圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
高中数学圆锥曲线性质与公式总结

1 r22
1 a2
1 b2
(r1 | OP |, r2
| OQ |)
.
16.若椭圆
x2 a2
y2 b2
1(a>b>0)上中心张直角的弦
L
所在直线方程为
Ax By
1
( AB
0)
,则(1)
1 a2
1 b2
A2 B2 ;(2)
L
2 a4 A2 b4B2 a2 A2 b2B2
或(o, m)为其对称轴上除中心,顶点外的任一点,过 M 引一
条直线与椭圆相交于 P、Q 两点,则直线 A1P、A2Q(A1 ,A2 为对称轴上的两顶点)的交点 N 在直线 l :x a2 (或 m
y b2 )上. m
40.设过椭圆焦点 F 作直线与椭圆相交 P、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和 AQ 分别交相
1
则直线
BC
有定向且 kBC
b2 x0 a2 y0
(常数).
x2 20.椭圆 a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2 ,则椭圆
的焦点三角形的面积为 SF1PF2
b2
tan 2
, P(
a c
c2 b2 tan 2 , b 2 tan ) 2c 2
应于焦点 F 的椭圆准线于 M、N 两点,则 MF⊥NF.
41.过椭圆一个焦点 F 的直线与椭圆交于两点 P、Q, A1、A2 为椭圆长轴上的顶点,A1P 和 A2Q 交于点 M,
A2P 和 A1Q 交于点 N,则 MF⊥NF.
圆锥曲线焦半径公式

圆锥曲线焦半径公式
圆锥曲线焦半径公式是一种比较复杂的数学运算公式,通过利用该公式,我们
可以求得圆锥曲线的焦半径。
一般来说,这个公式非常重要,因为它与圆锥曲线的属性有关,可以对圆锥曲线的平面投影或者轮廓作出准确的描述。
圆锥曲线焦半径公式可以用简洁的数学表示式来表示,如下:
R=c/2√2h
其中:R 为圆锥曲线焦半径,c 为圆锥曲线曲线圆心到曲线上任一点的距离,
h 为圆锥曲线曲线圆心到曲线外点的距离。
圆锥曲线的焦半径是由圆锥曲线的半角和曲率来决定的,它与曲率之间的关系
是正比的,这意味着,随着曲率的增加,圆锥曲线的焦半径也会相应增加。
圆锥曲线焦半径公式的应用非常广泛,它既可以用于求解圆锥曲线的几何特征,也可以用于计算圆锥曲线曲线与所需圆或椭圆的关系。
圆锥曲线的焦半径公式已经被广泛应用于室内景观设计、建筑设计、测量计算等领域。
总之,圆锥曲线焦半径公式是一个复杂但又非常有用的数学公式,它与圆锥曲
线的曲率有关,对于求解圆锥曲线属性和计算各类圆或椭圆的关系有着重要的作用,应用范围也十分广泛,值得我们加以重视。
圆锥曲线焦点弦长公式

圆锥曲线焦点弦长公式
椭圆:
对于椭圆,其标准方程为 a2x2+b2y2=1(其中 a>b)。
焦点到椭圆上任意一点的距离之和为常数,等于椭圆的长轴长,即 2a。
焦点弦长的一般公式比较复杂,但如果是过焦点的直线与椭圆相交,且直线的斜率存在,设为 k,则弦长 L 可以用以下公式表示:
L=a2k2+b22b2
双曲线:
对于双曲线,其标准方程为 a2x2−b2y2=1。
焦点到双曲线上任意一点的距离之差为常数,等于双曲线的实轴长,即 2a。
对于双曲线的焦点弦长,情况与椭圆类似,但公式会有所不同。
如果过焦点的直线与双曲线相交,且直线的斜率存在,设为 k,则弦长 L 可以用以下公式表示:L=b2−a2k22b2
抛物线:
对于抛物线,其标准方程为 y2=4px(其中 p 是焦距)。
焦点到抛物线上任意一点的距离等于该点到准线的距离。
对于抛物线的焦点弦长,如果过焦点的直线与抛物线相交,且直线的斜率存在,设为 k,则弦长 L 可以用以下公式表示:
L=k22p。
圆锥曲线全部公式及概念

1. 椭圆l τ + ∑- = i(a>b>O)的参数方程是V Cr Zr 2,2»2准线到中心的距离为L ,焦点到对应准线的距离(焦准距)p =—・通径的一半(焦参数):丄.C Ca2 22. 椭圆∆τ + l τ = l(rt >∕7>θ)焦半径公式及两焦半径与焦距构成三角形的面积: Cr Zr| PF l | = e(x + —) = a+ ex , ∖PF 21 = e(-— X) = U-ex ↑ S 斗严;=b 2 tan '丫 F22 223.椭圆的的内外部:(1)点PesyO)在椭圆丄v + L = l(α>b>0)的内部O⅛- + ⅛<l. Cr 泸Cr b'2 2 2 2(2)点 P(X o o to)在椭圆上τ +丄r = l(α>b>O)的外部 <≠>⅛ + ⅛>ι.Cr Zr Cr Zr的距离(焦准距)P = — •通径的一半(焦参数):— C a5. 双曲线的内外部:(1)点P(X o o tO)在双曲线=Cr Ir/2 2 2 2 ⑵点P(X (P y 0)在双曲线一一二~ = l(α > 0,b > 0)的外部o —⅛■-汙V1・Cr IrCr Zr6. 双曲线的方程与渐近线方程的关系:(1)若双曲线方程为二一二=1二>渐近线方程:Δ1-22 = O^> y = ±-χ・α~ Ir Cr 少a-> 2A χ∙ V r β,V*⑵若渐近线方程为y = ±-x<=>-±- = O=>¾曲线可设为r — — = λ・ a a b Cr Zr2 22 2⑶若双曲线与亠一亠=1有公共渐近线,可设为=T 一亠=λCr XCr Ir(λ>0,焦点在X 轴上;九<0,焦点在y 轴上)・ (4)焦点到渐近线的距离总是b ∙7. 抛物线y 2= 2px 的焦半径公式:拋物线y 2=2px(p>0)焦半径ICFI = X O + -^・ 过焦点弦长IcQl = “+上+心+ £ = “+“ + 〃 . 2 2 28. 拋物线y 2 = IPX JL 的动点可设为P(±-,儿)或P(2∕"[2p∕) P(x , V ),其中y 2= 2PX ・2 P '•、 b A ,ac — b~9. 二次函数y = ax 1 +bx + c = a(x + —)2+ ------------- (a ≠ 0)的图象是抛物线:(1 )顶点坐标为Ia 4aZb 4“C — b~ z. .. ... I . . h ^CIC — /?" +1、 Z -S Λ /V ∙ z t , CT^CIC — b~ — 1 ,—:——):(2)焦点的坐标为,——; ---------------- ):(3)准线万程是y = IABl = 5J(1+^2)(X 2 "ΛI )2 =I 比 _兀21 Vl +tan 2 a =I y l _y 21 √l + c^t 2ay = kx + b . .α(弦端点ACv 1,y 1X B(X^y 2),由方程<消去y 得到αL +bx + c = O 9 Δ>0, α为直线AB 的圆锥曲线X = Cl COS θ 亠 亠 C• 离心率£ =—= y = bs ∖nθ aV»*■ C 4. 双曲线亠一 — = 1(« > 0.Z? > 0)的离心^e =— a ∕Γa • 2ι2 「,准线到中心的距离为∙,焦点到对应准线 焦半径公式\PF }\ =I e(x + —) I=I a + <?xI, ∖PF 2∖ =I e(-^x) I=I a-ex ∖9 C 两焦半径与焦距构成三角形的面积S λj.ιp l .y = b 2 COt 'F'] F .2 22L = l(">0d>0)的内部 o ⅛-4>l. • - Cr Zr2a 4a2a 4a" 4a10. 以抛物线上的点为圆心,焦半径为半径的圆必与准线相切:以拋物线焦点弦为直径的圆,必与准线相切; 以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切・11. 直线与圆锥曲线相交的弦长公式:IABI = √(x 1-x 2)2+(y 1-y 2)2或F(x,y) = O倾斜角,&为直线的斜率,I召I= J(XI +心)‘ _4召心・12.圆锥曲线的两类对称问题:(1)曲线F(X,y) = O关于点P(X o,儿)成中心对称的曲线是F(2x0-x t2y0 -y)=0.(2)曲线F(X,y) = 0关于直线Av + Bv + C = O成轴对称的曲线是—2A(Ar + By+ C) 2B(Ax + By + C)x CFa ------ —R——、y --------- -V———)=0・√Γ+歹A" + B'特别地,曲线F(X9 y) = 0关于原点O成中心对称的曲线是F(-x,-y) = 0・曲线F(X9 y) = 0关于直线X轴对称的曲线是F(X^y) = 0.曲线F(X9 y) = 0关于直线y轴对称的曲线是F(-x, y) = 0・曲线F(X9 y) = 0关于直线y = x轴对称的曲线是F{y.x) = 0.曲线F(X,y) = 0关于直线y = -x轴对称的曲线是F(-y,-x) = 0・13 •圆锥曲线的第二定艾:动点M到定点F的距离与到定直线/的距离之比为常数£,若0 VfVl, M的轨迹为椭圆;若e = ∖9 M的轨迹为抛物线;若e>∖9 M的轨迹为双曲线.注意:J还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定狡2、还记得圆锥曲线方程中的:2(1)在椭圆中:α是长半轴,〃是短半轴,C是半焦距,其中b2 =a2-C29 f = (Ovwvl)是离心率,—a C• 2. 2是准心距,-L是准焦距,-L是半通径.C a2(2)在双曲线中:"是实半轴,b是虚半轴,C是半焦距,其中b2 =c2-a29 e = -∖e>l)是离心率,L是a C准心距,伫是准焦距,冬是半通径.C a(3)在抛物线中:0是准焦距,也是半通径.3、在利用圆锥曲线统一定狡解题吋,你是否注意到定艾中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(0 = √Σ)5、在用圖锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式A 2 0的限制. (求交点,弦长,中点,斜率,对称,存在性问题都在Δ >0下进行).注意:尤其在求双曲线与直线的交点时:当A>0时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况):当A = O时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当AvO时,直线与双曲线没有交点.6、椭圆中,注意焦点.中心.短轴端点所组成的直角三角形•此时Cr =b2+c2・7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论)8、你知道椭圆、双曲线标准方程中aj∖c之间关系的差异吗9、如果直线与双曲线的渐近线平行吋,直线与双曲线相交,只有一个交点;如果直线与拋扬线的轴平行时,直线与抛物线相交,只有一个交点•此时两个方程联立,消元后为方程变为一次方程.椭圆练习1・过椭圆二+二=1 (a>b>O)的左焦点F I任做一条不与长轴重合的弦AB, F2为椭圆的右焦点,則AABA的周长是/ b^( )(A)2a (B)4a (C)2b (D) 4b2•设a,beR.a2+2b2 =6,则α + b 的最小值是( )(A) - 2√2 (B)-垃(0-3 (D)-2323. 椭圆的两个焦点和短轴的两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )(A)丄 (B)遇 (C)遇 (D)丄或遇2 23 2 24. 设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,則m 的值等于( )(A) 2(B) √2(C) 2 或丄 (D) √Σ 或空2 22 25. 过椭圆二+ L = l(°>b> 0)的左焦点片作X 轴的垂线交椭圆于点P,化为右焦点,若ZF i PF. = 60 ,则Cr "椭圆的离心率为()(A)^⑻迟 (C)I(D)I23236. 如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的() (A) 18 倍 (B) 12 倍 (C) 9 倍 (D) 4 倍7. 当关于X, y 的方程X 2Sin^ -y 2COSCr=I 表示的曲线为椭圆时,方程(x+cos α)'+(y+ Sinaf)Jl 所表示的圆的國心在()(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限8. 已知椭圆的焦点为F b F 2,P 是椭圆上的一个动点,如果延长F 卩到Q,使得I PQ I=I PF 2I,那么动点Q 的轨迹是( )(A)圆 (B)椭圆 (C)直线 (D)其它9. 已知椭圆—÷-= 1与圆(χ-a)⅛Λ=9有公共点,则a 的取值范围是()9 4 (A)-6<a<6(B)0<a≤5(C)a 2<25(D) ∣a∣≤610•设椭圆的两个焦点分别为F-、F 2,过F?作椭圆长轴的垂线交椭圆于点P,若AFPFz 为等腰直角三角形,则椭 圆的离心率是()(A)YZ(B)幺二! (C) 2-√2(D) √2-l2 2SS11. 在椭圆—÷γ-≈ 1上取三点,其横坐标满足X I +×3=2X 2,三点依次与某一焦点连结的线段长为r b r 2, r 3,则有 α∙ b・I I 7()(A) r b r 2, r 3成等差数列 (B)丄+丄=二 (C) r b r 2,r 3^等比数列 (C)以上都不对 12•已知椭圆C ι- + y 2= 1的右焦点为F,右准线为/,点Ae/ ,线段4F 交C 于点B,若FA = 3FB, »■]2伍若椭圆之+「I 的离心率是、则W*16 •椭圆X 2COs 2 α +y 2=1 (0< a <ΛR, a≠ y )的半长轴= ------- ,半短轴= -------- ,半焦距= -------- ,离心率= ----------------- = --------- ,則该椭圆的离心率的取值范围为 ____________________ ・(A) (0.1)(B) (0.1)(0(0,#)(D)哼,1)13.已知片、耳是椭國的两个焦点,满足・"庁=0的点M 总在椭圆内部•则椭圆离心率的取值范围是()14. 一个椭圆中心在原点,焦点斤、C 在X 轴上,P (2, √J)是椭圆上一点,且1卩斤1、1斥巴I 、IP 耳I 成等差数列,則椭圆方程为()(A) ⅞4- ⑻护汀<C) ⅜÷⅞ = ∙ I 丽二()(A) √2 (B) 2 (C)^(D) 317.已知椭圆⅛4= ↑(a>b>O)的左、 右焦点分别为斤(一c,0),耳(c,0), 若椭圆上存在一点P 使Sin PI71F2 Sin PF l F X是椭圆二+ 2_ = i上的一A,F I,F2是椭圆的焦点,且ZF I MF2=9O o,则ZkFNF?的面积等于9 419•与圆(x+1)2+y2=1相外切,且与IS(X-I)2÷y2=9相内切的动圆圆心的轨迹方程是X = 4COSa , …Ir20•设椭圆( L (□为参数)上一点P与X轴正向所成角ZPOx=-, 点P的坐标是y = 2√3 Sin a 321.在平面直角坐标系.9y中,椭E)4÷4 = 1G∕>∕7>O)的焦距为2c,以0为圆心,为半径作圆M ,若过P(Qe) Cr Iy C作圆M的两条切线相互垂直,则椭圆的离心率为 _________________22•已知直线/ : y=mx+b,椭圆C: (A ^.I)÷y2=1,若对任意实数叫/与C总有公共点,則a, b应满足的条件“是 _________ •23•椭圆F=4cos0 (。
椭圆的极坐标方程双曲线焦点坐标

当点P在双曲线左支上时,PF1aex,PF2aex;
3、若F是抛物线的焦点,PFx
p. 2坐标曲线题
题型研究
题型一坐标曲线题
热点题型精讲
坐标曲线类试题一般结合数学中的平面直角坐标系考查,用横纵坐标代表不同的化学量,主要与氧气的制取、金属与酸和盐的反应、酸碱盐之间的反应、溶质质量分数和pH等知识相结合考查。
类型一溶解类
解读:一定温度下,向一定量A物质的饱和溶液中加入A物质。A不再溶解,溶质质量分数不变。
解读:一定温度下,向一定量A物质的接近饱和的溶液中加入A物质。A溶解至饱和后不再溶解,溶解质量分数先增大,后不变。
类型二pH曲线
1.溶液稀释时pH的变化
解读:稀释碱性溶液时,开始时溶液的pH﹥7,随着加水量的增加,pH不断减小,但不会小于7。
ep椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos
其中p是定点F到定直线的距离,p>0.
当0<e<1时,方程表示椭圆;
当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;
当e=1时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则∵PFe,∴PFe(PFcosp),其中pFH,〈x轴,FP〉∴焦半径PFep.1ecos
解读:同一反应,催化剂只影响化学反应速率,不影响生成物的质量。若横坐标为反应时间,由图像的斜率可以看出加入催化剂后化学反应速率明显加快,但生成物质量不变。化学反应前后物质总质量不变。
3.催化剂质量曲线
解读:化学反应前后,催化剂的质量不变。
圆锥曲线的焦半径公式推导

圆锥曲线的焦半径公式推导如下:圆锥曲线的焦半径公式是解决与圆锥曲线相关问题的重要工具。
对于椭圆来说,如果焦点在x轴上,且设点A(x_1, y_1)在椭圆上,那么点A到左焦点F_1的焦半径为a + ex_1,到右焦点F_2的焦半径为a - ex_1。
推导过程可以基于椭圆的标准方程和定义来进行:1. 椭圆的标准方程:对于中心在原点,半长轴为a,半短轴为b的椭圆,其标准方程通常写作:x²/(a²) + y²/(b²) = 1 (其中a > b > 0)2. 离心率:离心率e是描述椭圆形状的一个参数,定义为c/a,其中c是椭圆的焦距。
3. 焦半径的定义:对于椭圆上的任意一点P(x, y),到焦点的距离称为焦半径。
4. 使用相似三角形:根据圆锥曲线的第二定义,从椭圆的一个焦点出发到椭圆上一点的射线,与从另一焦点出发到同一点的射线以及与主轴的夹角θ之间存在关系。
通过构建相似三角形,可以得到焦半径的计算公式。
5. 坐标式:当焦点在x轴上时,若已知椭圆上一点的横坐标x_1,则到左焦点F_1的焦半径长度可以用a + ex_1来计算,到右焦点F_2的焦半径长度用a - ex_1来计算。
这里的e是椭圆的离心率。
6. 倾斜角式:利用焦半径与主轴正方向的夹角θ,可以得到更为通用的焦半径表达式,尤其适用于焦点不在坐标轴上的情况。
在这种情况下,焦半径的长度与夹角θ有关,表达式为r = b²/(a±ccosθ),这里±的选择取决于焦点的位置。
综上所述,圆锥曲线的焦半径公式有多种表达形式,可以根据具体问题的需要选择合适的公式进行计算。
这些公式不仅在理论研究中有着重要作用,在解题和实际应用中也极其重要。
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式good

圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线当 e >1时!方程表示极点在下焦点的双曲线(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=.2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。
)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。
高中数学-圆锥曲线有关焦点弦的几个公式及应用

圆锥曲线有关焦点弦的几个公式及应用如果圆锥曲线的一条弦所在的直线经过焦点,则称此弦为焦点弦。
圆锥曲线的焦点弦问题涉及到离心率、直线斜率(或倾斜角)、定比分点(向量)、焦半径和焦点弦长等有关知识。
焦点弦是圆锥曲线的“动脉神经”,集数学知识、思想方法和解题策略于一体,倍受命题人青睐,在近几年的高考中频频亮相,题型多为小题且位置靠后属客观题中的压轴题,也有作为大题进行考查的。
本文介绍圆锥曲线有关焦点弦问题的几个重要公式及应用,与大家交流。
定理1?已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为)当焦点内分弦外分弦。
证明是焦点所对应的准线,点在直线上的射影分别为,点上的射,,,所以(1)内分弦时。
如图1,,所以(2)当焦点外分弦时(此时曲线为双曲线)。
如图2,,所以。
图2评注?特别要注意焦点外分焦点弦(此时曲线为双曲线)和内分焦点弦时公式的不同,这一点很容易不加区别而出错。
例1(2009年高考全国卷Ⅱ理科题)已知双曲线的右焦点为,过且斜率为的直线交于两点。
若,则的离心率为()解?这里,所以,又,代入公式得,所以,故选。
例2(2010年高考全国卷Ⅱ理科第12题)已知椭圆的离心率为。
过右焦点且斜率为的直线于相交于两点,若,则(??)解?的倾斜角为,代入公式得,所以,所以例3题)过抛物线的焦点作倾斜角为的直线,轴左侧),则有____解,代入公式得,解得例4题)已知的一个焦点,线段的延长线交于点,且,则解?设直线与焦点所在的轴的夹角为,所以例5(自编题)已知双曲线的离心率为,过左焦点且斜率为的直线交的两支于两点。
若,则___解?这里,,因直线与左右两支相交,故应选择公式,代入公式得,所以所以,所以。
定理2?已知点和直线是离心率为的圆锥曲线的焦点和对应准线,焦准距(焦点到对应准线的距离)为。
过点的弦与曲线的焦点所在的轴的夹角为,则有证明,过点作轴的垂线交直线于点,于点由圆锥曲线的统一定义得,,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的极坐标方程知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.椭圆、双曲线、抛物线统一的极坐标方程为: θρcos 1e ep-=.其中p 是定点F 到定直线的距离,p >0 .当0<e <1时,方程表示椭圆;当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;当e=1时,方程表示开口向右的抛物线.引论(1)若 1+cos epe ρθ=则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin epe ρθ=当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线(3)1+sin epe ρθ=当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编(1)二次曲线基本量之间的互求例1.确定方程1053cos ρθ=-表示曲线的离心率、焦距、长短轴长。
解法一:310253331cos 1cos 55ρθθ⨯==-- 31053e P ∴==,2332555851015103383c a c a a b a c c c ⎧⎧⎧===⎪⎪⎪⎪⎪⎪∴⇒⇒⎨⎨⎨⎪⎪⎪-===⎪⎪⎪⎩⎩⎩52b ∴== 31554e ∴=方程表示椭圆的离心率,焦距,2554长轴长,短轴长解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=,右顶点的极径,同理可得左顶点的的极径。
根据左右顶点极径之和等于长轴长,便可以求出长轴。
点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有力,充分体现了极坐标处理问题的优势。
下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。
(2)圆锥曲线弦长问题若圆锥曲线的弦MN 经过焦点F ,1、椭圆中,cb c c a p 22=-=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中,(注释:双曲线问题比较特殊,很多参考书上均有误解。
)若M 、N 在双曲线同一支上,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2222cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ.3、抛物线中,θθπθ2sin 2)cos(1cos 1pp p MN =--+-=例1过双曲线22x y -145=的右焦点,引倾斜角为3π的直线,交双曲线与A 、B 两点,求AB ||解:根据题意,建立以双曲线右焦点为极点的极坐标系 即得 所以 又由得 注释:求椭圆和抛物线过焦点的弦长时,无需对 v 加绝对值,但求双曲线的弦长时,一定要加绝对值,这是避免讨论做好的方法。
点睛由于椭圆,抛物线的弦的两个端点极径均为正值, 所以弦长都是 ;对于两个端点都在双曲线右支上的弦,其端点极径均为正值, 所以弦长也是 ;对于两个端点分别在双曲线左、右支上的弦,其端点极径一个为正值一个为负值, 所以弦长是 -或 为统一起见,求双曲线时一律加绝对值,使用 523cos ρθ=-12(,),(,)33A B ππρρπ+12||AB ρρ=+5580||723cos 23cos()33πππ=+=--+12ρρ+12ρρ+()12-ρρ+12ρρ+变式练习:等轴双曲线长轴为2,过其右有焦点,引倾斜角为6π的直线,交双曲线于A,B 两点,求AB 求AB ||解:附录直角坐标系中的焦半径公式设P (x,y )是圆锥曲线上的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2;2、若1F 、2F 分别是双曲线的左、右焦点,当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2px PF +=.利用弦长求面积高考题(08年海南卷)过椭圆22154x y +=的焦点F 作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,求AOB ∆的面积. 简解首先极坐标方程中的焦点弦长公式222||1cos epAB e θ=-求弦长,然后利用公式B 1|B |||sin 2AO S A OF AFO ∆=∠直接得出答案。
变式(2005年全国高考理科)已知点F 为椭圆2212x y +=的左焦点.过点ρ=12(,),(,)66A B ππρπρ+-12||AB ρρ=+11||11)66πππ=++-()|=4=F 的直线1l 与椭圆交于P 、Q 两点,过F 且与1l 垂直的直线2l 交椭圆于M 、N 两点,求四边形PMQN 面积的最小值和最大值.解析以点F为极点,建立极坐标系,则椭圆的极坐标方程为:2ρ=设直线1l 的倾斜角θ,则直线2l 的倾斜角为090θ+,由极坐标系中焦点弦长公式知:2||11cos 2PQ θ=-,202||111cos (90)1sin 22MN θθ==-+-用他们来表示四边形的面积1||||2S PQ MN =22111sin cos 24θθ=+2111sin 2216θ=+ 即求2111sin 2216θ+的最大值与最小值由三角知识易知:当sin 21θ=±时,面积取得最小值169;当sin 20θ=时,面积取得最大值2利用弦长公式解决常量问题例一.过椭圆)0(12222>>=+b a b y a x 的左焦点F ,作倾斜角为60的直线l交椭圆于A 、B 两点,若FB FA 2=,求椭圆的离心率.简解,建立极坐标系,然后利用等量关系,可很快求出离心率。
设椭圆的极坐标方程为θρcos 1e pe -=则0240cos 1,60cos 1e pe FB e p e FA -=-=,∴21221ep e e p e +⋅=-,解得32=e ;变式求过椭圆23cos ρθ=-的左焦点,且倾斜角为4π的弦长AB 和左焦点到左准线的距离。
解:先将方程ρ=化为标准形式:2311cos 3ρθ=- 则离心率13e =,23ep =,2p ∴=所以左焦点到左准线的距为2。
设125(,),(,)44A B ππρρ,代入极坐标方程,则弦长1222245173cos 3cos44AB ρρππ=+=+=--(3)定值问题例1. 抛物线22(0)y px p =>的一条焦点弦被焦点分为a,b 的两段,证明:11a b+定值。
解:以焦点F 为极点,以FX 轴为极轴建立极坐标系,则抛物线的极坐标方程为1cos pρθ=-,设(,),(,)A a B b θθπ+将A,B 两点代入极坐标方程,得,1cos 1cos()p pa b θθπ==--+ 则11ab+=1cos 1cos()p p θθπ--++=2p (定值) 点睛,引申到椭圆和双曲线也是成立的。
推论:若圆锥曲线的弦MN 经过焦点F ,则有epNF MF 211=+ 例二:经过椭圆的的焦点作两条相互垂直的弦AB 和弦CD,求证11AB CD+为定值。
证明:以椭圆的左焦点建立极坐标系,此时椭圆的极坐标方程为θρcos 1e ep-=,又设()()112343A ,,B ,+,C ,+,D ,+22ππρθρπθρθρθ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则代入可得 222||1cos ep AB e θ=-,222||1sin epAB e θ=-则 2112-e =AB CD 2ep+ 注释。
此公式对抛物线也成立,但对双曲线不成立。
注意使用的范围。
推广1若经过椭圆的中心做两条相互垂直的弦,倒数和也为定值。
需要以原点为极点建立极坐标方程。
推广2若不取倒数,可以求它们和的最值。
例三(2007重庆理改编)中心在原点O 的椭圆2213627x y +=,点F 是其左焦点,在椭圆上任取三个不同点123P ,P ,P 使122331120P FP P FP P FP ===∠∠∠.证明:213111FP FP FP ++为定值,并求此定值. 解析:以点F 为极点建立极坐标系,则椭圆的极坐标方程为:92cos ρθ=-,设点1P 对应的极角为θ,则点2P 与3P 对应的极角分别为0120θ+、0120θ-,1P 、2P 与3P 的极径就分别是1||FP = 92cos θ-、2||FP =092cos(120)θ-+与3||FP =092cos(120)θ--,因此213111FP FP FP ++=002cos 2cos(120)2cos(120)999θθθ--+--++,而在三角函数的学习中,我们知道00cos cos(120)cos(120)0θθθ+++-=,因此21311123FP FP FP ++=为定值 点睛:极坐标分别表示1||FP 、2||FP 与3||FP ,这样一个角度对应一个极径.就不会象解析几何那样,一个倾斜角,对应两个点,同时对应两条焦半径(极径),这就是极坐标表示圆锥曲线的优点. 推广1若放在抛物线和双曲线中是否成立呢? 推广2 设123P P P P n 是椭圆上的n 个点,且123N FP ,FP ,FP FP 圆周角等分则n2i=1i1OP ∑也为定值作业(2003年希望杯竞赛题)经过椭圆22221(0)x y a b ab+=>>的焦点1F 作倾斜角为60°的直线和椭圆相交于A ,B 两点,11||2||AF BF =. (1)求椭圆的离心率e ; (2)若15||4AB =,求椭圆方程。