第三章 热分析习题-201410

合集下载

工程热力学03章习题提示与答案

工程热力学03章习题提示与答案

而p 、p ,V 、V ,T 、T ,n 、n 等均为已知。现使A、B两部分气体通过活塞传热及移动活塞而使两
A
BB
A
BB
A
BB
A
BB
部分达到相同的温度及压力。设比热容为定值,活塞和缸的摩擦可忽略不计,试证明:
T
= TA
nA nA + nB
+ TB
nB nA +nB
,
p
=
pA
VA VA + VB
+
pB
− s10
− Rln
p2 p1
,标准状态熵由热力性质表查取;(2)比热容为定值时,熵变为
Δs
=
c
p0
ln
T2 T1
− Rln
p2 p1

答案:(1) Δs = 23.52 J/(mol·K);(2) Δs = 22.73 J/(mol·K)。
3-12 有一空储气罐自输气总管充气,若总管中空气的压力为0.6 Mpa、温度为27 ℃,试求:(1)当罐 内压力达到0.6 MPa时罐内空气的温度;(2)罐内温度和输气总管内空气温度的关系。
提示:空气看做理想气体,比热容看作定值。
答案: ΔS = -0.023 28 kJ/K。
·12·
3-11 有1 mol氧,其温度由300K升高至600 K,且压力由0.2 MPa降低到0.15 MPa,试求其熵的变化: (1)按氧的热力性质表计算;(2)按定值比热容计算。
提示:(1) Δs =
s
0 2
习题提示与答案第三章理想气体热力学能焓比热容和熵的计算31有1kg氮气若在定容条件下受热温度由100升高到500试求过程中氮所吸收的热量

热力学与统计物理答案(汪志诚)

热力学与统计物理答案(汪志诚)

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnT P P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ= ,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα-=-=,所以, ⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1TL L ∂∂=等杨氏摸量定义为T L A L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

化工习题答案-第三章

化工习题答案-第三章

化⼯习题答案-第三章第三章传热过程和传热设备⼀.本章总结1传热过程凡是存在温度差就必然导致热量⾃发地从⾼温向低温处传递,这⼀过程称为热量传递过程,简称传热过程。

包括热传导、热对流、热辐射三种形式,⼀般热传导在固液⽓三相均可发⽣,没有物质宏观运动;⽽热对流仅发⽣在流体中,流体各部分之间存在宏观运动;热辐射则伴于热对流和热辐射之中。

以列管换热器为例:热量先从热流体主体通过对流传热⾄管壁内侧;然后通过管壁的导热将热量由管壁内侧传⾄外侧;最后⼜通过对流传热,由管壁外侧传⾄冷流体主体。

2热量衡算在⾮稳态系统中,热量衡算式为:积累输出输⼊φφφ+= 在稳态系统中,没有热量积累则:输出输⼊φφ=⽆相変时,热流体输出的热量为:)(21,,h h h p h m h T T c q -=φ⽆相变时,冷流体得到的热量为:)(12,,c c c p c m c T T c q -=φ上述两式中:φ——传热速率,Wq ——流体的质量流量,kg/sc ——流体的质量定压热容,J/(k g ·K ) T 1,T 2——分别为流体进、出体系的温度,K 下标h ,c 分别表⽰热流体(hot )和冷流体(cold ) 3热传导基本概念和傅⾥叶定律3.1 温度场:任⼀瞬间存在⼀定温度分布的空间,称为温度场。

若温度场内各点温度随时间变化,则为不稳定温度场,反之则为稳定温度场。

3.2 温度梯度:温度差和两等温⾯之间的垂直距离之⽐的极限称为温度梯度,它是沿等温⾯垂直⽅向的向量,正⽅向是朝温度增加的⽅向。

公式为:lim ?t →⽐,且热流⽅向沿温度降低的⽅向,即:dndtA d dQ λτ-= 稳定导热时:dndtAλτφ-==Q式中:φ——单位时间传递的热量,也称热流量,W ;A ——导热⾯积,即垂直于热流⽅向的截⾯积,m 2;λ——热导率,W/(m ·K ); dndt——温度梯度,K/m 。

4热导率4.1 热导率在数值上等于单位温度梯度下、单位导热⾯积上、单位时间内所传导的热量,即单位温度梯度下所传导的热流通量。

热统习题解答(全]

热统习题解答(全]

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。

解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。

证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。

1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。

物理化学第三章习题答案

物理化学第三章习题答案

第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作;求1 热机效率;2 当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热;解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:1 热机效率;2 当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:1 由卡诺循环的热机效率得出23.3 卡诺热机在的高温热源和的低温热源间工作,求1热机效率;2当向低温热源放热时,系统从高温热源吸热及对环境所作的功;解: 123.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W ;假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法;证: 反证法 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法;3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程;解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间;求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变;1 可逆热机效率;2 不可逆热机效率;3 不可逆热机效率;解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为;3.7 已知水的比定压热容;今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的;1系统与100℃的热源接触;2系统先与55℃的热源接触至热平衡,再与100℃的热源接触;3系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触;解:熵为状态函数,在三种情况下系统的熵变相同在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮N2, g的摩尔定压热容与温度的函数关系为将始态为300 K,100 kPa下1 mol的N2g置于1000 K的热源中,求下列过程1经恒压过程;2经恒容过程达到平衡态时的;解:1在恒压的情况下2在恒容情况下,将氮N2, g看作理想气体将代替上面各式中的,即可求得所需各量3.9 始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态;求各步骤及途径的;1 恒温可逆膨胀;2先恒容冷却至使压力降至100 kPa,再恒压加热至;3 先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至;解:1对理想气体恒温可逆膨胀,△U= 0,因此2先计算恒容冷却至使压力降至100 kPa,系统的温度T:3同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下3.10 1mol理想气体在T=300K下,从始态100KPa 到下列各过程,求及;1 可逆膨胀到压力50Kpa;2 反抗恒定外压50Kpa,不可逆膨胀至平衡态;3 向真空自由膨胀至原体积的2倍3.11 某双原子理想气体从始态,经不同过程变化到下述状态,求各过程的解:1 过程1为PVT变化过程232.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的;解:过程图示如下先求出末态的温度因此,3.13 4mol单原子理想气体从始态750K,150KPa,先恒容冷却使压力降至50KPa,再恒温可逆压缩至100KPa,求整个过程的解:ab3.14 3mol双原子理想气体从始态,先恒温可逆压缩使体积缩小至,再恒压加热至,求整个过程的及;解:ab3.15 5 mol单原子理想气体,从始态300 K,50 kPa先绝热可逆压缩至100 kPa,再恒压冷却至体积为85dm3的末态;求整个过程的Q,W,△U,△H及△S;3.16 始态300K,1MPa的单原子理想气体2mol,反抗0.2MPa的恒定外压绝热不可逆膨胀至平衡态;求过程的解:3.17 组成为的单原子气体A与双原子气体B的理想气体混合物共10 mol,从始态,绝热可逆压缩至的平衡态;求过程的;解:过程图示如下混合理想气体的绝热可逆状态方程推导如下容易得到3.18 单原子气体A与双原子气体B的理想气体混合物共8 mol,组成为,始态;今绝热反抗恒定外压不可逆膨胀至末态体积的平衡态;求过程的;解:过程图示如下先确定末态温度,绝热过程,因此3.19 常压下将100 g,27℃的水与200 g,72℃的水在绝热容器中混合,求最终水温t及过程的熵变;已知水的比定压热容;解:3.20 将温度均为300K,压力均为100KPa的100的的恒温恒压混合;求过程,假设和均可认为是理想气体;解:3.21 绝热恒容容器中有一绝热耐压隔板,隔板一侧为2mol的200K,的单原子理想气体A,另一侧为3mol的400K,100的双原子理想气体B;今将容器中的绝热隔板撤去,气体A与气体B混合达到平衡态,求过程的;解:A Bn=2mol n=3moln=2+3molT=200K T=400K T=V=V=V=∵绝热恒容 混合过程,Q = 0, W = 0 ∴△U = 00=40025×320023×20=4002002222)-)+-)-)+-T R T R T C n T C n B m ,V B A m ,V A ((((T 2 = 342.86K注:对理想气体,一种组分的存在不影响另外组分;即A 和B 的末态体积均为容器的体积;3.22 绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N 2g;一侧容积50 dm 3,内有200 K 的N 2g 2 mol ;另一侧容积为75 dm 3, 内有500 K 的N 2g 4 mol ;N 2g 可认为理想气体;今将容器中的绝热隔板撤去,使系统达到平衡态;求过程的;解:过程图示如下同上题,末态温度T 确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较;3.23 甲醇在101.325KPa下的沸点正常沸点为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时;解:3.24 常压下冰的熔点为0℃,比熔化焓,水的比定压热熔;在一绝热容器中有1 kg,25℃的水,现向容器中加入0.5 kg,0℃的冰,这是系统的始态;求系统达到平衡后,过程的;解:过程图示如下将过程看作恒压绝热过程;由于1 kg,25℃的水降温至0℃为只能导致克冰融化,因此3.25 常压下冰的熔点是,比熔化焓,水的比定压热熔,系统的始态为一绝热容器中1kg,的水及0.5kg 的冰,求系统达到平衡态后,过程的熵; 解:3.27 已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.5 1℃,摩尔熔化焓;液态水和固态苯的摩尔定压热容分别为及;今有两个用绝热层包围的容器,一容器中为0℃的8 mol H2Os与2 mol H2Ol成平衡,另一容器中为5.510℃的5 mol C6H6l与5 mol C6H6s成平衡;现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态;求过程的;解:粗略估算表明,5 mol C6H6l 完全凝固将使8 mol H2Os完全熔化,因此,过程图示如下总的过程为恒压绝热过程, ,3.28 将装有0.1 mol乙醚C2H52Ol的小玻璃瓶放入容积为10 dm3的恒容密闭的真空容器中,并在35.51℃的恒温槽中恒温;35.51℃为在101.325 kPa下乙醚的沸点;已知在此条件下乙醚的摩尔蒸发焓;今将小玻璃瓶打破,乙醚蒸发至平衡态;求1乙醚蒸气的压力;2过程的;解:将乙醚蒸气看作理想气体,由于恒温各状态函数的变化计算如下△H=△H1+△H2△S=△S1+△S2忽略液态乙醚的体积3.30.容积为20 dm3的密闭容器中共有2 mol H2O成气液平衡;已知80℃,100℃下水的饱和蒸气压分别为及,25 ℃水的摩尔蒸发焓;水和水蒸气在25 ~ 100 ℃间的平均定压摩尔热容分别为和;今将系统从80℃的平衡态恒容加热到100℃;求过程的;解:先估算100 ℃时,系统中是否存在液态水;设终态只存在水蒸气,其物质量为n, 则显然,只有一部分水蒸发,末态仍为气液平衡;因此有以下过程:设立如下途径第一步和第四步为可逆相变,第二步为液态水的恒温变压,第三步为液态水的恒压变温;先求80℃和100℃时水的摩尔蒸发热:3.31. O2g的摩尔定压热容与温度的函数关系为已知25 ℃下O2g的标准摩尔熵;求O2g 在100℃,50 kPa下的摩尔规定熵值;解:由公式3.32. 若参加化学反应的各物质的摩尔定压热容可表示为试推导化学反应的标准摩尔反应熵与温度T的函数关系式,并说明积分常数如何确定;解:对于标准摩尔反应熵,有式中3.33. 已知25℃时液态水的标准摩尔生成吉布斯函,水在25℃时的饱和蒸气压;求25℃时水蒸气的标准摩尔生成吉布斯函数; 解:恒温下3.34. 100℃的恒温槽中有一带有活塞的导热圆筒,筒中为2 mol N2g及装与小玻璃瓶中的3 mol H2Ol;环境的压力即系统的压力维持120 kPa不变;今将小玻璃瓶打碎,液态水蒸发至平衡态;求过程的;已知:水在100℃时的饱和蒸气压为,在此条件下水的摩尔蒸发焓;3.35. 已知100℃水的饱和蒸气压为101.325 kPa,此条件下水的摩尔蒸发焓;在置于100℃恒温槽中的容积为100 dm3的密闭容器中,有压力120 kPa的过饱和蒸气;此状态为亚稳态;今过饱和蒸气失稳,部分凝结成液态水达到热力学稳定的平衡态;求过程的;解:凝结蒸气的物质量为热力学各量计算如下3.36 已知在101.325 kPa下,水的沸点为100℃,其比蒸发焓;已知液态水和水蒸气在100~120℃范围内的平均比定压热容分别为:及;今有101.325 kPa下120℃的1 kg过热水变成同样温度、压力下的水蒸气;设计可逆途径,并按可逆途径分别求过程的及;解:设计可逆途径如下3.37 已知在100 kPa下水的凝固点为0℃,在-5 ℃,过冷水的比凝固焓,过冷水和冰的饱和蒸气压分别为,;今在100 kPa下,有-5℃ 1 kg的过冷水变为同样温度、压力下的冰,设计可逆途径,分别按可逆途径计算过程的及;解:设计可逆途径如下第二步、第四步为可逆相变,,第一步、第五步为凝聚相的恒温变压过程,,因此3.38 已知在-5℃,水和冰的密度分别为和;在-5℃,水和冰的相平衡压力为59.8 MPa;今有-℃C的1 kg水在100 kPa下凝固成同样温度下的冰,求过程的;假设,水和冰的密度不随压力改变;3.39 若在某温度范围内,一液体及其蒸气的摩尔定压热容均可表示成的形式,则液体的摩尔蒸发焓为其中,为积分常数; 试应用克劳修斯-克拉佩龙方程的微分式,推导出该温度范围内液体的饱和蒸气压p的对数ln p与热力学温度T 的函数关系式,积分常数为I;解:克—克方程为不定积分:3.40 化学反应如下:1利用附录中各物质的Sθm,△f Gθm数据,求上述反应在25℃时的△r Sθm,△r Gθm;2利用附录中各物质的△f Gθm数据,计算上述反应在25℃时的;325℃,若始态CH4g和H2g的分压均为150 kPa,末态COg和H2g的分压均为50 kPa,求反应的;解:3.41 已知化学反应中各物质的摩尔定压热容与温度间的函数关系为这个反应的标准摩尔反应熵与温度的关系为试用热力学基本方程推导出该反应的标准摩尔反应吉布斯函数与温度T的函数关系式;说明积分常数如何确定;解:根据方程热力学基本方程4.42 汞Hg在100 kPa下的熔点为-38.87℃,此时比融化焓;液态汞和固态汞的密度分别为和;求:1压力为10MPa下汞的熔点;2若要汞的熔点为-35℃,压力需增大之多少;解:根据Clapeyron方程,蒸气压与熔点间的关系为3.43 已知水在77℃时的饱和蒸气压为41.891 kPa;水在101.325 kPa下的正常沸点为100℃;求 1下面表示水的蒸气压与温度关系的方程式中的A和B值;2在此温度范围内水的摩尔蒸发焓;3在多大压力下水的沸点为105℃;解:1将两个点带入方程得2根据Clausius-Clapeyron方程33.44 水H2O和氯仿CHCl3在101.325 kPa下的正常沸点分别为100℃和61.5℃,摩尔蒸发焓分别为和;求两液体具有相同饱和蒸气压时的温度;解:根据Clausius-Clapeyron方程设它们具有相同蒸气压时的温度为T,则3.45 因同一温度下液体及其饱和蒸汽压的摩尔定压热容不同故液体的摩尔蒸发焓是温度的函数,试推导液体饱和蒸汽压与温度关系的克劳修斯——克拉佩龙方程的不定积分式;解:克—克方程不定积分得:3.46 求证:2 对理想气体证明:由H=fH,P可得对理想气体,3.50证明 1焦耳-汤姆逊系数2对理想气体证明:由H=fT,PdP PHdT T H dH T m p m m )()(∂∂+∂∂= m p Tm p m T m H C P HTH P H P T,)()()()(∂∂-=∂∂∂∂-=∂∂VdP TdS dH +=V PST P H T T +∂∂=∂∂∴)()(麦克斯韦关系式 P T T VP S )()(∂∂=∂∂- 代入上式V T TVP H P T +∂∂-=∂∂)()(T J mp m p mH C V T T V PT -=-∂∂-=∂∂μ,)()(2对于理想气体 p nRT V =pRT V m = p RT V p m =∂∂)(0,,=-=-=-mp m m m p mT J C V V C V T pRμ。

物理化学复习题目(含答案)

物理化学复习题目(含答案)

物理化学总复习第一章热力学第一定律1.热力学第一定律U Q W∆=+只适用于:(A)单纯状态变化(B)相变化(C)化学变化(D)封闭体系的任何变化2.1mol单原子理想气体,在300K时绝热压缩到500K,则其焓变∆约为:4157JH3.关于热和功,下面说法中,不正确的是:(A)功和热只出现在体系状态变化的过程中,只存在于体系和环境的界面上(B)只有封闭体系发生的过程中,功和热才有明确的意义(C)功和热不是能量,而是能量传递的两种形式,可称为被交换的能量(D)在封闭体系中发生的过程,如果内能不变,则功和热对体系的影响必互相抵消4.涉及焓的下列说法中正确的是:答案:D(A)单质的焓值均为零(B)在等温过程中焓变为零(C)在绝热可逆过程中焓变为零(D)化学反应中体系的焓变不一定大于内能变化5.下列过程中,体系内能变化不为零的是:(A)不可逆循环过程(B)可逆循环过程(C )两种理想气体的混合过程 (D )纯液体的真空蒸发过程6. 对于理想气体,下列关系中那个是不正确的?答案:A(A )0)TU(V =∂∂ (B ) 0)V U (T =∂∂ (C ) 0)P U (T =∂∂ (D )0)PH(T =∂∂ 7. 实际气体的节流膨胀过程中,哪一组的描述是正确的?(A ) Q = 0 ;H ∆ =0;P ∆< 0 (B ) Q = 0 ;H ∆ = 0;P ∆> 0 (C ) Q > 0 ;H ∆ =0;P ∆< 0 (D ) Q < 0 ;H ∆ = 0;P ∆< 0 8. 3mol 的单原子理想气体,从初态T 1=300 K 、p 1=100kPa 反抗恒定的外压50kPa 作不可逆膨胀至终态T 2=300 K 、p 2=50kPa ,对于这一过程的Q= 3741J 、W= -3741 J 、U ∆= 0 、H ∆= 0 。

9. 在一个绝热的刚壁容器中,发生一个化学反应,使物系的温度从T 1升高到T 2,压力从p 1升高到p 2,则:Q = 0 ;W = 0 :U ∆ = 0。

热学教程习题参考解(第三章)

热学教程习题参考解(第三章)

《热学教程》习题参考答案第三章 习 题3-1. 在掷两颗骰子时,组成总点数为2,3,4,5,6,7,8,9,10,11,12的概率各为多少? 并用所得结果检验归一化条件.(答: P 2=P 12=361,P 3= P 11=181,P 4= P 10=121,P 5= P 9=91,P 6=P 8=365,P 7=1;1P 122=∑=i i )解:每个骰子有六个面,在条件完全等同的情况下掷骰子,出现每个面的概率都相等,等于()61,满足等概率原理. 当掷两个骰子时,出现任意一种组合的概率为()361. 考虑到骰子的六个面形成三组对称面,分别为1-6,2-5,3-4. 故出现两颗骰子总数为2的概率与出现总数为12的概率相等;同理出现总数为3与总数为11的概率相等,故一般情况下出现总数为i 和()i -14的概率满足关系式:i i P P =-14,12,,3,2 =i .因此, 可以写出:()361122==P P ,()181113==P P ,为什么掷两个骰子时出现总数为3的概率比总数为2的概率大一倍?这是因为形成总数为2时的两骰子,只有一种组合()1,1;而形成总数为3时的两骰子,可以有两种组合:()1,2 或 ()2,1. 作类似分析可知:()121104==P P ,两面的可能组合为()2,2,()1,3,()3,1;()195==P P ,组合为()4,1,()1,4,()3,2,()2,3;()586==P P ,组合为()3,3,()4,2,()2,4, ()5,1,()1,5;()617=P ,组合为()6,1,()1,6,()5,2,()2,5,()4,3,()3,4.不难看出总概率之和满足归一条件:1122=∑=i i P ,这结果说明,只要掷两个骰子一次,总会出现各种可能组合中的一种组合,事件总是会发生的.3-2. 从一副扑克的52张牌中,任意抽取两张,问都是红桃的概率有多大?( 答: 5.88 %) 解:3-3 甲、乙两个高射炮手同时射击一入侵敌机,甲和乙分别击中敌机的概率为60% 和50%,问敌机被击落的概率为多少? ( 答:80% ) 解:3-4. 计算300K 时氧分子的最概然、平均和方均根速率.(答:395 m/s,446 m/s,483 m/s) 解: 氧分子的最概然、平均和方均根速率分别为:13s m 395103230031.822--⋅=⨯⨯⨯==μRTv p , 13s m 446103214.330031.888--⋅=⨯⨯⨯⨯==μπRTv , 132s m 483103230031.833--⋅=⨯⨯⨯==μRTv . 3-5. 气体分子速率与最概然速率之差不超过1%的分子数目占全部分子数目的百分之几? (答:1.66 %)解: 应用麦克斯韦速率分布律,可得:(),%66.10166.002.042exp 24B 2p 23B 2p p ==⨯⨯==∆⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∆ev T k mv T k m v Nv N πππ其中的 p 02.0v v =∆;m T k v B p 2=.3-6. 试就下列几种情况,求气体分子数目占总分子数目的比率:(1) 速率在区间p p ~v v 1.01内;(2) 速度分量x v 在区间p p ~v v 1.01内;(3) 速度分量x v ,z y v v ,同时在区间p p ~v v 1.01内.(答:8.3×103-;2.08×103-;9×109-) 解: (1)();103.801.0401.02ex p 243p B 2p 3B 2p -⨯=⨯⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m v Nv N p πππ (2)();1008.201.001.02ex p 23p B 2p 21B p -⨯=⨯=⨯⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ (3)()932363p 6B 2p 23B p 1094.8101023ex p 2---⨯=⨯=⨯⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛=∆e v T k mv T k m N v N ππ 3-7. 设有一群粒子具有下列速率分布:试求:(1)平均速率v ;(2)方均根速率2v ;(3)最概然速率p v .(答:(1)318m/s ;(2)337m/s ;(3)400m/s) 解:(1);s m 31820806040205002040080300602004010020=++++⨯+⨯+⨯+⨯+⨯==∑∑iiiii N v N v(2)s m 33722==∑∑iiii i N v N v ;(3)s m 400p =v .3-8. 设氢气的温度为300K,求速率在3000~3010m/s 之间的分子数1n 与速率在最概然速率附近10~p p +v v m/s 之间的分子数2n 之比.(答:26.5 %)解: 应用麦克斯韦速率分布律,可得两种速率区间内气体分子数之比为:()()⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=∆∆=2p 2p212p 21p p 11p 1ex p v v v v v v v f v v f n n , 已知式中的 ;m 157910230031.822,s m 30003p 1=⨯⨯⨯===-μRT v v,s m 10p 1=∆=∆v v 故可求得()%5.26265.0p 1==n n .3-9. 证明: 若以最概然速率为度量气体分子速率的单位,用u 表示此相对速率,则速率处于u u u d ~+之间的分子数与气体的温度无关.解: 以最概然速率m T k v B p 2=为单位,衡量气体分子的速率,可以引进无量纲速 率()p v v u =,从而可写出无量纲的麦克斯韦速率分布律及其分布函数:()()u u f N u N d d =, ()()22ex p 4u u u f -=π. 不难看出,无量纲的麦克斯韦速率分布律仍然满足归一条件,而且与温度明显无关.3-10. 根据麦克斯韦速率分布律,求速率倒数的平均值 v / 1,并与速率平均值v 的倒数相比较.(答:T k m B 2π)解: 应用麦克斯韦速率分布律,可得:()21B 20B 223B 02d 2ex p 22d 11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==⎰⎰∞∞T k m v T k mv T k m v v f v v πππ,显然它较之平均速率的倒数 21B 81⎪⎪⎭⎫⎝⎛=T k m v π要大. 3-11. 用泻流分离从天然铀中将同位素U 235浓缩到99.5%,需作几级泻流?(答:2395)解: 应用能计算泻流使轻组元较之种组元相对富集的公式2122121''β⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛m m n n n n ,式中的‘1’和‘2’分别表示泻流气体中的轻组元6235F U 和重组元6238F U ;1m 和2m 分别是轻和重组元的分子质量,即它们的摩尔质量分别为/m ol kg 349.0A 11==N m μ和kg/mol 352.0A 22==N m μ,这里的A N 是阿伏伽德罗常数;1n ,'1n 和2n ,'2n 分别表示轻和重组元在泻流前和经过β次泻流后的丰度,由题意可知:%7.01=n ,%3.992=n 和%5.99'1=n ,%5.0'2=n .故可求得泻流级数为:2395349352ln 5.07.03.995.99ln 2ln ln 22112'2'1=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=m m n n n n β. 3-12. N 个气体分子满足如图所示的速率分布,试(1)由N 和0v 求a ;(2)求速率在1.500~v v 2.0之间的分子数目;(3)求分子的平均速率.(答:(1) 032v N ;(2)3N ;(3)9110v )解:(1) 由归一条件可得:()()()N v v f N v v f N v v f N v v v =+=⎰⎰⎰∞0200d d d ,按题意可知:()()a v f N v v v av v f N v v =>=≤,;,000,故得()N av av v v a v v f N ==⎪⎪⎭⎫ ⎝⎛+⨯=⎰∞232d 002000, 032v Na =; 习题3-12图(2)气体分子速率在000.2~5.1v v 之间的分子数目为()35.0d d 00.25.10.25.10N v a v a v v f N v v v v===⎰⎰; (3)气体分子的平均速率为()020000911d 32d d 000v v v v v v N v a vv v f v v v v v =+==⎰⎰⎰∞。

参考答案(第3章)

参考答案(第3章)
第三章、材料加工中的流动与传热
1、以实例分析流体在运动过程中产生吸气现象的条件。 2、在铸型的浇注过程中,铸型与液态金属界面上的温度分布是否均匀是否均匀?其程度与 哪些因素有关? 3、对凝固潜热的处理有哪些方法?如何合理地选用? 4、用平方根定律计算凝固时间,其误差对半径相同的球体和圆柱体来说,何者为大?对大 铸件和小铸件来说何者为大?对熔点高者和熔点低者何者为大? 5、在热处理的数值计算中,热物性参数如何确定?为何特别强调表面传热系数的作用?如 何选择和确定表面传热系数? 6、 焊接热过程的复杂性体现在哪些方面? 7、 焊接热源有哪几种模型?焊接传热的模型有哪几种?
8、热源的有效功率 q = 4200W ,焊速 v = 0.1cm s ,在厚大件上进行表面堆焊,试求准稳
态 时 A ( x = −2.0cm, y = 0.5cm, z = 0.3cm) 的 温 度 。( 低 碳 钢 的 热 物 性 参 数 :
a = 0.1cm2 s , λ = 0.42W (cm�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章热分析习题
3-1名词解释
热重分析、差热分析、差示扫描量热仪、动态热机械分析、潜热、显热、玻璃化转变温度、比热、热容、热对称性、热惯性
3-2列举一种电子天平的主要技术指标。

3-3影响热重曲线的主要因素?试推导热重仪器中表观增重与气体密度的关系:已知一体积为V、恒重后的物体置于加热炉中,T
温度下物体周围气体的密
度为ρ
,计算表观增重ΔW(温度T时的重量与初始重量之差)与试样温度
T的关系ΔW=F(V,ρ
0,T
,T)。

根据所推导的表观增重公式说明影响表观增
重的因素。

3-4差热曲线基线方程的表达式中,各参数的物理含义?影响差热曲线基线的主要因素?
3-5放热或吸热的量与差热峰面积的关系?
3-6题图3-6为高聚物材料的典型DSC曲线。

标示出高聚物材料DSC曲线上主要的变化过程及相应的特征温度。

题图3-6 高聚物材料的典型DSC曲线
3-7从试样的差热曲线上可获得哪些信息?
3-8如何利用试样的DSC曲线判断矿石中含β-SiO
2

3-9有一石灰石矿,其粉料的TG-DSC联合分析图上可见一吸热谷,其T
onset
为880℃,所对应的面积为360×4.184J/g,对应的TG曲线上失重为39.6%,计算:①该矿物的碳酸钙含量?(碳酸钙分子量为100.9)②碳酸钙的分解温度?③单位质量碳酸钙分解时需吸收的热量?
3-10题图3-10为一金属玻璃的DSC曲线。

根据DSC曲线,指出该金属玻璃在加热过程中经历的玻璃化转变及析晶过程所对应的特征温度或温度范围。

题图3-10 某金属玻璃的DSC曲线
3-11快速凝固的化学组分为Al87Ni7Cu3Nd3金属材料的XRD、DSC分析结果分别见题图3-11。

请根据分析结果初步判断是否是金属玻璃,并写出判断依据。

该金属玻璃的Tg为多少度?该金属玻璃经不同的温度(见图中所标)热处理1小时后,随热处理温度的升高晶相种类和组成如何变化?
□Al ■Al3Ni
○Al11Nd3●Al8Cu3Nd
金属材料DSC结果图不同温度热处理1小时后金属材料的XRD图
题图3-13
3-12 Mn3O4原料在空气氛下的热重曲线如图2,由图可见350℃~900℃温升范围内,增重3.37%。

分析加热过程中原料所发生的物理化学变化,计算900℃时可能的化学式,写出相应的化学反应方程。

哪些热事件加热过程会发生增重现象?(Mn原子量54.95)
图2 Mn3O4原料在空气氛下的热重曲线。

相关文档
最新文档