小世界网络
小世界网络和无标度网络

⼩世界⽹络和⽆标度⽹络锚点的重要性线性⽹络中锚点的识别可以有许多⽤途,例如在具有线性拓扑的社区宽带⽹络中,其中⼀个锚点可以作为因特⽹的⽹关,进⽽优化社区⽹络中的整体传输时间。
⽤于军事或者应急响应场景中时,可以通过将其中⼀个锚点作为中⼼节点来添加⼀些LL,从⽽能够创建具有⼩APL值的⽹络拓扑。
锚点的识别也有利于车间通信。
对于⼀个给定的图,最⼩化APL等价于最⼩化图的总路径长度。
锚点的固定⽐例位置始终为0.2N或者0.8N.基于启发式⽅法的确定性链路添加两种确定性链路添加策略,即最⼤CC差异(MaxCCD),和顺序确定性LL添加。
两个节点之间的接近中⼼性差异CCD定义为两个节点的CC值之间的差。
MaxCCD策略在具有最⼤CCD的节点对之间添加LL。
APL表⽰在整个⽹络上节点对之间的路径长度平均值。
AEL刻画了⽹络上平均每条链路的长度。
节点的BC值表⽰其在⽹络中的重要性。
节点的CC值刻画了该节点与其他节点的接近程度。
平均⽹络时延:(Average Network Delay,ANeD)度量了⼀组数据从源节点传播到⽬的节点所需的平均时间。
ANeD等于传播时延和传输时延之和。
顺序确定性L添加是另⼀种基于启发式的确定LL添加⽅法,它将正则线性⽹络转化为由k条LL构成的⼩世界⽹络。
基于⼩世界特征的平均流容量增强启发式算法ACES布雷斯悖论⼩世界⽹络中的路由路由可以被定义为将⽹络中的特定信息从源节点转发到⽬的节点的过程。
分布式路由算法⾃适应分布式路由算法前瞻式路由算法⼩世界⽹络中的容量⽹络容量定义为可以在单位时间内从⽹络的⼀部分传输到另⼀部分的信息量。
增加⽹络容量是提⾼底层⽹络整体性能的关键挑战之⼀。
可以通过两种变换⽅式将正则⽹络转为⼩世界⽹络:重连现有链路NL;添加新链路LL第五章⽆标度⽹络⾃然界中⼴泛存在的⽆标度⽹络遵循幂律度分布。
多种创建⽆标度⽹络的⽅法:通过偏好连接;通过基于适应度的模型;通过改变内在适应度;通过相似性和流⾏度的局部优化;使⽤度指数1;通过贪⼼的全局优化。
小世界网络(SWN)及其在经济管理领域的应用

小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)及其在经济管理领域的应用
小世界网络(SWN)理论由物理、数学、行为科学和计算机科学等多学科交叉生成,用以说明世界上几乎任何两个人都可以通过中间人用较少的连接联系起来,其典型连接数为6-本文称之为"六度分离".SWN 理论一经使用,势必为经济管理领域带来全新思路,提供一种有效的技术工具,展现出广泛的适用性和广阔的发展前景.本文介绍有关SWN的由来、原理及其在经济管理领域的应用.
作者:田颖杰李南江可申作者单位:南京航空航天大学刊名:世界经济研究 PKU CSSCI英文刊名:WORLD ECONOMY STUDY 年,卷(期):2001 ""(6) 分类号:关键词:网络结构小世界网络随机网络特征路径长度集团化。
课题:WS小世界网络模型构造

课题:WS小世界网络模型构造姓名赵训学号 2班级计算机实验班一、WS 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径) 和聚类特性(较大的聚类系数) 。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而ER 随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts 和Strogatz建立的WS小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
二、WS小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡,如图a所示。
图a相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('WS小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angle=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angle);y=100*sin(angle);plot(x,y,'r.','Markersize',30);hold on;%生成最近邻耦合网络;A=zeros(N);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1;endfor j=1:((i+K)-N)A(i,j)=1;endendif K<ifor j=i-K:i-1A(i,j)=1;endelsefor j=1:i-1A(i,j)=1;endfor j=N-K+i:NA(i,j)=1;endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1);if pp<=pA(i,j)=0;A(j,i)=0;b=unidrnd(N);while i==bb=unidrnd(N); endA(i,b)=1;A(b,i)=1;endendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1plot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hold on;endendendhold offaver_path=aver_pathlength(A);disp(aver_path);对应输出(取网络节点数N=16,K=2;p分别取0,0.1,1)。
浅谈小世界网络

浅谈小世界网络20世纪末,很多科学家发现研究过的自然、社会和技术网络中,大都具有这些特征:高度的集群性、不均衡的度分布以及中心节点结构。
这些特征的出现不是偶然的,为什么现实世界中的网络会具有这些特征呢?这是网络科学的主要问题,目前基本上已经通过建立网络的发展模型解决了。
其中有两类模型被深入地进行了研究,分别是小世界网络和无尺度网络,这里结合原始论文谈谈对小世界网络的认识。
1998年,邓肯·瓦特和斯托加茨在《自然》杂志上发表了关于小世界网络模型的论文Collectivedynamics of‘small-world’ n etworks,首次提出并从数学上定义了小世界概念,并预言它会在社会、自然、科学技术等领域具有重要的研究价值。
所谓小世界网络,就是相对于同等规模节点的随机网络,具有较短的平均路径长度和较大的聚类系数特征的网络模型。
以前,人们认为网络分为完全规则网和完全随机网,这两类网络具有各自的特征。
规则网具有较大的特征路径长度,聚类系数也较大,而随机网络具有较小的特征路径长度,但是聚类系数较小。
难道特征路径长度较大(小)一定伴随着较大(小)的聚类系数?另外,很多现实中的网络如电网,交通网络,脑神经网络,社交网络,食物链等都表现出小世界特性,即具有较小的特征路径长度。
Watt采用一种随机重连边的方法,以探求位于规则网和随机网的中间地带。
如图:规则网有N个节点,每个节点与K个最近邻节点相连(K是偶数)。
上图的规则网有20个节点,每个节点与相邻的4个节点互联。
然后,对每条边进行以概率P进行随机重连(0<=P<=1)。
P=0时对应规则网,P=1时对应完全随机网,通过调整P的值可以得到位于两种网络中间的网络模型,然后探究其特征。
通过实验并统计网络呈现出的特征,得到下图(归一化处理后)。
可见,在P较小时(P<0.01),特征路径长度急剧下降,而聚类系数几乎没有变化。
这样,我们发现这些网络具有较短的特征路径长度和较大的聚类系数,我们称其为“小世界网络”。
小世界网络

在 NW 模型中由于基础的规则网络的连接始终没有变化,是一种有序的连接关系,而随机连接构成的随机网络,构成一种无序的连接关系。它们的合理叠加描述了客观世界具有的这种有序和无序的混杂特征。而且由于 NW 模型中没有键断开,很好的解决了WS 模型中出现孤立点的问题。
本文为了使人们更好地了解小世界网络模型,在简单介绍小世界网络的研究背景的前提下对小世界网络结构理论由规则网络,随机网络逐步发展到小世界网络的过程做了简要的阐述。本文还介绍了小世界网络的平均路径长度,群集系数和度的分布,并且对于小世界网络在Internet,舆论方面的应用做了一些初步的介绍。
关键词:复杂网络 小世界网络 流言传播 Internet小世界网络
Abstract
In recent years, the academic research on complex networks is ascendant. In particular, two international pioneeringresearchestriggeranupsurge of considerableworkon complex networks.In1998,Wattsand Strogatzpublishedtheir original articlein the journalnamedNATURE. The small world network modelwasintroducedin this article.
1.2.1 规则网络
规则模型就像一个规则可循的晶格点阵,模型中各点的连接相同。最简单的规则模型是完全有序的一维点阵。如果将一维点阵中各个点的 K 个邻居连接起来,很明显各个点的邻居又互为邻居体现集团化特征,对点阵采用循环边界条件则会形成环(如图2)。
小世界效应

大量的实证研究表明,许多真实网络都具有小世界效应,有的甚至具有所谓的超小世界效应,小世界网络模型正是模拟了真实网络的这一特点。
1998年Watts和Strogatz提出了一种小世界网络模型(WS)的构造方法:对规则网络中每一个节点的所有连边,以一定的概率P断开一个端点,然后重新连接到其他任意一节点上,如图2.1。
当重连概率P=0时,网络是一个规则网络;P=1时形成的网络为完全随机网络;当0<P<1时,形成的网络为小世界网络。
小世界网络是介于完全规则网络和完全随机网络之间的网络,既具有与规则网络类似的类聚特性,又具有与随机网络类似的较小的平均路径长度,即同时具有大的簇团系数和小的平均最短距离。
对WSd"世界网络统计特性模拟研究的结果如图2.3所示,当P=0等于零时,即对于规则网络来说,簇团系数C(P)和最短距离,(p)都较大,当P=l时,即对于随机网络来说,系统的簇团系数和最短距离都较小,而存在一个很大的P的区域,系统同时具有大的簇团系数和较小的最短距离,此即是世界效应。
WS小世界网络的构造,P=0时,是一规则网络,P=1时是完全随机网络,0<P<1时,是一小世界网络,同时具有固定连边和长程随机连边。
随着对网络研究的深入,人们发现真实网络在许多性质上与随机网络仍然有比较大的差别。
在现实世界中很多网络并不能抽象成为规则网络,也不能抽象成为随机网络,而是一种介于规则网络和随机网络之间的一种网络。
这些网络存在我们称之为“小世界效应”的特性。
对于“小世界效应’’的研究可以追溯到1967年。
在那一年,著名的心理学家Mil掣锄在HaⅣard大学做过一个简单的实验。
这个实验的过程可以进行如下简述:Mil孕锄随机的将一些信件分发给内布拉斯加少}I(Nebraska)的一些实验参与者,这些信件的送往的目的地是马萨诸塞州(Massachusetts)的首府波士顿(Boston)(之所以这么选择,是因为Mil留am认为这两个地方相距甚远)。
小世界复杂网络模型研究

小世界复杂网络模型研究摘要:复杂网络在工程技术、社会、政治、医药、经济、管理领域都有着潜在、广泛的应用。
通过高级计算机网络课程学习,本文介绍了复杂网络研究历史应用,理论描述方法及阐述对几种网络模型的理解。
1复杂网络的发展及研究意义1.1复杂网络的发展历程现实世界中的许多系统都可以用复杂网络来描述,如社会网络中的科研合作网、信息网络中的万维网、电力网、航空网,生物网络中的代谢网与蛋白质网络。
由于现实世界网络的规模大,节点间相互作用复杂,其拓扑结构基本上未知或未曾探索。
两百多年来,人们对描述真实系统拓扑结构的研究经历了三个阶段。
在最初的一百多年里,科学家们认为真实系统要素之间的关系可以用一些规则的结构表示,例如二维平面上的欧几里德格网;从20世纪50年代末到90年代末,无明确设计原则的大规模网络主要用简单而易于被多数人接受的随机网络来描述,随机图的思想主宰复杂网络研究达四十年之久;直到最近几年,科学家们发现大量的真实网络既不是规则网络,也不是随机网络,而是具有与前两者皆不同的统计特性的网络,其中最有影响的是小世界网络和无尺度网络。
这两种网络的发现,掀起了复杂网络的研究热潮。
2复杂网络的基本概念2.1网络的定义自随机图理论提出至今,在复杂网络领域提出了许多概念和术语。
网络(Network)在数学上以图(Graph)来表示,图的研究最早起源于18世纪瑞士著名数学家Euler的哥尼斯堡七桥问题。
复杂网络可以用图论的语言和符号精确简洁地加以描述。
图论不仅为数学家和物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。
网络的节点和边组成的集合。
节点为系统元素,边为元素间的互相作用(关系)。
若用图的方式表示网络,则可以将一个具体网络可抽象为一个由点集V和边集E 组成的图G=(V,E )。
节点数记为N=|V|,边数记为M=|E|.E 中每条边都有V 中一对点与之相对应。
如果任意点对(i,j )与(j,i )对应同一条边,则该网络成为无向网络(undirected network ),否则称为无权网络(unweighted netwo rk )。
小世界网络

4.2 小世界网络4.2.1 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
4.2.2 小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡。
相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angl e=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angl e);y=100*sin(angl e);pl ot(x,y,'r.','Markersize',30);hol d on;%生成最近邻耦合网络;A=zeros(N);disp(A);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1; endfor j=1:((i+K)-N) A(i,j)=1; endendif K<ifor j=i-K:i-1 A(i,j)=1;endelsefor j=1:i-1A(i,j)=1; endfor j=N-K+i:N A(i,j)=1; endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1); if pp<=pA(i,j)=0; A(j,i)=0;b=unidrnd(N); whil e i==bb=unidrnd(N); endA(i,b)=1; A(b,i)=1; endendendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1pl ot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hol d on;endendendhol d offaver_path=aver_pathl ength(A);disp(aver_path);4.2.3小世界网络模型平均路径长度与聚类系数对于纯粹的规则网络,当其中连接数量接近饱和时,集聚系数很高,平均路径长度也十分短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2 小世界网络4.2.1 小世界网络简介1998年, Watts和Strogatz 提出了小世界网络这一概念,并建立了WS模型。
实证结果表明,大多数的真实网络都具有小世界特性(较小的最短路径)和聚类特性(较大的聚类系数)。
传统的规则最近邻耦合网络具有高聚类的特性,但并不具有小世界特性;而随机网络具有小世界特性但却没有高聚类特性。
因此这两种传统的网络模型都不能很好的来表示实际的真实网络。
Watts和Strogatz建立的小世界网络模型就介于这两种网络之间,同时具有小世界特性和聚类特性,可以很好的来表示真实网络。
4.2.2 小世界模型构造算法1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2节点相连,K是偶数。
2、随机化重连:以概率p随机地从新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。
其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。
在上述模型中,p=0对应于完全规则网络,p=1则对应于完全随机网络,通过调节p的值就可以控制从完全规则网络到完全随机网络的过渡。
相应程序代码(使用Matlab实现)ws_net.m (位于“代码”文件夹内)function ws_net()disp('小世界网络模型')N=input('请输入网络节点数');K=input('请输入与节点左右相邻的K/2的节点数');p=input('请输入随机重连的概率');angl e=0:2*pi/N:2*pi-2*pi/N;x=100*cos(angl e);y=100*sin(angl e);pl ot(x,y,'r.','Markersize',30);hol d on;%生成最近邻耦合网络;A=zeros(N);disp(A);for i=1:Nif i+K<=Nfor j=i+1:i+KA(i,j)=1;endelsefor j=i+1:NA(i,j)=1; endfor j=1:((i+K)-N) A(i,j)=1; endendif K<ifor j=i-K:i-1 A(i,j)=1;endelsefor j=1:i-1A(i,j)=1; endfor j=N-K+i:N A(i,j)=1; endendenddisp(A);%随机化重连for i=1:Nfor j=i+1:Nif A(i,j)==1pp=unifrnd(0,1); if pp<=pA(i,j)=0; A(j,i)=0;b=unidrnd(N); whil e i==bb=unidrnd(N); endA(i,b)=1; A(b,i)=1; endendendend%根据邻接矩阵连线for i=1:Nfor j=1:Nif A(i,j)==1pl ot([x(i),x(j)],[y(i),y(j)],'linewidth',1); hol d on;endendendhol d offaver_path=aver_pathl ength(A);disp(aver_path);4.2.3小世界网络模型平均路径长度与聚类系数对于纯粹的规则网络,当其中连接数量接近饱和时,集聚系数很高,平均路径长度也十分短。
例如完全耦合网络,每两个节点之间都相连,所以集聚系数是1,平均路径长度是1。
然而,现实中的复杂网络是稀疏的,连接的个数只是节点数的若干倍,远远不到饱和。
如果考虑将节点排列成正多边形,每个节点都只与距离它最近的2K 个节点相连,那么在K比较大时,其集聚系数为:()()()()13232214K K C i K K --=≈-虽然能保持高集聚系数,但平均路径长度为: ()4N l O N K ≈= 平均路径长度与节点数成正比。
纯粹的随机网络有着很小的平均路径长度,但同时集聚系数也很小。
可是现实中的不少网络虽然有很小的平均路径长度,但却也有着比随机网络高出相当多的集聚系数。
因此瓦茨和斯特罗加茨认为,现实中的复杂网络是一种介于规则网络和随机网络之间的网络。
他们把这种特性称为现实网络的小世界特性,就是:1. 有很小的平均路径长度:在节点数N 很大时,平均路径长度近似于随机网络;2. 有很高的集聚系数:集聚系数大约和规则网络在同一数量级,远大于随机网络的集聚系数。
相应程序代码(使用Matlab 实现)ws.m (位于“代码”文件夹内)cl c;cl ear all;format long;n=1000;k=5;L=zeros(14,20);C=zeros(14,20);for i=1:14p(15-i,1)=1/2^(i-1);end% p=zeros(1,14);% p1=zeros(14,20);% LWS=zeros(14,1);% CWS=zeros(14,1);%%生成最近邻耦合网络A=zeros(n);for i=1:nfor j=i+1:i+kjj=j;if j>njj=mod(j,n);endA(i,jj)=1; A(jj,i)=1;endend%%计算平均路径长度L(0)D1=A;D1(find(D1==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:nD1(i,i)=0;endm=1;whil e m<=n %Fl oyd算法求解任意两点的最短距离for i=1:nfor j=1:nif D1(i,j)>D1(i,m)+D1(m,j)D1(i,j)=D1(i,m)+D1(m,j);endendendm=m+1;endL0=sum(sum(D1))/(n*(n-1)); %平均路径长度%%计算聚类系数C(0)Ci0=zeros(n,1);for i=1:naa1=find(D1(i,:)==1); %寻找子图的邻居节点if isempty(aa1)Ci0(i)=0;elsem1=l ength(aa1);if m1==1Ci0(i)=0;elseB1=D1(aa1,aa1); % 抽取子图的邻接矩阵Ci0(i)=l ength(find(B1==1))/(m1*(m1-1));endendendC0=mean(Ci0);for z=1:14% p(z)=1/2^(z-1);for g=1:20%%生成最近邻耦合网络B=zeros(n);for i=1:nfor j=i+1:i+kjj=j;if j>njj=mod(j,n);endB(i,jj)=1; B(jj,i)=1;endend%随机化重连% for i=1:n% p_rand=rand(1,1);% b=find(B(i,:)==1);% for j=1:l ength(b)% j1=b(j);% if p_rand<p(z,1) %% 生成的随机数小于p,则边进行随机化重连,否则,边不进行重连% B(i,j1)=0;B(j1,i)=0;% bb=randint(1,1,[1,n]);% if B(i,bb)==0&&B(bb,i)==0&&bb~=i %重连条件% B(i,bb)=1;B(bb,i)=1;% end% end% end% endfor i=1:nfor j=1:kp_rand=rand(1,1);if p_rand<p(z,1)bb=randint(1,1,[1,n]);if B(i,bb)==0&&B(bb,i)==0&&bb~=i %重连条件j2=j+i;if j2>nj2=mod(j2,n);endB(i,j2)=0;B(j2,i)=0;B(i,bb)=1;B(bb,i)=1;endendendend%%计算平均路径长度aver_L% n1=size(A,2);D=B;D(find(D==0))=inf; %将邻接矩阵变为邻接距离矩阵,两点无边相连时赋值为inf,自身到自身的距离为0.for i=1:nD(i,i)=0;endm2=1;whil e m2<=n %Fl oyd算法求解任意两点的最短距离for i=1:nfor j=1:nif D(i,j)>D(i,m2)+D(m2,j)D(i,j)=D(i,m2)+D(m2,j);endendendm2=m2+1;end% if l ength(infline)>0% D(infline,:)=[];% D(:,infline)=[];% n2=size(D,2);% L(z,g)=sum(sum(D))/(n2*(n2-1));%求出平均路径% elseL(z,g)=sum(sum(D))/(n*(n-1));%求出平均路径% end%%计算聚类系数aver_CCi=zeros(n,1);for i=1:naa=find(D(i,:)==1); %寻找子图的邻居节点if isempty(aa)Ci(i)=0;elsem3=l ength(aa);if m3==1Ci(i)=0;elseBB=D(aa,aa); % 抽取子图的邻接矩阵Ci(i)=l ength(find(BB==1))/(m3*(m3-1));endendendC(z,g)=mean(Ci);endendfigureLWS=mean(L,2);CWS=mean(C,2);semilogx(p,LWS/L0,'ro');hol d on;semilogx(p,CWS/C0,'b*');4.2.4 小结在网络理论中,小世界网络是一类特殊的复杂网络结构,在这种网络中大部分的节点彼此并不相连,但绝大部份节点之间经过少数几步就可到达。
在日常生活中,有时你会发现,某些你觉得与你隔得很“遥远”的人,其实与你“很近”。
小世界网络就是对这种现象(也称为小世界现象)的数学描述。
用数学中图论的语言来说,小世界网络就是一个由大量顶点构成的图,其中任意两点之间的平均路径长度比顶点数量小得多。
除了社会人际网络以外,小世界网络的例子在生物学、物理学、计算机科学等领域也有出现。
许多经验中的图可以由小世界网络来作为模型。
万维网、公路交通网、脑神经网络和基因网络都呈现小世界网络的特征。
小世界网络模型反映了朋友关系网络的一种特性,即大部分的人的朋友都是和他们住在同一条街上的邻居或在同一单位工作的同事。
另一方面,也有些人是住得较远的,甚至是远在异国他乡的朋友,这种情形对应于小世界模型中通过重新连线产生的远程连接。