圆锥曲线的极坐标方程及应用
高二数学选修4-4教案04圆锥曲线的统一极坐标方程

圆锥曲线的统一极坐标方程教学目标掌握三种圆锥曲线的统一极坐标方程,了解统一方程中常数的几何意义.会根据已知条件求三种圆锥曲线的极坐标方程,能根据圆锥曲线的统一极坐标方程进行有关计算.通过建立三种二次曲线的统一极坐标方程,对学生进行辩证统一的思想教育.教学重点:圆锥曲线统一的极坐标方程,会根据条件求出圆锥曲线的统一极坐标方程.教学难点:运用圆锥曲线统一的极坐标方程解决有关计算问题.教学疑点:双曲线左支所对应的θ范围,双曲线的渐近线的极坐标方程.活动设计:1.活动:思考、问答、讨论.2.教具:尺规、挂图.教学过程:一、问题引入大家已经学过,椭圆、双曲线、抛物线有两种几何定义,其中,第二定义把三种圆锥曲线统一起来了,请回忆后说出三种圆锥曲线的第二定义.学生1答:列定点F(焦点)的距离与列定直线l(准线)的距离比是一个常数e(离心e∈(0,1)时椭圆,e∈(1,f∞)时双曲线,e=1时抛物线.二、数学构建建立统一方程在极坐标系中,同样可以根据圆锥曲线的几何定义,求出曲线的极坐标方程.过F作FK⊥l于K,以F为极点,KF延长线为极轴,建立极坐标系.设M(ρ,θ)是曲线上任一点,连MF,作MA⊥l于A,MB⊥l于B(如图3-24).|FK|=常数,设为p.∵|MA|=|BK|=|KF|+|FB|,∴|MA|=p+ρcosθ.这就是圆锥曲线统一的极坐标方程.三、知识理解对圆锥曲线的统一极坐标方程,请思考讨论并深入了解下述几个要点:(1)必须以双曲线右焦点和椭圆的左焦点为极点,Ox轴方向向右,尚若Ox方向向左,其方程如何?(讨论后)学生2答:无需重新求方程,只须两个极坐标系Ox与Ox′之间的坐标关系作坐标转换(图3-25).(2)根据统一的极坐标方程,由几何条件求出e、p后即可写出曲线的极坐标方程,这要明确e、p的几何意义分别是离心率和焦准距(ep为有关几何量e,p,a,b,c?(讨论后)学生3答:此式为统一极坐标方程的标准式得到一个二元一次方程组,使问题的计算得以简化.e∈(0,1)时,表椭圆.e=1时,表抛物线.e∈(1,+∞)时,表双曲线.但注意到,e>1时,1-ecosθ≤0关于θ有解,而ep>0,这样ρ<0,甚至无意义.前面学过,通常情况下,ρ≥0,这就似乎出现矛盾,如何解决这一矛盾?(讨论后)学生4答:(如图3-26)上面推导统一方程过程中,当m在左支时,|MA|=|BK|=此时方程与右支的情况不同.这时,若设θ=θ′+π,ρ′=-ρ,上述推导与分析实际上是:若射线OP与双曲线有两个交点;当视θ=∠xOP时,则ρ>0(∵cosθ<0),此时所表点是右支上的点;当视θ=∠xOP-π时,则ρ<0,此时所表点是左支上的点.综上知,e>1时,统一极坐标方程所表双曲线情况是:若ρ>0,即1-ecosθ>0,则表右支;若ρ<0,即1-ecosθ<0,则表左支;取θ∈[0,2π),则θ范围所对曲线如下:线左支;条渐近线.如图3-27所示,只有掌握这一对应关系,才能在有关计算中不会造成混乱和错误.四、应用举例线交椭圆于M、N两点,设∠F2F1M=θ(0≤θ<π),求θ的值,使|MN|等于短轴长.解:以F1为极点,F1F2为极轴建立极坐标系椭圆的极坐标方程为设M(ρ1,θ)、N(ρ2,θ+π),则五、课堂小结(1)三种圆锥曲线的统一极坐标方程,常数的几何意义.(2)曲线的极坐标方程求法,根据极坐标方程确定a、b、c的注意点及进行有关计算.(3)双曲线左、右支所对的ρ及θ的范围.六、布置作业1.第二教材.2.选择题:线方程是(C) A .ρcosθ=1 B .ρcosθ=2(2)椭圆、双曲线、抛物线三条曲线的焦点是极点(椭圆左焦点和双曲线右焦点),它们的图形如图3-28所示,则图中编号为①、②、③的曲线应分别是(D).A .椭圆、双曲线、抛物线B .抛物线、椭圆、双曲线C .椭圆、抛物线、双曲线D .双曲线、抛物线、椭圆双曲线θρcos 5115-=的两渐近线的夹角是 。
圆锥曲线的极坐标方程及其应用

分析 对于任意 X≥0,都有 f(x)≤0恒成立 兮 对于任
意 z≥0,都有 ln(1+z)一
点开 口向左 的抛物线 、极点在左焦点 的双 曲线:
则 k=( )
(3)P: _ !, 一 表示极点在下 焦点 的椭圆 、极点为焦
A . 1
B .
C.
D. 2
定 理 4 若 F (z)、F ( )、F ( )在 【0,+。。)都 有 意 恒成立,求 实数 的最小值 .
义,F(o)= 0,F x)≤ 0,则 对 于 任 意 ≥ 0,都 有
≤0恒成立 兮 对于任
意 ≥0,都有 (1+z)In(1+ )一z≤Ax。恒成立 .设 F(x)=
(1+ )ln(1+ )一x(x≥0),则 F(O)=0,F x)= ln(x+1),
( )
, )
< 0, (0)= 1,
F (0)= ,意识到先证 明:(1+ z)ln(1+z)一 ≤ , 自然想 到构造 函数 C(x)= (1+ )ln(1+ )一z一 。.
表 示 极 点 在 上 焦 点 的 椭 圆 、极 点 为 焦
常常是设 出直 线方程,然后 与 圆锥 曲线方 程联立,或解 方程 点开 口向下 的抛物线 、极点在下焦点的双曲线.
组 ,或用 韦达定理或用 弦长公式 ,都会 带来 繁琐 的运算,致使
注 e为圆锥曲线离心率,p为焦点到相应准线 的距 离,p
点开 口向右 的抛物线 、极点在右焦点的双 曲线;
圆锥曲线的参数方程与极坐标方程的性质解析

圆锥曲线的参数方程与极坐标方程的性质解析圆锥曲线是在平面上绕着一个固定点旋转而生成的曲线。
它可以通过参数方程或极坐标方程来描述。
本文将重点分析圆锥曲线的参数方程和极坐标方程的性质,并对其进行解析。
一、参数方程的性质解析参数方程是将曲线上的每一个点的坐标表示为一个参数的函数。
对于圆锥曲线而言,其参数方程形式为:x = f(t)y = g(t)其中,x和y分别表示曲线上某一点的坐标,t是参数,f(t)和g(t)是关于t的函数。
1. 参数方程的灵活性相比于其他方程形式,参数方程具有较高的灵活性。
它可以描述复杂的曲线形状,并能够轻易地对曲线进行调整和变换。
例如,通过改变参数的取值范围或参数方程的函数表达式,可以得到不同形状的圆锥曲线。
2. 参数方程的解析性质由于参数方程中的每个变量都是独立的,因此可以分别研究x和y与参数t的关系。
这使得我们能够更好地理解曲线的性质和特点。
例如,通过对参数t的逐渐增减,可以得到曲线上的点的轨迹,并进一步分析其变化规律。
3. 曲线的方程与参数方程的关系圆锥曲线的参数方程可以通过消除参数t来得到与之对应的方程。
具体而言,将参数方程中的t表示为与x和y有关的表达式后,将其代入另一个参数方程中,消去t即得到方程形式。
这种转换使得我们能够从方程的角度更加全面地理解曲线。
二、极坐标方程的性质解析极坐标方程是将曲线上的每一个点的坐标表示为极坐标下的径向距离r和极角θ。
对于圆锥曲线而言,其极坐标方程形式为: r = f(θ)其中,r表示点到极点的距离,θ表示点与极轴的夹角,f(θ)是关于θ的函数。
1. 极坐标方程的简洁性极坐标方程是用极坐标形式直接描述曲线的方程形式,相比于笛卡尔坐标系下的方程,更具有简洁性。
通过极坐标方程,我们可以直观地了解曲线在极坐标系下的性质和特点。
2. 极坐标方程的周期性对于某些特定的圆锥曲线,它们的极坐标方程具有周期性。
也就是说,当θ的取值范围在一定的区间内变化时,曲线的形状会在一定的规律下重复出现。
极坐标方程在圆锥曲线中的应用

极坐标方程在圆锥曲线中的应用作者:周震来源:《中学生数理化·学习研究》2017年第08期在圆锥曲线问题中,常出现的长度问题主要有两大类:一是与焦点有关,主要体现在过焦点的弦长、直线的倾斜角、焦准距等相关的问题;二是与原点有关的长度和角度问题。
这两类问题利用圆锥曲线常规解法往往运算量较大,学生通常比较害怕。
如果我们转换思路,合理利用曲线的极坐标方程来解,可以将繁琐复杂的计算简单化,提高解题速度和正确率。
下面通过具体例题来阐述圆锥曲线的极坐标解法。
在极坐标系中,以圆锥曲线的焦点F(椭圆为左焦点,双曲线为右焦点)为极点,对称轴为极轴建立极坐标系,离心率为e,焦点到准线的距离为p。
则圆锥曲线的极坐标方程为ρ=ep1-ecosθ。
当以原点为极点,Ox轴为极轴时,椭圆x2a2+y2b2=1(a>b>0)的极坐标方程ρ2=a2b2b2cos2θ+a2sin2θ。
双曲线x2a2-y2b2=1的极坐标方程为ρ2=a2b2b2cos2θ-a2sin2θ。
抛物线y2=2px的极坐标方程为ρsin2θ=2pcosθ。
圆心为(a,0),半径为a的圆的极坐标方程为ρ=2acosθ。
一、与焦点有关的问题例1已知椭圆x2a2+y2b2=1(a>b>0)过椭圆的左焦点F作倾斜角为π3的直线交椭圆于A、B两点,且AF∶BF=2∶1,求椭圆的离心率。
分析:在极坐标系中,由于椭圆的极坐标方程是以左焦点为极点,x轴的正半轴为极轴建立的坐标系,极径的长即为椭圆上的点到焦点的距离,所以可以利用极坐标方程来解决。
解:以椭圆的左焦点F为极点,Fx轴为极轴建立极坐标系,则椭圆的极坐标方程为ρ=ep1-ecosθ。
则AF=ep1-12e,BF=ep1+12e。
因为AF∶BF=2∶1,所以ep1-12e∶ep1+12e=2∶1。
化简得e=23。
故所求椭圆的离心率为e=23。
运用极坐标方程解决与焦点弦长有关的问题可以简化计算量,提高解题速度和效率。
圆锥曲线的极坐标方程与直角坐标方程的转换方法分析

圆锥曲线的极坐标方程与直角坐标方程的转换方法分析圆锥曲线是指平面内由一个动点和一个定点所围成的轨迹。
根据该定点和动点之间的距离与动点与定点连线在另一直角坐标系中的夹角,我们可以得到圆锥曲线的极坐标方程和直角坐标方程。
本文将对圆锥曲线的极坐标方程与直角坐标方程的转换方法进行分析。
一、圆锥曲线的极坐标方程圆锥曲线的极坐标方程以定点为极点,以与定点连线的延长线为极轴。
设动点到定点的距离为r,动点与极轴的夹角为θ,则圆锥曲线的极坐标方程可表示为(r,θ)。
对于不同类型的圆锥曲线,其极坐标方程表达不同,具体如下:1. 圆的极坐标方程:r = a,其中a为圆的半径;2. 椭圆的极坐标方程:r = a(1 - ecosθ),其中a为椭圆的半长轴长度,e为离心率;3. 双曲线的极坐标方程:r = a(1 + ecosθ),其中a为双曲线的半长轴长度,e为离心率;4. 抛物线的极坐标方程:r = a(1 + cosθ),其中a为抛物线的焦距。
通过极坐标方程,可以清晰地描述圆锥曲线的形状和参数。
二、圆锥曲线的直角坐标方程圆锥曲线的直角坐标方程以任意点为参考点,以两个坐标轴为参考线。
设参考点在直角坐标系中的坐标为(x, y),则圆锥曲线的直角坐标方程可表示为f(x, y) = 0。
不同类型的圆锥曲线的直角坐标方程如下:1. 圆的直角坐标方程:(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为圆的半径;2. 椭圆的直角坐标方程:(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆中心的坐标,a和b分别为椭圆的半长轴和半短轴长度;3. 双曲线的直角坐标方程:(x - h)²/a² - (y - k)²/b² = 1,其中(h, k)为双曲线中心的坐标,a和b分别为双曲线的半长轴和半短轴长度;4. 抛物线的直角坐标方程:y = ax²,其中抛物线开口方向决定了a 的正负。
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线当 e >1时!方程表示极点在下焦点的双曲线(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=.2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。
)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。
(三)圆锥曲线的极坐标方程

直线方程的极坐标形式
( 0)表示极角为的一条射线。 = ( R)表示极角为的一条直线。
1、当直线l过极点,即0=0时,直线l的方程 是什么?
2、当直线l过点M(b, )且平行于极轴时,直线的极 2 坐标方程是什么? sin b
3、求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程。 ρcosθ=a
圆锥曲线的极坐标形式
则有 表示椭圆 表示抛物线 表示双曲线右支 (允许 表示整个双曲线)
y
F
x
再见
5 B 3、椭圆 的长轴长是____ 3 2 cos
A 3 B 6 C 9 D 12
另解:
O
x
极坐标小结
M ( , )
O
x
设M是平面内一点,极点O与点M的距离 OM 叫做点M的极径,记为;以极轴Ox 为始边,射线OM为终边的xOM叫做点 M的极角,记为。有序数对( , )叫做点 M的极坐标,记做M ( , )
三种圆锥曲线的统一定义为:
平面内,到一个定点(焦点F)和一条定直线 (准线L)的距离之比等于常数(离心率e)的点的轨迹。 若设定点F到定直线L的距离为p,则可求到定点F和定 直线L的距离之比为常数e的点的轨迹的极坐标方程。
三种圆锥曲线的统一的极坐标方程: 如图建立坐标系, 设圆锥曲线上任一点 , 由定义知
的值,使|MN|等于短轴长.
解:以F1为极点,F1F2为极轴建立极坐标系
椭圆的极坐标方程为 设M(ρ1,θ)、N(ρ2,θ+π),则
练习3
2 曲线 = 的一条准线方程是 cos 1, 3-2cos 其另一条准线方程是:
圆锥曲线与极坐标

圆锥曲线与极坐标极坐标在平⾯内取⼀个定点O,叫极点,引⼀条射线Ox,叫做极轴,再选定⼀个长度单位和⾓度的正⽅向(通常取逆时针⽅向)。
对于平⾯内任何⼀点M,⽤ρ表⽰线段OM的长度(有时也⽤r表⽰),θ表⽰从Ox到OM的⾓度,ρ叫做点M的极径,θ叫做点M的极⾓,有序数对 (ρ,θ) 就叫点M的极坐标,这样建⽴的坐标系叫做极坐标系。
极坐标系⽤长度和⾓度取代了⼆维的坐标,相对于⼀般的直⾓坐标为下⾯的优点:便于处理⾓度的关系便于表⽰和计算长度设M为平⾯上的⼀点,它的直⾓坐标为 (x,y),极坐标为 (ρ,θ),易得互化公式:x=ρcosθy=ρsinθorρ2=x2+y2 tanθ=yx (x≠0)p,由圆锥曲线的统⼀定义知ρd=e,由图形可得d=p+ρcosθ,代⼊得ρ=ep1−e cosθ当e=0 时,轨迹为圆;0<e<1 时,轨迹为椭圆;e=1 时,轨迹为抛物线;e>1 时,轨迹为双曲线。
(2)以坐标原点为极点在这⾥只考虑椭圆与双曲线的情况,抛物线也可类⽐:椭圆或双曲线的标准⽅程(焦点在x轴上)为:x2a2±y2b2=1 {{Processing math: 100%代⼊x=ρcosθ,y=ρsinθ得:ρ2cos2θa2±ρ2sin2θb2=1,提取ρ2得:1ρ2=cos2θa2±sin2θb2,此⽅程表⽰椭圆或双曲线的轨迹。
取加号时,轨迹为椭圆;取减号时,轨迹为双曲线。
⼀些结论如图,F为圆锥曲线E的焦点,过F的直线交E与A,B两点,设直线AB的倾斜⾓为α,则|AF|=ep1−e cosα, |BF|=ep1+e cosα|AB|=ep1−e cosα+ep1+e cosα=2ep1−e2cos2α(看成以F为极点的极坐标系,由圆锥曲线⽅程ρ=ep1−e cosθ,令θ=α可得A点的ρ,即 |AF|;同理,令θ=α+π得到B的,再⽤诱导公式 cos(θ+π)=−cosθ)当椭圆与双曲线以标准⽅程表⽰时,焦准距p=b2c,离⼼率e=ca,那么|AF|=b2a−c cosα, |BF|=b2a+c cosα|AB|=2ab2a2−c2cos2α若|AF||BF|=λ,则1+e cosα1−e cosα=λ,解出e cosα=λ−1λ+1已知e,λ时,可⽤上式求倾斜⾓。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的极坐标方程及应用 圆锥曲线的统一极坐标•/• Q SZQZSQ S ,,,,,SD ZZXZZ 方程
ep
尸 1—eoR (
其中P 为焦点到相应准线的距离,称为焦准距. 当Ov ev 1时,方程尸1—COSI 表示椭圆; 当e = 1时,方程(***)为p= —P —-,表示抛物线;
1 — cos 0
当e > 1时,方程P 「竟表示双曲线,其中p€ R .
I — ecos 0
2 2
已知A 、B 为椭圆予+ *= 1(a > b > 0)上两点,
OA 丄OB(O 为 原点).
[再练一题]
1. 本例条件不变,试求△ AOB 面积的最大值和最小值. »例 1 1
求证:OA 2+OB 2为定值.
■2 +
2 2
过双曲线J-¥ = 1的右焦点,引倾斜角为扌的直线,交双曲线于A、B两点,求AB.
应用圆锥曲线的极坐标方程求过焦点(极点)的弦长非常方便.椭圆和抛物线中,该弦长都表示为p+ P,而双曲线中,弦长的一般形式是|p+ p|.
(1) 以F 为极点,x 轴正方向为极轴的正方向,写出此抛物线的极坐标方程;
(2) 过F 作直线I 交抛物线于A , B 两点,若AB = 16,运用抛物线的极坐标 方程,求直线I 的倾斜角.
3 p= 1—2C0SV 过极点作直线与它交于A ,B
两点,且AB = 6,求直线AB 的极坐标方程.
[再练一题] 3.平面直角坐标系中,有一定点 F(2,0)和一条定直线I : x = — 2.求与定点F 的距离和定直线I 的距离的比等于常数 1 2的点的轨迹的极坐标方程.
已知双曲线的极坐标方程为
4
1.抛物线p「4/p>0)的准线方程为
I — cos D
4
2.设椭圆的极坐标方程是p= 4 ,贝U入的取值范围是
2 — yCOS U
4
3.椭圆尸2—cos B的焦距是
9
2.已知双曲线的极坐标方程是尸4^COS1),求双曲线的实轴长、
虚轴长
和准线方程.
卜例H已知抛物线y* 2 *= 4x的焦点为F.
4
4.双曲线p= 2 — 3COS B的焦点到准线的距离为。