反比例函数与面积、动点问题

合集下载

反比例函数中与面积有关的问题及其解析

反比例函数中与面积有关的问题及其解析

反比例函数中与面积有关的问题及解答反比例函数解析式及图象的特殊性与面积结合起来,既能考查反比例函数本身的基础知识,又能充分体现数形结合的思想方法,考查涉及的题型广泛,方法灵活,可较好地将知识与能力融合在一起。

下面就反比例函数中与面积有关的问题及解析归纳如下:利用反比例函数中|k|的几何意义求解与面积有关的问题设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|∴xy=k 故S=|k| 从而得结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|。

对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出对应的面积的结论为:k结论2:在直角三角形ABO中,面积S=2结论3:在直角三角形ACB中,面积为S=2|k|结论4:在三角形AMB 中,面积为S=|k|类型之一 k 与三角形的面积※问题1、如图,已知双曲线y=xk(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为6,则k=______.答案解析:过D 点作DE⊥x 轴,垂足为E , 由双曲线上点的性质,得S △AOC =S △DOE = 21k, ∵DE⊥x 轴,AB⊥x 轴, ∴DE ∥ AB ,∴△OAB ∽ △OED, 又∵OB=2OD,∴S △OAB =4S △DOE =2k ,由S △OAB -S △OAC =S △OBC ,得2k -21k=6,解得:k=4.故答案为:4.问题2.如图,分别过反比例函数y=x2018(x >0)的图象上任意两点A 、B 作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,,比较它们的大小,可得A.S 1>S 2B.S 1=S 2C.S 1<S 2D.S 1、S 2大小不确定。

反比例函数常见面积问题(带答案)

反比例函数常见面积问题(带答案)

反比例函数常见面积问题例1. 如图3,反比例函数x 8y -=与一次函数2x y +-=的图象相交于A 、B 两点。

(1)求A 、B 两点的坐标;(2)求AOB ∆的面积。

例2. 如图4,x y =和)0m (mx y >=的图象与)0k (x k y >=的图象分别交于第一象限内的两点A ,C ,过A ,C 分别向x 轴作垂线,垂足分别为B ,D ,若直角三角形AOB 与直角三角形COD 的面积分别为21、S S ,则1S 与2S 的关系为?例3.如图5,已知反比例函数x 12y =的图象和一次函数7kx y -=的图象都经过点P (m ,2)。

(1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数图象上,顶点C 、D 在这个反比例函数图象上,两底AD ,BC 与y 轴平行,且A 和B 的横坐标分别为a 和a+2,求a 的值。

例4.如图,四边形OABC 是面积为4的正方形,函数y =x k(x >0)的图象经过点B .(1)求k 的值;(2)将正方形OABC 分别沿直线AB 、BC 翻折,得到正方形MABC ′、NA ′BC .设线段MC ′、NA ′分别与函数y =x k(x >0)的图象交于点E 、F ,求线段EF 所在直线的解析式.例 5.如图,已知双曲线()经过矩形的边的中点,且四边形的面积为2,则 ? .连结OB,∵E、F分别为AB、BC的中点∴而由四边形OEBF的面积为2得解得k=2例6.直线y=6x, y=2/3x分别与双曲线y=k/x在第一象限内交于AB两点若S△oab=8则k= ?直线L与反比例函数Y=2/X的图像在第一象限内交与AB两点交x轴的正半轴与点C,若AB:BC=(M-1):1(M>1) S△AOB=?例7.如图,点A是反比例函数y=-2/x,在第二象限内图象上一点,点B是反比例函数y=4/x在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是.分别过A、B两点作x轴的垂线,构成直角梯形,根据AC=BC,判断OC为直角梯形的中位线,得出OD=OE=a,根据双曲线解析式确定A、B两点的坐标及AD、BE的长,根据S△AOB=S梯形ADBE-S△AOD-S△BOE求解.解:分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,∵AC=CB,∴OD=OE,设A(-a,2 /a ),则B(a,4 /a ),故S△AOB=S梯形ADBE-S△AOD-S△BOE=1 /2 (2/a +4 /a )×2a-1/ 2 a×2/ a -1/ 2 a×4/ a=3,故答案为:3.例8.如图,平行四边形AOBC中,对角线交于点E,双曲线y=k/x(k>0)经过A,E两点,若平行四边形AOBC的面积为18,则k=.?分别过点A、E作AM、EN垂直于x轴于M、N,则AM∥EN,∵A、E在双曲线上,∴三角形AOM与三角形OEN的面积相等,∵四边形AOBC是平行四边形,∴AE=BE,∵AM∥EN,∴MN=NB,∴EN=1 /2 AM,∴OM=1/ 2 ON,根据三角形的中位线,可得MN=BN,∴OM=MN=BN,设A(x,y),由平行四边形的面积=OB×AM=18,∴3x×y=18,xy=6,即k=6;例9.梯形AOBC中,对角线交于点E,双曲线y=k /x (k>0)经过A、E两点,若AC:OB=1:3,梯形AOBC面积为24,则k=()设△ACE的面积为S,则可得出△BOE的面积为9S,△AOE的面积为3S,△CEB的面积为3S,从而求出S,也可得出△OEB的面积,过点E作EF⊥OB,过点A作AM⊥OB于点M,设△OAM的面积为a,则△OEF的面积也为a,利用△BEF∽△BAM可得出a的值,则可得出△OEF的面积,也即可得出k的值.解:过点E作EF⊥OB于点F,过点A作AM⊥OB于点M,∵四边形AOBC是梯形,AC∥OB,AC:OB=1:3,∴CE:EO=1:3,AE:EB=1:3,设△ACE的面积为S,则可得出△BOE的面积为9S,△AOE的面积为3S,△CEB的面积为3S,又∵梯形AOBC面积为24,∴S+9S+3S+3S=24,解得:S=3/ 2 ,设△OAM的面积为a,则△OEF的面积也为a,故可得△AMB的面积=18-a,△EFB的面积=27/ 2 -a,从而可得S△BEF /S△ABM =(BE /AB )2,即(27/ 2 −a) /(18−a) =9/ 16 ,解得:a=54 /7 ,即S△AOM=S△OEF=54 /7 ,故可得k=2×54 /7 =108 /7 .例10.如图,已知动点A在函数y=4/x (x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于?要求部分面积,得根据已知条件求出A的坐标。

专题65 反比例函数背景下的面积问题(解析版)-中考数学解题大招复习讲义

专题65 反比例函数背景下的面积问题(解析版)-中考数学解题大招复习讲义

模型介绍一、反比例函数k 的几何意义1.反比例函数k 的几何意义:如图,在反比例函数图象上任选一点,向两坐标轴作垂线,垂线与坐标轴所围成矩形的面积为k 。

如图二,所围成三角形的面积为2k二、利用k 的几何意义进行面积转化1.如图,直线AB 与反比例函数k y x=(0k ≠)交于A 、B 两点,与x 、y 轴的交点分别为C 、D ,那么OAB OCD OBD OAC S S S S ∆∆∆∆=--,此方法是绝大部分学生选用的方法。

但是,从效率来讲,就比较低2.如图,过点A 、B 作x 轴的垂线,垂足分别为E 、F ,则根据k 的几何意义可得,OBF OAE S S ∆∆=,而OBF OAB OAE ABFE S S S S ∆∆∆+=+梯形,所以OAB ABFE S S ∆=梯形,此方法的好处,在于方便,快捷,不易出错。

例题精讲【例1】.如图,反比例函数y =在第一象限的图象上有两点A ,B ,它们的横坐标分别是2,6,则△AOB 的面积是8.解:如图所示:过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥x 轴于点D ,∵反比例函数y =在第一象限的图象上有两点A ,B ,它们的横坐标分别是2,6,∴x =2时,y =3;x =6时,y =1,故S △ACO =S △OBD =3,S 四边形AODB =×(3+1)×4+3=11,故△AOB 的面积是:11﹣3=8.故答案为:8.变式训练【变1-1】.如图,点A在反比例函数(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若,△AOB的面积为12,则k的值为()A.4B.6C.10D.12解:如图,过点A作AD⊥x轴,垂足为D,∵OC∥AD,,∴,∴,k>0,∴k=12,故选:D.【变1-2】.如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,=4,则k的值为16.若E是AB的中点,S△BEF解:设E(a,),则B纵坐标也为,∵E是AB中点,∴F点坐标为(2a,),∴BF=BC﹣FC=﹣=,=4,∵S△BEF∴a•=4,∴k=16.故答案是:16.【例2】.如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为12.解:解法一:过点A作x轴的垂线,交CB的延长线于点E,∵BC∥x轴,∴AE⊥BC,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,∴A(,6),B(,4),∴AE=2,BE=﹣=,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=12.解法二:同理知:BE=1,设A(a,6),则B(a+1,4),∴6a=4(a+1),∴a=2,∴k=2×6=12.故答案为12.变式训练【变2-1】.如图,点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是()A.9B.8C.7D.6解:∵点A、B在反比例函数y=的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,=S△BOE=×12=6,∴S△AOD=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∵S△OAB=(4+2)×(6﹣3)=9,∴S△AOB故选:A.【变2-2】.如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=a﹣.(结果用a,b表示)解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,=mn﹣b﹣b﹣(m﹣)(n﹣)∴阴影部分的面积S△AOB=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.1.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3B.2C.D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,=S△BCD=,∴S△COD=4×=1,∴S△CEA∵OC=CE,=S△CEA=,∴S△AOC=+1=,∴S△AOE=k(k>0),∵S△AOE∴k=3,故选:A.2.如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB ∥x轴,则k的值是()A.18B.50C.12D.解:延长DA、交x轴于E,∵四边形ABCD是矩形,且AB∥x轴,∴∠CAB=∠AOE,∴DE⊥x轴,CB⊥x轴,∴∠AEO=∠ABC∴△AOE∽△CAB,∴=()2,∵矩形ABCD的面积是8,OC:OA=5:3,∴△ABC的面积为4,AC:OA=2:3,∴=()2=,=9,∴S△AOE∵双曲线y=经过点A,=|k|=9,∴S△AOE∵k>0,∴k=18,故选:A.3.如图,已知点A,B分别在反比例函数y1=﹣和y2=的图象上,若点A是线段OB 的中点,则k的值为()A.﹣8B.8C.﹣2D.﹣4解:设A(a,b),则B(2a,2b),∵点A在反比例函数y1=﹣的图象上,∴ab=﹣2;∵B点在反比例函数y2=的图象上,∴k=2a•2b=4ab=﹣8.故选:A.4.如图,点A(m,n),B(4,)在双曲线y=上,且0<m<n.若△AOB的面积为,则m+n=()A.7B.C.D.3解:∵点A(m,n),B(4,)在双曲线y=上,∴mn=4×=k,∴mn=k=6,∴双曲线为y=,∴n=,作AD⊥x轴于D,BE⊥x轴于E,=S△AOD+S梯形ADEB﹣S△BOE=S梯形ADEB,∵S△AOB∴(+)(4﹣m)=,解得m1=1,m2=﹣16,∵0<m<n.∴m=1,∴n=6,∴m+n=7,故选:A.5.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴=3,则S△于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCDAOC为()A.2B.3C.4D.6解:在Rt△BCD中,∵×CD×BD=3,∴×CD×3=3,∴CD=2,∵C(2,0),∴OC=2,∴OD=4,∴B(4,3),∵点B是反比例函数y=(x>0)图象上的点,∴k=12,∵AC⊥x轴,==6,∴S△AOC故选:D.6.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y 轴上的动点,则△ABC的面积为()A.k1﹣k2B.(k1﹣k2)C.k2﹣k1D.(k2﹣k1)解:由题意可知,AB=﹣,AB边上的高为x,=×(﹣)•x=(k1﹣k2),∴S△ABC故选:B.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线y=与边BC交于点D、与对角线OB交于中点E,若△OBD的面积为10,则k的值是()A.10B.5C.D.解:设E点的坐标是(x,y),∵E是OB的中点,∴B点的坐标是(2x,2y),则D点的坐标是(,2y),∵△OBD的面积为10,∴×(2x﹣)×2y=10,解得,k=,故选:D.8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是12,则k=()A.6B.9C.D.解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b)∵D、E在反比例函数的图象上,∴=k,设E的坐标为(a,y),∴ay=k∴E(a,),=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣k﹣k﹣••(b﹣)=12,∵S△ODE∴4k﹣k﹣+=12k=故选:D.9.如图,一直线经过原点O,且与反比例函数y=(k>0)相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC.若△ABC面积为8,则k=8.解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8.故答案为8.10.如图,若反比例函数y=的图象经过等边三角形POQ的顶点P,则△POQ的边长为2.解:如图,过点P作x轴的垂线于M,∵△POQ为等边三角形,∴OP=OQ,OM=QM=OQ,∵反比例函数的图象经过点P,∴设P(a,)(a>0),则OM=a,OQ=OP=2a,PM=,在Rt△OPM中,PM===a,∴=a,∴a=1(负值舍去),∴OQ=2a=2,故答案为:2.11.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.则△OAP 的面积为5.解:过P作MN⊥x轴于M,交AB于N,过A作AD⊥x轴于D,∵A(4,3),∴AD=3,OD=4,∴AO==5,∵AB=AO,∴AB=5,∵AB∥x轴,点B的横坐标是4+5=9,纵坐标是3,即点B的坐标是(9,3),设直线OB的解析式是y=ax,把B点的坐标(9,3)代入得:3=9a,解得:a=,即y=x,∵AB∥x轴,∴MN⊥AB,把A(4,3)代入y=,得k=12,即y=,解方程组得:或,∵点P在第一象限,∴点P的坐标是(6,2),∵A(4,3),AB∥x轴,P(6,2),∴MN=AD=3,PN=3﹣2=1,﹣S△APB=3﹣=5,∴△OAP的面积是S△ABO故答案为:5.12.如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC 面积的最小值为6.解:方法一:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.方法二:因为y=x+m斜率为1,且BC∥x轴,AC∥y轴,∴∠ABC=∠BAC=45°,∴△ABC为等腰直角三角形,∴AC=BC=AB,=AC•BC=AB2,∴S△ABC当AB最小时,m=0,直线为y=x,联立方程,解得或,∴A(,),B(﹣,﹣),AB=×2=2,=×4×6=6.∴S△ABC最小故答案为:6.13.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中∠OAB=90°,AO =AB,点C为斜边OB的中点,反比例函数y=(k>0,x>0)的图象过点C,且交线=6,则k的值为8.段AB于点D,连接CD,OD.若S△OCD解:根据题意设B(m,m),则A(m,0),∵点C为斜边OB的中点,∴C(,),∵反比例函数y=(k>0,x>0)的图象过点C,∴k=•=,∵∠OAB=90°,∴D的横坐标为m,∵反比例函数y=(k>0,x>0)的图象过点D,∴D的纵坐标为,作CE⊥x轴于E,=S△AOD,∵S△COES△OCD=S△COE+S梯形ADCE﹣S△AOD=S梯形ADCE,S△OCD=6,∴(AD+CE)•AE=6,即(+)•(m﹣m)=6,∴m2=32,∴k==8,故答案为:8.解法二:作CE⊥OA于E,∵C为AB的中点,OA=AB,∠OAB=90°,=S△AOD=k,S△AOB=2k,∴S△OEC=k,∴S△BOD∵C为斜边OB的中点,=S△BCD=S△BOD=6,∴S△OCD∴×k=6,∴k=8.故答案为:8.14.如图,在平面直角坐标系中,▱OABC的顶点A,B在第一象限内,顶点C在y轴上,经过点A的反比例函数y=(x>0)的图象交BC于点D.若CD=2BD,▱OABC的面积为15,则k的值为18.解:过点D作DN⊥y轴于N,过点B作BM⊥y轴于M,设OC=a,CN=2b,MN=b,∵▱OABC的面积为15,∴BM=,∴ND=BM=,∴A,D点坐标分别为(,3b),(,a+2b),∴•3b=(a+2b),∴b=a,∴k=•3b=•3×a=18,故答案为:18.15.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)请直接写出不等式x+b的解.解:(1)∵反比例函数y1=与一次函数y2=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解方程组,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),=×6×4+×6×1=15;∴S△AOB(3)﹣4≤x<0或x≥1.17.如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.(1)求反比例函数的解析式;(2)求直线EB的解析式;.(3)求S△OEB解:(1)∵A点的坐标为(a,6),AB⊥x轴,∴AB=6,∵cos∠OAB==,∴,∴OA=10,由勾股定理得:OB=8,∴A(8,6),∴D(8,),∵点D在反比例函数的图象上,∴k=8×=12,∴反比例函数的解析式为:y=;(2)设直线OA的解析式为:bx,∵A(8,6),∴8b=6,b=,∴直线OA的解析式为:y=x,则,x=±4,∴E(﹣4,﹣3),设直线BE的解式为:y=mx+n,把B(8,0),E(﹣4,﹣3)代入得:,解得:,∴直线BE的解式为:y=x﹣2;=OB•|y E|=×8×3=12.(3)S△OEB18.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求反比例函数的解析式;(2)求点B的坐标;.(3)求S△OAB解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴a=×3=4,∴点A的坐标为(3,4),∴k=3×4=12,∴反比例函数解析式y=.(2)∵点B在这个反比例函数图象上,设点B坐标为(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴点B的坐标为(6,2).(3)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:2=6k,解得:k=,∴OB直线解析式为:y=x.过A点做AC⊥x轴,交OB于点C,如图所示:则点C坐标为(3,1),∴AC=3.S△OAB的面积=S△OAC的面积+S△ACB的面积=×|AC|×6=9.∴△OAB的面积为9.19.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比=4.例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB (1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与双曲线的另一交点为D点,求△ODB的面积.=•|x A|•y B,解:(1)由题意得:S△AOB即×2×y B=4,y B=4,∴B(2,4),设反比例函数的解析式为:y=,把点B的坐标代入得:k=2×4=8,∴y=,设直线AB的解析式为:y=ax+b,把A(﹣2,0)、B(2,4)代入得:,解得:,∴y=x+2;(2)由题意得:x+2=,解得:x1=﹣4,x2=2,∴D(﹣4,﹣2),=S△OAD+S△OAB=×2×2+4=6.∴S△ODB20.如图,在平行四边形OABC中,,点A在x轴上,点D是AB 的中点,反比例函数的图象经过C,D两点.(1)求k的值;(2)求四边形OABC的面积.解:(1)过点C作CE⊥x轴于E,∵∠AOC=45°,∴OE=CE,∴OE2+CE2=OC2∵OC=2,∴OE=CE=2,∴C(2,2),∵反比例函数的图象经过点C点,∴k=2×2=4;(2)过点D作DF⊥x轴于F,∵四边形OABC是平行四边形,∴AB=OC=2,∠DAF=∠AOC=45°,又∵点D是AB的中点,∴AD=,AF=DF,∴AF2+DF2=AD2,∴AF=DF=1,∴D点的纵坐标为1,∵反比例函数的图象过点D点,∴D(4,1),∴OF=4,OA=OF﹣AF=4﹣1=3,∴平行四边形OABC的面积S=OA•CE=3×2=6.21.如图,直线y=6x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标为2.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上的点,且点B的纵坐标是6,连接OB,AB,求△AOB的面积.解:(1)将x=2代入y=6x,得:y=12,∴点A的坐标为(2,12),将A(2,12)代入y=,得:k=24,∴反比例函数的解析式为y=;(2)在y=中y=6时,x=4,∴点B(4,6),而A(2,12),如图,过A作AC⊥y轴,BD⊥x轴,交于点E,则OD=4,OC=12,BD=6,AC=2,AE=2,BE=6,=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE∴S△AOB=4×12﹣×2×12﹣×4×6﹣×2×6=48﹣12﹣12﹣6=18.22.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)若D(x,0)是x轴上原点左侧的一点,且满足,求x的取值范围.解:(1)∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数的表达式为y=﹣.∵A(﹣4,n)在y=﹣的图象上,∴n=2,∴A(﹣4,2).∵y=kx+b经过A(﹣4,2)和B(2,﹣4),∴,解得∴一次函数的表达式为y=﹣x﹣2.(2)当y=﹣x﹣2=0时,解得x=﹣2.∴点C(﹣2,0),∴OC=2,=S△AOC+S△COB∴S△AOB=×2×2+×2×4=6.(3)根据函数的图象可知:若D(x,0)是x轴上原点左侧的一点,当﹣4<x<0时,满足kx+b﹣<0.23.如图,一次函数y=k1x+b的图象与反比例函数y=(x<0)的图象相交于点A(﹣1,2)、点B(﹣4,n).(1)求此一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在x轴上存在一点P,使△PAB的周长最小,求点P的坐标.解:(1)∵反比例函数y=(x<0)的图象经过点A(﹣1,2),∴k2=﹣1×2=﹣2,∴反比例函数表达式为:y=﹣,∵反比例y=﹣的图象经过点B(﹣4,n),∴﹣4n=﹣2,解得n=,∴B点坐标为(﹣4,),∵直线y=k1x+b经过点A(﹣1,2),点B(﹣4,),∴,解得:,∴一次函数表达式为:y=+.(2)设直线AB与x轴的交点为C,如图1,当y=0时,x+=0,x=﹣5;∴C点坐标(﹣5,0),∴OC=5.S△AOC=•OC•|y A|=×5×2=5.S△BOC=•OC•|y B|=×5×=.S△AOB=S△AOC﹣S△BOC=5﹣=;(3)如图2,作点A关于x轴的对称点A′,连接A′B,交x轴于点P,此时△PAB的周长最小,∵点A′和A(﹣1,2)关于x轴对称,∴点A′的坐标为(﹣1,﹣2),设直线A′B的表达式为y=ax+c,∵经过点A′(﹣1,﹣2),点B(﹣4,)∴,解得:,∴直线A′B的表达式为:y=﹣x﹣,当y=0时,则x=﹣,∴P点坐标为(﹣,0).24.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b>0的解集.解:(1)∵四边形DOBC是矩形,且D(0,4),B(6,0),∴C点坐标为(6,4),∵A点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为y=;把x=6代入y=得x=1,则F点的坐标为(6,1);把y=4代入y=得x=,则E点坐标为(,4),把F(6,1)、E(,4)代入y=k2x+b,得,解得,,∴直线EF的解析式为y=﹣x+5;﹣S△ODE﹣S△OBF﹣S△CEF(2)△OEF的面积=S矩形BCDO=4×6﹣×4×﹣×6×1﹣×(6﹣)×(4﹣1)=;(3)由图象得:不等式k2x+b﹣>0的解集为<x<6.25.如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P,连结OP、OQ.求△OPQ的面积.解:(1)反比例函数y=(m≠0)的图象经过点(1,4),解得m=4,故反比例函数的表达式为y=.一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),所以,解得n=﹣1,b=﹣5.∴一次函数的表达式y=﹣x﹣5;(2)由,解得或.∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ=×5×4−×5×1=7.5.26.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C的坐标为(﹣3,),代入y=得:k=﹣3答:k的值为﹣3;(2)过点A作AN⊥OB,垂足为N,由题意得:AN=2CM=2,ON=OB=2,∴A(﹣2,2),设直线OA的关系式为y=kx,将A的坐标代入得:k=﹣,∴直线OA的关系式为:y=﹣x,由题意得:,解得:舍去,,∴D(﹣,3)过D作DE⊥OB,垂足为E,S△OCD=S CMED+S△DOE﹣S△COM=S CMED=(+3)×(3﹣)=3,答:△OCD的面积为3.(3)①当与直线CD平行的直线y=mx+n过点O时,此时y=mx+n的n=0,②当与直线CD平行的直线y=mx+n经过点A时,设直线CD的关系式为y=ax+b,把C、D坐标代入得:,解得:a=1,b=3+∴直线CD的关系式为y=x+3+,∵y=mx+n与直线y=x+3+平行,∴m=1,把A(﹣2,2)代入y=x+n得:n=2+2因此:0≤n≤2+2且n.答:n的取值范围为:0≤n≤2+2且n≠3+.。

反比例函数(面积、动点)专项训练一 第1课时(解析版)

反比例函数(面积、动点)专项训练一 第1课时(解析版)

【热身训练】要求:快速完成!并写出方法小结或感悟!1.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在反比例函数3y x=的图象上,当021>>x x 时,下列结论正确的是A .120y y <<B .210y y <<C .120y y <<D .210y y <<答案:A解析:反比例函数3y x=的图象在一、三象限,在每一个象限内,y 随x 的增大而减小,所以,当021>>x x 时,有120y y <<2.(2013•铁岭)如图,点P 是正比例函数y=x 与反比例函数y=在第一象限内的交点,PA ⊥OP 交x 轴于点A ,△POA 的面积为2,则k的值是 . =y=S =k=1((3.(2013•淄博)如图,矩形AOBC 的面积为4,反比例函数的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是 。

矩形×(矩形.((交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求反比例函数的关系式;(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.5.(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.y=(,判断出四边形(上,;OA==CB=y==【问题解决】例.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x x k y 的图象上,则k 的值等于 . 答案:-12 解析:如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,CG 交AD于M 点,过D 点作DH ⊥CG ,垂足为H ,∵CD ∥AB ,CD=AB ,∴△CDH ≌△ABO (AAS ),∴DH=AO=1,CH=OB=2,设C (m ,n ),D (m -1,n -2),则mn =(m -1)(n -2)=k ,解得n=2-2m ,BC AB BC =2AB , 解得:m =-2,n =6,所以,k =mn =-122.(2013•莆田)如图,直线l :y=x+1与x 轴、y 轴分别交于A 、B 两点,点C 与原点O 关于直线l 对称.反比例函数y=的图象经过点C ,点P 在反比例函数图象上且位于C 点左侧,过点P 作x 轴、y 轴的垂线分别交直线l 于M 、N 两点.(1)求反比例函数的解析式;(2)求AN•BM的值.求得:得:,即;,﹣﹣AN=(﹣),﹣(﹣且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.,即,即,,∴;,∴,∴,即由①同理可得:又∵。

反比例函数中的面积问题课件

反比例函数中的面积问题课件

课件内容概述
01
02
03
反比例函数的基本概念与性质
反比例函数图像与面积的关系
典型例题分析与解答
04
学生自主练习与巩固
02
反比例函数基本概念
反比例函数定义
反比例函数是一种特殊的函数, 其一般形式为 y = k/x (k ≠ 0), 其中 x 是自变量,y 是因变量,
k 是常数。
反比例函数的定义域是 x ≠ 0 的 所有实数,值域也是所有非零实
矩形面积与反比例关系
矩形面积公式
A = l × w,其中l是长度,w是宽 度。
应用
当矩形的长度和宽度成反比时, 可以通过已知一个量来求解另一 个量或面积。
三角形面积与反比例关系
三角形面积公式
A = 1/2 × b × h,其中b是底边长 度,h是高。
应用
当三角形的底边长度和高成反比时, 可以通过已知一个量来求解另一个量 或面积。
反比例函数中参数意义
k 是反比例函数中的关键参数 ,它决定了双曲线的形状和位 置。
当 k > 0 时,双曲线在第一、 三象限内;当 k < 0 时,双曲 线在第二、四象限内。
|k| 的大小决定了双曲线离原点 的远近程度,|k| 越大,双曲线 离原点越远;|k| 越小,双曲线 离原点越近。
03
面积问题在反比例函数中应用
数。
当 x > 0 时,反比例函数在第一 象限;当 x < 0 时,反比例函数
在第三象限。
反比例函数图像与性质
反比例函数的图像是一条双曲线 ,该曲线以原点为对称中心,且
关于原点对称。
当 k > 0 时,双曲线的两支分别 位于第一、三象限;当 k < 0 时 ,双曲线的两支分别位于第二、

反比例函数中的面积问题

反比例函数中的面积问题

反比例函数中的面积问题一、以反比例函数图像上的点和过这点作坐标轴的垂线所得的垂足所围成的图形面积例1 反比例函数y=的图像如图1所示,点M是该函数图像上一点,MN 垂直于x轴,垂足是点N,如果S=2,则k的值为.△MON变式1:如图2,已知点P在函数y=(x>0)的图像上,PA⊥x轴、PB ⊥y轴,垂足分别为A、B,则矩形OAPB的面积为.二、以反比例函数图像与正比例函数图像的交点和坐标平面上的一些特殊点所围成的图形面积例2 如图3,反比例函数y=的图像与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.分析Rt△ABC的两个顶点是反比例函数图像与正比例函数图像的交点,分别在反比例函数图像的两个分支上,且知道反比例函数图像上的A、B两点关于=|2x×2y|=2|xy|=10.原点成中心对称,∴S△ABC变式1. 如图4,直线y=mx与双曲线y=交于点A、B. 过点A作AM⊥x 轴,垂足为点M连接BM. 若S=1,则k的值是().△ABMA.1 B. m-1C.2 D. m分析图形变为反比例函数图像上的A、B两点和其中一点与坐标轴的交点所围成的△AMB,底为|y|,高为|2x|,则S=|y×2x|=|xy|=|k|=1,得k=±1△ABM(根据图形知k>0),所以k=1.变式2. 如图5,直线y=mx与双曲线y=交于点A、B过点A、B分别作AM⊥x轴、BN⊥x轴,垂足分别为M、N,连接BM、AN. 若S AMBN=1,则k 的值是.分析图形变成AMBN,它的面积实际上就是△ABM面积的2倍,则S=2|xy|=2|k|=1,结合图像可知k=.AMBN三、以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形面积例3 如图6,在直角坐标系xOy 中,一次函数y=k 1x+b 的图像与反比例函数y=的图像交于A (1,4)、B (3、m )两点.(1)求一次函数的解析式; (2)求△AOB 的面积. 分析 (1)略;(2)△AOB 是以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形,△AOB 面积直接比较难求,可看作S △COD - S △COA - S △BOD . 先求出一次函数的解析式,然后求出一次函数y=k 1x+6的图像与x 轴和y 轴的交点坐标,就可求出S △COD 、S △COA 、S △BOD ,即可求出S △AOB =4××-×1×-4××=.变式1. 如图7,一次函数y=kx+b 的图像与反比例函数y=的图像交于A(-2,1),B (1,n )两点.(1)试确定上述反比例函数和一次函数的解析式; (2)求△AOB 的面积. 分析 (1)略:(2)△AOB 也是以反比例函数图像与一次函数图像的交点和坐标原点所围成的图形,只是把△AOB 的面积看作S △COD + S △COA + S △BOD ,即可求得S △AOB =1×1×+1×1×+1×1×=.四、以反比例函数图像与其它图形的交点和坐标原点所围成的图形面积例4 如图8,已知双曲线y=(x>0)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为2,则k= .分析这是以反比例函数图像与矩形的交点和坐标原点所围成的图形面积.四边形OEBF的面积可看作S矩形OABC - S△COE- S△AOF,设F点的坐标为(x, y),则E点的坐标为(x, 2y),S矩形OABC =x×2y=2xy=2k, S△COE=x×2y×=xy=k,S△AOF=xy=k,所以S四边形OEBF=k=2.五、以反比例函数图像上的点与坐标轴围成的图形及一次函数图像与坐标轴围成的图形和面积例5 如图9,D是反比例函数y=(k<0)的图像上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=-x+m与y=-x+2的图像都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,求k的值.分析先求出C(0,2),D(,2)和m=2,再求出A(2,0),得S矩形OCDE =-k,S△COA=2,所以-k+2=4,得k=-2.(2012湖北荆州3分)如图,点A 是反比例函数2y=x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数3y=x-的图象于点B ,以AB 为边作▱ABCD ,其中C 、D 在x 轴上,则S □ABCD 为【 】A . 2B . 3C . 4D . 5 【答案】D 。

人教版反比例函数与面积问题

人教版反比例函数与面积问题

(1)求这个一次函数的解析式
(2)求△AOB的面积.
A

:
(2)
y
6 x
,
y x 1.
解得 xy3,2或xy3.2,
y
N M
O
x B
A (2,3)B ,(3,2) .
曲直结合
y y 4 x
⑴直线OA与双曲线的 另一交点B的坐标.
A(2, 2)
B(-2,-2)
O
C
B
D
x
⑵△BDA的面积是多少?
作x轴,y轴的垂线,垂足分别为E, F,
若设矩形OEPF和正 方形OABC不重合部 分的面积为S,写出S 关于m的函数关 系 式.
G
总结提高 一个性质:反比例函数的面积不变性
两种思想:分类讨论和数形结合
变式练习
已知:如图,反比例函数
y
6 x
与一次函数
y=kx+1的图像交于A、B两点,点A的纵坐标是3.
y

P
s1
Q


s2
O
x
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
趁热打铁,大显身手
如图,P1、P2、P3是双曲线上的三点.过这三点分 别作y轴的垂线,得到三个三角形P1A10、P2A20、 P3A30,设它们的面积分别是S1、S2、S3,则 ( ).
A.S1<S2<S3
B.S2<S1<S3
(1)若A(2,3),求K的值 (2)在(1)的条件下,若点B的横坐标为3, y
连接OA,OB,AB,求△OAB的面积。 D A E
B
o
Cx
如图,已知,A,B是双曲线 y k (k 0) 上的两点, x

初中数学反比例函数及动点问题专题讲解及练习

初中数学反比例函数及动点问题专题讲解及练习

(K>0)考点二、反比例函数的性质1.2.形状反比例函数的图象是由两支双曲线组成的.因此称反比例函数的图象为双曲线;3.位置当k>0时,两支双曲线分别位于第一,三象限内;当k<0时,两支双曲线分别位于第二,四象限内;4.增减性反比例函数的图象,当k>0时,在每一象限内,y随x的增大而减小; 当k<0时,在每一象限内,y随x的增大而增大.5.图象的发展趋势反比例函数的图象无限接近于x,y轴,但永远达不到x,y轴,画图象时,要体现出这个特点.6.对称性反比例函数的图象是关于原点成中心对称的图形.7.任意一组变量的乘积是一个定值,即xy=k.温馨提示:反比例函数的涉及内容1.ⅰ当路程s 一定时,时间t 与速度v的函数关系t=s/v2.ⅱ当矩形面积S一定时,长a与宽b的函数关系a=s/b3.ⅲ当三角形面积S 一定时,三角形的底边y 与高x的函数关系y=2s/x动点问题(重点)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题。

“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。

解决动点问题的关键是“动中求静”。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容。

动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数与面积、动点问题1、如图所示,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2,
点A在直线y=x上,其中点A的横坐标为1,且AB∥x轴,
AC∥y轴,若双曲线y=k/x(k≠0)与△ABC有交点,则k
的取值范围是_________
2、如图,已知△ABO的顶点A和AB边的中点C都在双
曲线y= 4/x(x>0)的一个分支上,点B在x轴上,CD
⊥OB于D,则△AOC的面积为()
A、2
B、3
C、4
D、32
3、已知点A、B是反比例函数y=?2x(x>0)的图象上任
两点,过A、B两点分别作y轴的垂线,垂足分别为C、
D,连接AB,AO,BO,
则S四边形ABCD:S△AOB等于()
4、在平面直角坐标系中,有反比例函数y=?1x与y=-?1x的图象和正方形ABCD,原点O与对角线AC、BD的交点重叠,且如图所示的阴影部分面积为8,则AB=__________
5、反比例函数y=-?5x的图象如图所示,P是图象上的任意点,过点P分别做两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是对角线OP上的动点,连接DA、DB,则图中阴影部分的面积是
____________
6、如图,点A,C在反比例函数y=?3x(x<0)的图象上,B,D在x轴上,△OAB,△BCD均为正三角形,则点C的坐标是____________
7、如图所示,P1(x1,y1)、P2(x2,y2),…P n
(x n,y n)在函数y=?9x(x>0)的图象上,△OP1A1,
△P2A1A2,△P3A2A3…△P n A n-1A n…都是等腰直角三
角形,斜边OA1,A1A2…A n-1A n,都在x轴上,则
y1+y2+…y n=________
8、如图,在直角坐标平面内,函数y=mx(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点
A作x轴垂线,垂足为C,过点B作y轴垂线,
垂足为D,连接AD,DC,CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)当AD=BC时,求直线AB的函数解析式.
9、如图,直线y=k1x+b与反比例函数y=k2x的图象交于A(1,6),B(a,3)两点.
(1)求k1、k2的值.
(2)直接写出k1x+b-k2x>0时x的取值范
围;
(3)如图,等腰梯形OBCD 中,BC ∥OD ,OB=CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.
10、已知
(1)A m -,与(2B m +,是反比例函数k y x
=图象上的两个点.
(1)求k 的值;
(2)若点(10)C -,,则在反比例函数k y x =图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,
求出点D 的坐标;若不存在,请说明理由.
11、如图12,已知直线12y x =与双曲线(0)k y k x =>交
于A B ,两点,且点A 的横坐标为4.
(1)求k 的值;
(2)若双曲线(0)k y k x =>上一点C 的纵坐标为8求AOC △的面积;
(3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.
图。

相关文档
最新文档