星形电阻网络与三角形电阻网络的等效变换

合集下载

电阻的星形联接与三角形联接

电阻的星形联接与三角形联接
电阻的星形联接和电阻的三角形联接构成一个电阻三 端网络。一般来说,电阻三端网络的端口特性,可用联系 这些电压和电流关系的两个代数方程来表征。
对于电阻星形联接的三端网络,外加两个电流源i1和i2。 用2b方程求出端口电压u1和u2的表达式为:
整理得到
u1 R1i1 R3 (i1 i2 ) u2 R2i2 R3 (i1 i2 )
R31 )
R12 R23 R31
由此 解得
R2 R3
R12 R12
R12 R23 R23
R31
R23 R31
R23 R31
(2 14)
R1
R12
R31 R12 R23
R31
R2
R12
R12 R23 R23
R31
(2 14)
R3
R12
R23 R31 R23
u1 (R1 R3 )i1 R3i2
u2
R3i1
(R2
R3
)i2
(2 11)
u1
R31 (R12 R23 ) R12 R23 R31
i1
R12
R23 R31 R23
R31
i2
u2
R12
R23 R31 R23 R31
i1
R23 (R12 R31 ) R12 R23 R31
R31
电阻三角形联接等效变换为电阻星形联接的公式为
Ri
接于i端两电阻之乘积 形三电阻之和
当R12= R23= R31= R时,有
R1
R2
R3Leabharlann R1 3R
由式(2-14)可解得:
R12
R1 R2
R2 R3 R3
R3 R1

星形和三角形等效电路公开课获奖课件省赛课一等奖课件

星形和三角形等效电路公开课获奖课件省赛课一等奖课件
提出问题
电桥不平衡 怎样处理?
星形电阻网络与三角形电阻网络旳 等效变换
电阻旳星形联接:将三个电阻旳一端连在一起,另一端 分别与外电路旳三个结点相连,就构成星形联接,又称为 Y形联接,如图2-17(a)所示。
电阻旳三角形联接:将三个电阻首尾相连,形成一种三 角形,三角形旳三个顶点分别与外电路旳三个结点相连, 就构成三角形联接,又称为Δ形联接,如图(b)所示。
R12
R1R2
R2 R3 R3
R3 R1
R23
R1R2
R2 R3 R1
R3
R1
R31
R1R2
R2 R3 R2
R3 R1
电阻星形联接等效变换为电阻三角形联接旳公式为
形电阻两两乘积之和 Rmn 不与mn端相连的电阻
当R1= R2= R3= RY时,有
R12 R23 R31 R 3R
在复杂旳电阻网络中,利用电阻星形联接与电阻三角 形联接网络旳等效变换,能够简化电路分析。
例2-11 求图2-20(a)电路中电流 i。
图2-20
解:将3、5和2三个电阻构成旳三角形网络等效变换 为星形网络[图(b)],其电阻值由式(2-14)求得
R1
3
3 2
5
5
1.5
R2
32 325
0.6
R3
25 32
5
1
图2-20
再用电阻串联和并联公式,求出连接到电压源两端单 口旳等效电阻
R 1.5 (0.6 1.4)(11) 2.5 0.6 1.4 11
最终求得
i 10V 10V 4A R12
R31R12 R23
R31
R2
R12
R12 R23 R23

电阻星形连接与三角形连接的等效变换

电阻星形连接与三角形连接的等效变换

i1
u12 R12
u31 R31
i2
u23 R23
u12 R12
(1)
i3

u31 R31
u23 R23
由等效条件,比较式(3)与式(1),得由Y接接的变换结果
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
R3
R1

R31
R1 R2
R2 R3 R2
R3
R1
d
h
b
f
a
e
c
g
b
f
返回 上页 下页
电阻电路的等效变换
d
将等电位点短接,
a
e
画出等效电路:
h
c
g
b
f
b de a
cf h
Rag
R 3
R 6
R 3
g
5
R
6
返回 上页 下页
电阻电路的等效变换
(2)求Rab
d
由电路对称性,
h
找出等电位点:
a c
b
a
e
d、e等电位
c、f等电位
g
7
f
Rab 12 R
hg
1.5 (0.6 1.4)(1 1) 2.5 0.6 1.4 1 1
求得: i 10 10 4 R 2.5
返回 上页 下页
电阻电路的等效变换

10V -
i1
3 2
2
1.4
3
图(a)
5 Y→△ +
4
10V

1
i1
3
2

2.11 星形与三角形电阻电路的等效

2.11 星形与三角形电阻电路的等效

3
等效变换——星形与三角形电阻电路的等效
双 端
口 i1பைடு நூலகம்
网 络
i3 i2
端口v-i关系相同
i12
i1 i31 i23 i2
星形(Y)

v13 i1R1 i3R3
口 伏
v23 i2 R2 i3R3
安 关
i3 i1 i2

v13 AY i1 BY i2
v23 CY i1 DY i2
三角形(Δ)


Y



Y
等效关系式
R12
R1R2
R2 R3 R3
R3 R1
R23
R1R2
R2 R3 R1
R3 R1
R31
R1R2
R2 R3 R2
R3 R1
当R1 R2 R3 RY时, 得R12 R23 R31 3RY
R1
R31R12 R12+R23+R31
R2
R12 R23 R12+R23+R31
R3
R23R31 R12+R23+R31
当R12 R23 R31 R时, 得R1 R2 R3 R / 3
电工电子教学基地 电路分析教学组
1
2
3 外三内一
5
等效变换——星形与三角形电阻电路的等效 Y-Δ电阻电路等效的应用
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店 铺)
电工电子教学基地 电路分析教学组
6
v13 i31R31 v23 i23R23
i31 i1 i12 i23 i2 i12
AY A , BY B CY C , DY D
等效条件
i12 (v13 v23 ) / R12

电阻的串并联及星形和三角形联结转化

电阻的串并联及星形和三角形联结转化


在图(d)中, i、 i1和i2与端电压u均
为非关联方向, 则有
R1R2 i
i1
u R1
Ri R1
R1 R2 R2 i
R1
R1 R2
R1R2 i
i2
u R2
Ri R2
R1 R2 R1 i
R2
R1 R2
电阻的星形联结与三角形联结
电阻的星形联结:将三个电阻的一端连在一起,另一端 分别与外电路的三个结点相连,就构成星形联结,又称为 Y形联结,如图2-24(a)所示。
对于电阻星形联结的三端网络,外加两个电流源i1和i2。 用2b方程求出端口电压u1和u2的表达式为:
u1 R1i1 R3 (i1 i2 ) u2 R2i2 R3 (i1 i2 )
整理得到
u1 u2
(R1 R3 )i1 R3i2 R3i1 (R2 R3 )i2
(2 13)
R1R2 i
i2
u R2
Ri R2
R1 R2 R2
R1 i R1 R2
在图(c)中, i与端电压u为关联方向, 而i1和i2与端电压u为非关联方向, 则有
R1R2 i
i1
u R1
Ri R1
R1 R2 R1
R2 i R1 R2
R1R2 i
i2
u R2
Ri R2
R1
R2 R2
R1 i R1 R2
(2 13)
u1 u2
R31( R12 R23 ) R12 R23 R31
R23 R31 R12 R23 R31
i1 i1
R23 R31 R12 R23 R31 R23( R12 R31 ) R12 R23 R31
i2

电阻的星形连接与三角形连接的等效变换

电阻的星形连接与三角形连接的等效变换

Rc2 Rc2 Rd4
I
40 51A 4060
电子发烧友 电子技术论坛
第2章 直流电阻电路的分析计算
例 2.5(六)
为了求得R1、R3、R5的电流, 从图2.10(b)求得
U a cR a I R c I2 2 5 0 4 3 1V 1
回到图2.10(a)电路, 得
I1
Uac1122.8A R1 40
I2 R2
R5 I4
I
R3
R4
R0
+ Us -
R
a
I
I2
R c
R2
R
d
R0
I4 R4
+ Us -
(a)
(b)
图2.10例2.5图 电子发烧友 电子技术论坛
第2章 直流电阻电路的分析计算
例 2.5(三)
解 将△形连接的R1, R3, R5等效变换为Y形连接的 Ra, Rc、Rd, 如图2.10(b)所示, 代入式(2.8)求得
第2章 直流电阻电路的分析计算
⒉ 三角形、星形等效的条件
端口电压U12、U23、U31 和电流I1、I2 、I3都 分别相等,则三角形星形等效。
电子发烧友 电子技术论坛
第2章 直流电阻电路的分析计算
3.已知三角形连接电阻求星形连接电阻
R1
R 12
R 12 R 31 R 23
R 31
R2
R 12
⒈三角形连接和星形连接
三角形连接:三个电阻元件首尾相接构成一
个三角形。如下图a所示。 星形连接:三个电阻元件的一端连接在一起,
另一端分别连接到电路的三个节点。如上图b所 示。
I1
I1 1
1
I12

电阻的星形联接与三角形联接

电阻的星形联接与三角形联接

u1 R31i1 R31i12 R31 (i1 i12 ) u2 R23i12 R23i2 R23 (i2 i12 )
i12
R31i1 R23i2 R12 R23 R31
uu12
R31i1 R31i12 R31 (i1 i12 ) R23i12 R23i2 R23 (i2 i12
R31 )
R12 R23 R31
由此 解得
R2 R3
R12 R12
R12 R23 R23
R31
R23 R31
R23 R31
(2 14)
R1
R12
R31 R12 R23
R31
R2
R12
R12 R23 R23
R31
(2 14)
R3
R12
R23 R31 R23
电阻的星形联接和电阻的三角形联接构成一个电阻三 端网络。一般来说,电阻三端网络的端口特性,可用联系 这些电压和电流关系的两个代数方程来表征。
对于电阻星形联接的三端网络,外加两个电流源i1和i2。 用2b方程求出端口电压u1和u2的表达式为:
整理得到
u1 R1i1 R3 (i1 i2 ) u2 R2i2 R3 (i1 i2 )
R31
电阻三角形联接等效变换为电阻星形联接的公式为
Ri
接于i端两电阻之乘积 形三电阻之和
当R12= R23= R31= R时,有
R1
R2
R3
R
1 3
R
由式(2-14)可解得:
R12
R1 R2
R2 R3 R3
R3 R1
R23
R1 R2
R2 R3 R1
R3
R1
R31
R1 R2

电阻 等效电路

电阻 等效电路

一、概念
1. 电阻的星形连接
三个电阻元件、、的一端连在一起,另一端分别连接到电路三个节点的连接方式叫做星形连接,也叫Y连接(T连接),如图2.5所示。

图2.5 电阻的星形连接
2. 电阻的三角形连接
三个电阻元件、、首尾相连,接成一个三角形的连接方式叫做三角形连接,也叫△连接(π连接),如图2.6所示。

图2.6 电阻的三角形连接
二、两种连接方式的等效变换
1. 等效变换条件:对应端口的电流、电压均相同
2. 等效变换结果:
①Y →△:
②△→ Y :
三、电阻星形与三角形等效变换步骤:
1. 确定星形或三角形的三个顶点;
2. 去掉在三个顶点内的电阻,换为另一种连接的三个电阻;注意:在三个顶点外的电阻不能动!
3. 计算替换换后的三个电阻阻值;
4. 再按电阻串并联进行等效化简、计算。

例2.5 在图2.7(a)中,求各电阻的电流。

解:将图(a)中顶点acd△连接等效变换为acdY联接,如图2.7(b),则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档