式中可以看出,随着电子运动半径的增大,原子总能量减少 答案 AB解析 这里是取电子自由态作为能量零点,所以电子处在各个定态中能量均是负值,E n 表示核外电子动能和电子与核之间的静电势能的总和,所以选项A 、B 对,C 错,因为能量是负值,所以n 越大,E n 越大,D 错.氢原子能级及跃迁3.(多选)氢原子能级如图5所示,当氢原子从n =3跃迁到n =2的能级时,辐射光的波长为656 nm.以下判断正确的是( )图5A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级 答案 CD解析 由氢原子能级图可知氢原子从n =2跃迁到n =1的能级的能量差大于从n =3跃迁到n =2的能级的能量差,根据|E n -E m |=h ν和ν=c λ可知,|E n -E m |=h cλ,选项A 错误;同理从n =1跃迁到n =2的能级需要的光子能量大约为从n =3跃迁到n =2的能量差的五倍左右,对应光子波长应为从n =3跃迁到n =2的能级辐射光波长的五分之一左右,选项B 错误;氢原子从n =3跃迁到n =1的能级的能量差最多有三种情况,即对应最多有三种频率的光谱线,选项C 正确;氢原子在不同能级间跃迁必须满足|E n -E m |=h cλ,选项D 正确.4.用频率为ν的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则( ) A .ν0<ν1 B .ν3=ν2+ν1 C .ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν3答案 B解析 大量氢原子跃迁时,只有三种频率的光谱,这说明是从n =3能级向低能级跃迁,根据跃迁公式有,h ν3=h ν2+h ν1,解得:ν3=ν2+ν1,选项B 正确.(时间:60分钟)题组一 对玻尔理论的理解1.根据玻尔理论,关于氢原子的能量,下列说法中正确的是( ) A .是一系列不连续的任意值 B .是一系列不连续的特定值C .可以取任意值D .可以在某一范围内取任意值解析 根据玻尔模型,氢原子的能量是量子化的,是一系列不连续的特定值,另外我们也可以从氢原子的能级图上,得出氢原子的能级是一系列的特定值,而不是任意取值的结论,故A 、C 、D 错,B 对. 答案 B2.(多选)根据玻尔理论,以下说法正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是不连续的D .原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差 答案 BCD解析 根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故选项A 错误,选项B 正确.玻尔理论中的第二条假设,就是电子绕核运动可能的轨道半径是量子化的,不连续的,选项C 正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子能量取决于两个轨道的能量差,故选项D 正确.3.氢原子从能量为E 1的较高激发态跃迁到能量为E 2的较低激发态,设真空中的光速为c ,则( )A .吸收光子的波长为c E 1-E 2hB .辐射光子的波长为c E 1-E 2h C .吸收光子的波长为ch E 1-E 2 D .辐射光子的波长为chE 1-E 2解析 氢原子从能量为E 1的较高激发态跃迁到能量为E 2的较低激发态时,要辐射出光子,根据h ν=hc λ=E 1-E 2,可得λ=hcE 1-E 2,选项D 正确.答案 D4.根据玻尔理论,下列关于氢原子的论述正确的是( )A .若氢原子由能量为E n 的定态向低能级跃迁,则氢原子要辐射的光子能量为h ν=E nB .电子沿某一轨道绕核运动,若电子做圆周运动的频率为ν,则其发光的频率也是νC .一个氢原子中的电子从一个半径为r a 的轨道自发地直接跃迁到另一半径为r b 的轨道,已知r a >r b ,则此过程原子要辐射某一频率的光子D .氢原子吸收光子后,将从高能级向低能级跃迁 答案 C解析 原子由能量为E n 的定态向低能级跃迁时,辐射的光子能量等于能级差,与E n 不相等,故A 错;电子沿某一轨道绕核运动,处于某一定态,不向外辐射能量,故B 错;电子由半径大的轨道跃迁到半径小的轨道,能级降低,因而要辐射某一频率的光子,故C 正确;原子吸收光子后能量增加,能级升高,故D 错.5.氢原子核外电子从外层轨道(半径为r b )向内层轨道(半径为r a )跃迁时(r a <r b ),电子动能的增量ΔE k =E k a -E k b ,电势能增量ΔE p =E p a -E p b ,则下列表述正确的是( ) A .ΔE k <0,ΔE p <0,ΔE k +ΔE p =0 B .ΔE k <0,ΔE p >0,ΔE k +ΔE p =0 C .ΔE k >0,ΔE p <0,ΔE k +ΔE p >0 D .ΔE k >0,ΔE p <0,ΔE k +ΔE p <0 答案 D解析 根据向心力公式m v 2r =k q 2r 2,得E k =12mv 2=kq22r,即半径越大动能越小,所以ΔE k >0;由于核外电子和核内质子有相互的吸引力,当电子从外层轨道向内层轨道跃迁时,电场力做正功,电势能减小,所以ΔE p <0;又由于内层轨道比外层轨道原子的能级低,所以ΔE k +ΔE p <0. 题组二 氢原子能级及跃迁6. (多选)氢原子的部分能级如图1所示,已知可见光的光子能量在1.62 eV 到3.11 eV 之间.由此可推知,氢原子( )图1A .从高能级向n =1能级跃迁时发出的光的波长比可见光的短B .从高能级向n =2能级跃迁时发出的光均为可见光C .从高能级向n =3能级跃迁时发出的光的频率比可见光的高D .从n =3能级向n =2能级跃迁时发出的光为可见光 答案 AD解析 从高能级向n =1的能级跃迁的过程中,辐射出的光子最小能量为10.20 eV ,不在1.62 eV 到3.11 eV 之间,A 正确;已知可见光子能量在1.62 eV 到3.11 eV 之间,从高能级向n=2能级跃迁时发出的光的光子能量≤3.40 eV,B错;从高能级向n=3能级跃迁时发出的光的能量小于1.51 eV,频率低于可见光,C错;从n=3到n=2的过程中释放的光子的能量等于1.89 eV,介于1.62 eV到3.11 eV之间,所以是可见光,D对.7.在氢原子能级图中,横线间的距离越大,代表氢原子能级差越大,下列能级图中,能形象表示氢原子最低的四个能级的是( )答案 C解析由氢原子能级图可知,量子数n越大,能级越密,所以C对.8.处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( )A.1种B.2种C.3种D.4种答案 C解析一群处于n=3能级上的氢原子跃迁时,辐射光的频率有N=C2n=n n-2=3种,C项正确.9.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用.如图2为μ氢原子的能级示意图,假定光子能量为E的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E等于( )图2A.h(ν3-ν1) B.h(ν3+ν1)C.hν3D.hν4答案 C解析μ氢原子吸收光子后,能发出六种频率的光,说明μ氢原子是从n=4能级向低能级跃迁,则吸收的光子的能量为ΔE=E4-E2,E4-E2恰好对应着频率为ν3的光子,故光子的能量为hν3.10.(多选)欲使处于基态的氢原子激发,下列措施可行的是( )A.用10.2 eV 的光子照射B.用11 eV 的光子照射C.用14 eV 的光子照射D.用11 eV的电子碰撞答案ACD解析由玻尔理论可知,氢原子在各能级间跃迁时,只能吸收能量值刚好等于某两能级之差的光子.由氢原子的能级关系可算出10.2 eV刚好等于氢原子n=1和n=2的两能级之差,而11 eV则不是氢原子基态和任一激发态的能级之差,因而氢原子能吸收前者而不能吸收后者,故A对,B错;14 eV的光子其能量大于氢原子的电离能(13.6 eV),足以使氢原子电离——使电子脱离原子核的束缚而成为自由电子,因而不受氢原子能级间跃迁条件的限制.由能量守恒定律不难知道氢原子吸收14 eV的光子电离后,产生的自由电子还应具有0.4 eV 的动能.用电子去碰撞氢原子时,入射电子的动能可全部或部分地为氢原子吸收,所以只要入射电子的动能大于或等于基态和某个激发态能量之差,也可使氢原子激发,故C、D对.11.氢原子部分能级的示意图如图3所示,不同色光的光子能量如下表所示:图3A.红、蓝—靛B.黄、绿C.红、紫D.蓝—靛、紫答案 A解析由七种色光的光子的不同能量可知,可见光光子的能量范围在1.61~3.10 eV,故可能是由第4能级向第2能级跃迁过程中所辐射的光子,E1=-0.85 eV-(-3.40 eV)=2.55 eV,即蓝—靛光;也可能是氢原子由第3能级向第2能级跃迁过程中所辐射的光子,E2=-1.51 eV-(-3.40 eV)=1.89 eV,即红光.题组三综合应用12.如图4所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,求:11图4(1)有可能放出几种能量的光子? (2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?答案 (1)6 (2)第四能级向第三能级 1.88×10-6 m解析 (1)由N =C 2n ,可得N =C 24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据h c λ=h ν=E 4-E 3=[-0.85-(-1.51)] eV =0.66 eV , λ=hc E 4-E 3=6.63×10-34×3×1080.66×1.6×10-19 m≈1.88×10-6 m. 13.氢原子在基态时轨道半径r 1=0.53×10-10 m ,能量E 1=-13.6 eV.求氢原子处于基态时:(1)电子的动能;(2)原子的电势能;(3)用波长是多少的光照射可使其电离?(已知电子质量m =9.1×10-31 kg ,普朗克常量h =6.63×10-34 J·s)答案 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8 m解析 (1)设处于基态的氢原子核外电子速度大小为v 1,则k e 2r 21=mv 21r 1,所以电子动能E k1=12mv 21=ke 22r 1=9×109-1922×0.53×10-10×1.6×10-19 eV≈13.6 eV. (2)因为E 1=E k1+E p1,所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV.(3)设用波长为λ的光照射可使氢原子电离:hc λ=0-E 1.所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19 m ≈9.14×10-8m.。
高中物理《玻尔的原子模型》优质课教案、教学设计

《玻尔原子模型》教学设计,进行新课 回顾科学家们对原子结构的探索过程汤姆孙发现电子 → 否定原子不可分割 → 建立西瓜模型→ 不能解释 α 粒子散射实验 → 否定原子不可分割 → 建立卢瑟福核式结构模型 → 两个困难 不能解释原子的稳定性和原子光谱的分立特征 → 否定卢瑟福核式结构模型 → 建立新的原子理论玻尔在普朗克的量子化和爱因斯坦的光子说的基础上,提出了自己的原子模型,主要是轨道量子化假说,能量量子化假说,能级跃迁假说.1、玻尔的原子理论(1) 能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
这些状态叫定态。
(本假设是针对原子稳定性提出的) (2) 轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。
(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条 可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: r =n 2r n=1,2,3…… n 1能 量 : E = 1E n=1,2,3…… n n21 式中 r 1、E 1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,r n 、E n 分别代表第 n 条可能轨道的半径和电子在第 n 条轨道上运动时的能量,n 是正整数,叫量子数。
(3)跃迁假设:原子从一种定态(设能量为 E n )跃迁到另一种 定态(设能量为 E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 h ν =E m - E n (h 为普朗克恒量)(本假设针对线状谱提出)3、氢原子的能级图思考老师提出的问题。
在老师的引导思考回答问题。
思考学过的知识。
分组讨论得出通过分析、讨论、归纳,思考学过的知识。
《玻尔的原子模型 能级》 导学案

《玻尔的原子模型能级》导学案一、学习目标1、了解玻尔原子模型的基本假设。
2、理解能级的概念,掌握能级跃迁的规律。
3、能够运用玻尔理论解释氢原子的光谱现象。
二、知识回顾1、卢瑟福的原子结构模型卢瑟福通过α粒子散射实验,提出了原子的核式结构模型,认为原子的中心有一个很小的原子核,原子的大部分质量和正电荷都集中在原子核上,电子在核外绕核高速运动。
2、经典电磁理论在解释原子结构时遇到的困难按照经典电磁理论,电子绕核运动时会不断向外辐射电磁波,导致电子的能量逐渐减小,最终会落到原子核上,原子是不稳定的。
但实际上原子是稳定的。
经典电磁理论无法解释原子光谱的分立特征。
三、玻尔原子模型1、玻尔的三条基本假设定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽然绕核运动,但并不向外辐射电磁波,这些状态叫做定态。
跃迁假设:当原子从一种定态跃迁到另一种定态时,会辐射或吸收一定频率的光子,光子的能量等于两个定态的能量差。
轨道量子化假设:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应,电子的轨道半径不是任意的,而是量子化的。
2、对玻尔假设的理解定态的理解:定态是指原子所处的稳定状态,电子在定态时不辐射也不吸收能量。
跃迁的理解:原子在不同定态之间的跃迁是瞬间的、不连续的,跃迁时辐射或吸收的光子能量等于两定态的能量差。
轨道量子化的理解:电子绕核运动的轨道半径只能是一些特定的值,不能是连续的值。
四、能级1、能级的概念原子中各个定态对应的能量值叫做能级。
2、能级图以氢原子为例,能级图直观地展示了氢原子各个能级的能量大小。
氢原子的能级公式:$E_n =\frac{136}{n^2} eV$($n = 1, 2, 3, \cdots$),其中$n$为量子数。
3、能级跃迁与光谱当氢原子从高能级向低能级跃迁时,会辐射出光子,光子的能量等于两能级的能量差。
氢原子光谱的谱线对应着原子从不同高能级向低能级跃迁时辐射出的光子的频率和波长。
2017_2018学年高中物理第十八章原子结构第4节玻尔的原子模型教师用书新人教版选修3_520170621157

k=m,故Ekn=mv=.
(2)系统的电势能
电子在半径为rn的轨道上所具有的电势能
Epn=-(Ep∞=0).
(3)原子的能量
En=Ekn+Epn=+=-.
即电子在半径大的轨道上运动时,动能小,电势能大,原子能量大.
2.跃迁时电子动能、原子电势能与原子能量的变化:当原子从高能级向低能级跃迁时,轨道半径减小,库仑引力做正功,原子的电势能Ep减小,电子动能增大,向外辐射能量,原子能量减小.反之,原子电势能增大,电子动能减小,原子能量增大.
氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中()
A.原子要吸收光子,电子的动能增大,原子的电势能增大
B.原子要放出光子,电子的动能减小,原子的电势能减小
C.原子要吸收光子,电子的动能增大,原子的电势能减小
D.原子要吸收光子,电子的动能减小,原子的电势能增大
解析:选D.根据玻尔理论,氢原子核外电子在离核较远的轨道上运动能量较大,必须吸收一定能量的光子后,电子才能从离核较近的轨道跃迁到离核较远的轨道,故B错误;氢原子核外电子绕核做圆周运动,由原子核对电子的库仑力提供向心力,即:k=m,又Ek=mv2,所以Ek=.由此式可知:电子离核越远,即r越大时,电子的动能越小,故A、C错误;由r变大时,库仑力对核外电子做负功,因此电势能增大,从而判断D正确.
Em2=11.0 eV+(-13.6)eV=-2.6 eV.
Em3=12.5 eV+(-13.6)eV=-1.1 eV.
据Em=得,只有Em1=-3.4 eV对应于n=2的激发态.因电子绕核运动时只能吸收恰好具有两能级间能量差的能量的光子,所以只有B项中的光子可使氢原子从基态跃迁到激发态.
高三物理教案《玻尔的原子模型 能级》

玻尔的原子模型能级(两课时)教学目标1.知识目标1)理解玻尔关于轨道量子化的概念,充分认识玻尔关于轨道半径不可能取任意值的论断.2)理解能级的概念和原子发射与吸收光子的频率与能级差的关系.3)知道原子光谱为什么是一些分立的值.知道原子光谱的一些应用.2.能力目标。
介绍物理学史,培养科学探索的精神.3. 德育目标探索精神.重点难点分析:玻尔理论是本节课重点;对原子发光现象解释是本节难点.教学设计思路:玻尔理论建立在三个假设的基础上,它对氢原子电磁辐射的成功解释和预言,是以两个假设为前提的必然结果.学习时,要在理解玻尔关于轨道量子化概念的基础上,经推理得到能量量子化的概念,在掌握能级等概念的前提下,运用能的转化和能量守恒定律理解跃迁规律,从而掌握原子光谱的特征.教学媒体:挂图(或投影片),分光镜,课件等教学过程:(一)引入新课同学们知道原子的结构吗?初中我们曾经学过的原子结构是由英国物理学家卢瑟福依据他的实验结果提出来的,我们称之为核式结构.你对该结构产生过怀疑吗?按卢瑟福的原子模型,电子在绕核高速旋转,其运动情况类似振荡电荷.按经典电磁理论,振荡电荷要以电磁波的形式不断向外辐射能量.损失能量后的电子轨道半径将逐渐减小,最终将落在原子核中.这一过程中,由于轨道半径是连续变化的,振荡频率也是连续变化的,向外辐射的能量也应是连续的(发出的光谱是连续的).然而,事实并非如此.我们知道大多数原子是稳定的,在通常情况下是不发射电磁波的.即使在某些状态下发射电磁波,其频率也不是连续的,而是具有某些分立的确定的数值.问题出在何处?是电磁理论错了?还是原子模型建立的不对?或是其他什么原因?面对上述困难,丹麦物理学家玻尔经过认真研究于1913年提出了他自己的原子结构模型.(二)新课活动一、玻尔模型玻尔原子理论玻尔把量子观念引入原子理论中,这是一个创举.根据玻尔的假设,电子只能在某些可能的轨道上运动,电子在这些轨道上运动时不辐射能量,处于定态,只有电子从一条轨道跃迁到另一条轨道上时才辐射能量.辐射的能量是一份一份的,等于这两个定态的能量差.这些就是玻尔理论的主要内容.1、模型中保留了卢瑟福的核式结构.但他认为核外电子的轨道是不连续的,它们只能在某些可能的、分立的轨道上运动,而不是像行星或卫星那样,能量大小可以是任意的量值.例如,氢原子的电子最小轨道半径为r 1=0.53nm ,其余可能的轨道半径还有 2.120nm 、4.770nm 、…不可能出现介于这些轨道之间的其他值.这样的轨道形式称为轨道量子化.2、电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态.这些定态下的能量值叫能级,原子每一个可能的状态都对应着一个能级.二、 能级1、能级:原子在定态下的能量值.2、基态与激发态若要使原子电离,需靠外界对原子做功,以使电子摆脱它与原子核之间的库仑力,所以原子电离后的能量比它处在各状态时的能量要高.若此时的能量规定为0,则其他状态的能量均为负值.能量最低的状态叫做基态,其他状态都叫激发态.由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的,这样的能量形式称为能量量子化.能量最低的状态叫基态(E 1),其他状态叫激发态(E 2、E 3、E 4……)三、 光子的发射和吸收原子处在能量最低的基态时,最为稳定.原子处在较高能级的激发态时会自发地向较低能级跃迁.它可能经过一次或几次跃迁,最后到达基态(教材第52页氢原子能级图).在跃迁进程中,能量的减少以光子的形式放出.光子的能量遵从:12EE h -=ν 反之,原子吸收相应光子的能量后,会从低能级向高能级跃迁.四、 原子光谱1、光谱按一定次序排列的彩色光带.⑴发射光谱:由发光物体直接产生的光谱叫做发射光谱。
高中物理玻尔理论教案

高中物理玻尔理论教案
学科:物理
年级:高中
课时:1
教学目标:
1.了解波尔理论的基本概念和内容;
2.掌握波尔理论中的原子结构和能级的基本原理;
3.能够运用波尔理论解释原子的光谱和能级跃迁;
4.培养学生分析问题和解决问题的能力。
教学重点:
1.波尔理论的基本概念和内容;
2.原子的光谱和能级的解释;
3.能级跃迁的原理。
教学难点:
1.能级跃迁的解释;
2.原子光谱的应用。
教学准备:
1.教材:《物理课本》;
2.多媒体教学设备。
教学过程:
一、导入(5分钟)
教师引入波尔理论的基本概念和历史背景,激发学生对波尔理论的兴趣。
二、讲解波尔理论(15分钟)
1.波尔理论的提出和基本内容;
2.原子结构的描述;
3.能级和量子数的概念。
三、应用波尔理论分析问题(15分钟)
1.波尔理论解释原子的光谱;
2.能级跃迁的过程;
3.量子数的物理意义。
四、课堂练习(10分钟)
学生进行波尔理论相关的练习,加深对波尔理论的理解和掌握。
五、总结与拓展(5分钟)
教师总结本节课的内容,提出问题,引导学生思考波尔理论的应用和拓展。
作业:完成相关习题;查阅资料,了解波尔理论的实验验证。
教学反思:
通过本节课的教学,学生可以了解波尔理论的基本概念和内容,掌握波尔理论的原子结构和能级的基本原理,培养学生分析问题和解决问题的能力。
同时,注重培养学生的实践能力和思考能力,促进学生对物理知识的理解和运用。
高中物理选修3-5教学设计3:18.4 玻尔的原子模型教案

4玻尔的原子模型
[教学目标]:
1.掌握玻尔理论的主要内容,理解原子的定态和能级的概念;
2.初步理解原子基态、激发态的概念,掌握能级图,了解能量辐射与吸收的规律;
3.通过对玻尔提出原子理论过程的讲述,培养学生创造能力,学习科学的研究方法。
[重点、难点分析]:
1.重点是玻尔的原子理论及量子思想;
2. 轨道能级的概念及对原子发光现象的解释是本节的难点.
[教学方法]:
1.在讲授过程中,通过提出矛盾——解决问题的基本思路,结合历史实际情况,加深学生对玻尔假设的认识;
2.本课将通过电脑进行形象的模拟,符合由感性到理性的认知过程。
[教具]:电子课件,投影仪,圆规
第二节.玻尔原子理论
一. 玻尔的原子理论:
假设一:(定态假设)
假设二:(跃迁假设)
假设三:(轨道假设)
二.氢原子的轨道半径和能量:r n= n2r1,
E n= E1/n2
n= 1,2,3......
n叫量子数
三.氢原子的能级:
基态
激发态__[ 结合演示]
能级跃迁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节 玻尔的原子模型__能级(对应学生用书页码P26)一、波尔的原子结构理论(1)电子围绕原子核运动的轨道不是任意的,而是一系列分立的、特定的轨道,当电子在这些轨道上运动时,原子是稳定的,不向外辐射能量,也不吸收能量,这些状态称为定态。
(2)当原子中的电子从一定态跃迁到另一定态时,才发射或吸收一个光子,其光子的能量hν=E n -E m ,其中E n 、E m 分别是原子的高能级和低能级。
(3)以上两点说明玻尔的原子结构模型主要是指轨道量子化和能量量子化。
[特别提醒] “跃迁”可以理解为电子从一种能量状态到另一种能量状态的瞬间过渡。
二、用玻尔的原子结构理论解释氢光谱1.玻尔的氢原子能级公式E n =E 1n2(n =1,2,3,…),其中E 1=-13.6 eV ,称基态。
2.玻尔的氢原子中电子轨道半径公式r n =n 2r 1(n =1,2,3,…),其中r 1=0.53×10-10 m 。
3.玻尔理论对氢光谱解释按照玻尔理论,从理论上求出里德伯常量R H 的值,且与实验符合得很好。
同样,玻尔理论也很好地解释甚至预言了氢原子的其他谱线系。
三、玻尔原子结构理论的意义1.玻尔理论的成功之处第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律。
2.玻尔理论的局限性不能说明谱线的强度和偏振情况;不能解释有两个以上电子的原子的复杂光谱。
1.判断:(1)玻尔的原子结构假说认为电子的轨道是量子化的。
( )(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态。
( )(3)电子能吸收任意频率的光子发生跃迁。
( )(4)玻尔理论只能解释氢光谱的巴尔末系。
( )答案:(1)√ (2)√ (3)× (4)×2.思考:卢瑟福的原子模型与玻尔的原子模型有哪些相同点和不同点?提示:(1)相同点:①原子有带正电的核,原子质量几乎全部集中在核上。
②带负电的电子在核外运转。
(2)不同点:卢瑟福模型:库仑力提供向心力,r的取值是连续的。
玻尔模型:轨道r是分立的、量子化的,原子能量也是量子化的。
(对应学生用书页码P26)对玻尔理论的理解1.轨道量子化轨道半径只能够是一些不连续的、某些分立的数值。
氢原子各条可能轨道上的半径r n =n2r1(n=1,2,3…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0.53×10-10m。
其余可能的轨道半径还有0.212 nm、0.477 nm…不可能出现介于这些轨道半径之间的其他值。
这样的轨道形式称为轨道量子化。
2.能量量子化(1)电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态。
(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的。
这样的能量值,称为能级,能量最低的状态称为基态,其他的状态叫做激发态,对氢原子,以无穷远处为势能零点时,其能级公式E n=1n2E1(n=1,2,3…)其中E1代表氢原子的基态的能级,即电子在离核最近的可能轨道上运动时原子的能量值,E1=-13.6 eV。
n是正整数,称为量子数。
量子数n越大,表示能级越高。
(3)原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能。
3.跃迁原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,高能级E m 发射光子hν=E m-E n吸收光子hν= E m-E n低能级E n。
可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上。
玻尔将这种现象叫做电子的跃迁。
(1)原子吸收光子能量是有条件的,只有等于某两个能级差时才被吸收发生跃迁。
(2)如果入射光的能量E≥13.6 eV,原子也能吸收,则原子电离。
1.对于基态氢原子,下列说法中正确的是( )A .它能吸收10.2 eV 的光子B .它能吸收11 eV 的光子C .它能吸收14 eV 的光子D .它能吸收具有11 eV 动能的电子的部分动能解析:选ACD 由E n =E 1n2知,氢原子从基态跃迁到n =2、3、4、5,ΔE 1=10.2 eV ,ΔE 2=12.09 eV ,ΔE 3=12.75 eV ,ΔE 4=13.06 eV ,因此,它能吸收10.2 eV 的光子发生跃迁,A 正确;它能吸收14 eV 的光子使其电离,C 正确;电子可以通过碰撞使其部分能量被原子吸收,D 正确。
氢原子能级图及能级跃迁问题1.能级图图2412.氢原子能级跃迁规律跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态)。
3.氢原子能级跃迁的可能情况氢原子核外电子从高能级向低能级跃迁时可能直接跃迁到基态,也可能先跃迁到其他低能级的激发态,然后再到基态,因此处于n 能级的电子向低能级跃迁时就有很多可能性,其可能的值为C n 2即n n -12种可能情况。
4.实物粒子的碰撞使氢原子发生跃迁实物粒子与氢原子碰撞时,实物粒子的动能可以全部或部分地被氢原子吸收,因此只要实物粒子的能量大于等于两个能级的能级差,均可能使原子从低能级向高能级跃迁。
5.氢原子不同状态的电离能从某一状态跃迁到n =∞时所需吸收的能量。
其数值等于各定态时的能级值的绝对值。
如基态氢原子的电离能是13.6 eV ,氢原子第一激发态(n =2)的电离能为3.4 eV 。
6.氢原子能级跃迁时的能量变化情况当轨道半径减小时,库仑引力做正功,原子的电势能E p 减小,电子动能增大,原子能量减小。
反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大。
一个氢原子从某一轨道向另一轨道跃迁时,可能的情况只有一种,但大量的氢原子就会出现多种情况。
2.已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3…。
用h 表示普朗克常量,c 表示真空中的光速。
能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1 解析:选C 从n =2跃迁到∞,hc λ=E ∞-E 2=-E 14, 所以λ=-4hc E 1。
(对应学生用书页码P27)对玻尔原子结构理论的理解[例1] A .原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量B .原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C .电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D .电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率[解析] A 、B 、C 三项都是玻尔提出来的假设。
其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念,原子的不同能量状态与电子绕核运动不同的圆轨道相对应,是经典理论与量子化概念的结合。
电子跃迁辐射的能量为hν=E n -E m 与电子绕核做的圆周运动无关,故D 错。
故A 、B 、C 选项正确。
[答案] ABC氢原子的能级跃迁与电离[例2] (n =2的能级时,辐射光的波长为656 nm 。
以下判断正确的是________。
(双选,填正确答案标号)图242A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nmB.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级[解析] 由于n=3与n=2间的能量差为-1.51-(-3.4)=1.89 eV,而n=1与n=2间的能量差为-3.4-(-13.6)=10.2 eV,根据ΔE=hν=h cλ可知,氢原子从n=2跃迁到n=1的能级时辐射的波长λ=121.6 nm小于656 nm,A错误;同样从n=1跃迁至n=2能级需要的光子的波长也恰好为121.6 nm,B错误;一群处于n=3能级的氢原子向低能级跃迁时可能会出现3种可能,因此会放出3种不同频率的光子,C正确;电子发生跃迁时,吸收或放出的能量一定等于这两个能级间的能量差,为一特定值,大于或小于这个特定的值都不能使之发生跃迁。
因此D正确。
[答案] CD所谓电离,就是使处于基态或激发态的原子的核外电子跃迁到n=∞的轨道,n=∞时,E∞=0,所以要使处于基态的原子电离,电离能为ΔE=E∞-E1=13.6 eV。
(对应学生用书页码P28) 1.关于原子结构的认识历程,下列说法正确的有( )A.汤姆孙发现电子后猜想出原子内的正电荷集中在很小的核内B.α粒子散射实验中少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据C.对原子光谱的研究开辟了深入探索原子结构的道路D.玻尔原子理论无法解释较复杂原子的光谱现象,说明玻尔提出的原子定态概念是错误的解析:选BC 汤姆孙发现电子后猜想原子是枣糕式结构模型,即正电荷均匀地分布在原子内,电子就像枣糕一样镶嵌在原子内,A错误;α粒子散射实验结果是卢瑟福建立原子核式结构模型的依据,B正确;对原子光谱的研究,使人们认识了原子结构的特点,C正确;玻尔原子理论只能解释氢原子光谱,不能解释复杂的原子光谱,只能说明玻尔理论的局限性,它在一定范围内是正确的,D 错误。
2.关于玻尔的原子模型,下述说法中正确的是( )A .它彻底否定了卢瑟福的核式结构学说B .它发展了卢瑟福的核式结构学说C .它完全抛弃了经典的电磁理论D .它引入了普朗克的量子理论解析:选BD 玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A 错,B 正确,它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C 错,D 正确。
3.如图243所示为氢原子的四个能级,其中E 1为基态,若氢原子A 处于激发态E 2,氢原子B 处于激发态E 3,则下列说法正确的是( )图243A .原子A 可能辐射出3种频率的光子B .原子B 可能辐射出3种频率的光子C .原子A 能够吸收原子B 发出的光子并跃迁到能级E 4D .原子B 能够吸收原子A 发出的光子并跃迁到能级E 4解析:选B 原子A 处于激发态E 2,因此其辐射光子频率数目只能有1种,A 错,原子B 处于n =3的能级C n 2=3种,B 正确。
由氢原子能级的量子性及吸收光子必须满足hν=E m -E n ,可知C 、D 错。