山东省聊城市中考数学模拟试卷(一)(含解析)

合集下载

2020年山东省聊城市中考数学试卷 (解析版)

2020年山东省聊城市中考数学试卷 (解析版)

2020年山东省聊城市中考数学试卷一、选择题1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣2.如图所示的几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF ∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b25.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分6.计算÷3×的结果正确的是()A.1B.C.5D.97.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.50512.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:x(x﹣2)﹣x+2=.14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.15.计算:(1+)÷=.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.解不等式组并写出它的所有整数解.19.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.20.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.21.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.24.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.25.如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l 分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.参考答案一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣1,﹣,0,中,最小的实数是()A.﹣1B.C.0D.﹣【分析】直接利用实数比较大小的方法得出答案.解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.2.如图所示的几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看,是一个矩形,矩形的靠右边有一条纵向的实线,故选:C.3.如图,在△ABC中,AB=AC,∠C=65°,点D是BC边上任意一点,过点D作DF ∥AB交AC于点E,则∠FEC的度数是()A.120°B.130°C.145°D.150°【分析】由等腰三角形的性质得出∠B=∠C=65°,由平行线的性质得出∠CDE=∠B=65°,再由三角形的外角性质即可得出答案.解:∵AB=AC,∠C=65°,∴∠B=∠C=65°,∵DF∥AB,∴∠CDE=∠B=65°,∴∠FEC=∠CDE+∠C=65°+65°=130°;故选:B.4.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【分析】根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()成绩/分84889296100人数/人249105A.92分,96分B.94分,96分C.96分,96分D.96分,100分【分析】根据中位数和众数的定义分别进行解答即可.解:把这些数据从小到大排列,最中间的两个数是第15、16个数的平均数,所以全班30名同学的成绩的中位数是:=94;96出现了10次,出现的次数最多,则众数是96,所以这些成绩的中位数和众数分别是94分,96分.故选:B.6.计算÷3×的结果正确的是()A.1B.C.5D.9【分析】根据二次根式的性质化简二次根式后,再根据二次根式的乘除法法则计算即可.解:原式=====1.故选:A.7.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.【分析】如图,过点A作AH⊥BC于H.利用勾股定理求出AC即可解决问题.解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC===5,∴sin∠ACH==,故选:D.8.用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣移项,应该在左右两边同时加上一次项系数﹣的一半的平方.解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.9.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是()A.πB.2πC.3πD.4π【分析】连接OD,BC,根据垂径定理和等腰三角形的性质得到DM=CM,∠COB=∠BOD,推出△BOD是等边三角形,得到∠BOC=60°,根据扇形的面积公式即可得到结论.解:连接OD,BC,∵CD⊥AB,OC=OD,∴DM=CM,∠COB=∠BOD,∵OC∥BD,∴∠COB=∠OBD,∴∠BOD=∠OBD,∴OD=DB,∴△BOD是等边三角形,∴∠BOD=60°,∴∠BOC=60°,∵DM=CM,∴S△OBC=S△OBD,∵OC∥DB,∴S△OBD=S△CBD,∴S△OBC=S△DBC,∴图中阴影部分的面积==2π,故选:B.10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.m B.m C.m D.m【分析】根据已知条件求得圆锥的底面半径,然后利用勾股定理求得其高即可.解:设底面半径为rm,则2πr=,解得:r=,所以其高为:=m,故选:C.11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么图㊿中的白色小正方形地砖的块数是()A.150B.200C.355D.505【分析】由图形可知图ⓝ的地砖有(7n+5)块,依此代入数据计算可求图㊿中的白色小正方形地砖的块数.解:由图形可知图ⓝ的地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.12.如图,在Rt△ABC中,AB=2,∠C=30°,将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,在B′C′上取点D,使B′D=2,那么点D到BC的距离等于()A.2(+1)B.+1C.﹣1D.+1【分析】根据直角三角形的性质得到BC=2,AC=4,根据旋转的性质得到AB′=AB=2,B′C′=BC=2,求得B′C=2,延长C′B′交BC于F,解直角三角形即可得到结论.解:∵在Rt△ABC中,AB=2,∠C=30°,∴BC=2,AC=4,∵将Rt△ABC绕点A旋转得到Rt△AB′C′,使点B的对应点B′落在AC上,∴AB′=AB=2,B′C′=BC=2,∴B′C=2,延长C′B′交BC于F,∴∠CB′F=∠AB′C′=90°,∵∠C=30°,∴∠CFB′=60°,B′F=B′C=,∵B′D=2,∴DF=2+,过D作DE⊥BC于E,∴DE=DF=×(2+)=+1,故选:D.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:x(x﹣2)﹣x+2=(x﹣2)(x﹣1).【分析】利用提取公因式法因式分解即可.解:原式=x(x﹣2)﹣(x﹣2)=(x﹣2)(x﹣1).故答案为:(x﹣2)(x﹣1).14.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是60°.【分析】根据菱形的性质得出∠B=∠AOC,根据圆内接四边形的性质得出∠B+∠D=180°,即可得出∠D+∠AOC=180°,根据圆周角定理得出3∠D=180°,即可求得∠ADC=60°.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.15.计算:(1+)÷=﹣a.【分析】直接将括号里面通分运算进而结合分式的混合运算法则计算得出答案.解:原式=•a(a﹣1)=•a(a﹣1)=﹣a.故答案为:﹣a.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是.【分析】画树状图展示所有9种等可能的结果数,找出他们抽到同一类书籍的结果数,然后根据概率公式求解.解:画树状图如下:由树状图知,共有9种等可能结果,其中抽到同一类书籍的有3种结果,所以抽到同一类书籍的概率为=,故答案为:.17.如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+2.【分析】根据平行线的性质得到∠BAC=45°,得到∠C=90°,求得AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,根据勾股定理即可得到结论.解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE===2,∴最小周长的值=AC+BC+AE=4+2,故答案为:4+2.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.解不等式组并写出它的所有整数解.【分析】分别求出各不等式的解集,再求出其公共解集即可得.解:,解不等式①,x<3,解不等式②,得x≥﹣,∴原不等式组的解集为﹣≤x<3,它的所有整数解为0,1,2.19.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为120;统计图中的a=12,b=36;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.【分析】(1)从两个统计图可知a组的有18人,占调查人数的15%,可求出调查人数,即样本容量;进而求出a、b的值;(2)求出E组的频数即可补全条形统计图;(3)样本估计总体,样本中喜欢“葫芦雕刻”的占,即,因此估计总体2500人的是喜欢“葫芦雕刻”的人数.解:(1)18÷15%=120(人),因此样本容量为120;a=120×10%=12(人),b=120×30%=36(人),故答案为:120,12,36;(2)E组频数:120﹣18﹣12﹣30﹣36=24(人),补全条形统计图如图所示:(3)2500×=625(人),答:该校2500名学生中喜爱“葫芦雕刻”的有625人.20.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.【分析】(1)设这一批树苗平均每棵的价格是x元,根据题意列方程解答即可;(2)分别求出A种树苗每棵的价格与B种树苗每棵的价格,设购进A种树苗t棵,这批树苗的费用为w元,根据题意求出w与t的函数关系式,再根据一次函数的性质解答即可.解:(1)设这一批树苗平均每棵的价格是x元,根据题意列,得:,解这个方程,得x=20,经检验,x=20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A种树苗每棵的价格为:20×0.9=18(元),B种树苗每棵的价格为:20×1.2=24(元),设购进A种树苗t棵,这批树苗的费用为w元,则:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函数,k=﹣6<0,∴w随t的增大而减小,又∵t≤3500,∴当t=3500棵时,w最小,此时,B种树苗每棵有:5500﹣3500=2000(棵),w=﹣6×3500+132000=111000,答:购进A种树苗3500棵,BA种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.21.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.【分析】根据平行四边形的性质得到两角一边对应相等,利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB∥CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).【分析】过点N作EF∥AC交AB于点E,交CD于点F,可得AE=MN=CF=1.6,EF=AC=35,再根据锐角三角函数可得BE的长,进而可得AB的高度.解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43≈28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.【分析】(1)用待定系数法即可求解;(2)S△PAB=PE•CA+PE•BD=PE PE=PE=18,即可求解.解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,故反比例函数表达式为:y=﹣,将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),将点A、B的坐标代入一次函数表达式得,解得,故直线的表达式为:y=﹣3x﹣3;(2)设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,则S△PAB=PE•CA+PE•BD=PE PE=PE=18,解得:PE=4,故点P的坐标为(3,0)或(﹣5,0).24.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=6,求此时DE的长.【分析】(1)连接OD、BD,求出BD⊥AC,瑞成AD=DC,根据三角形的中位线得出OD∥BC,推出OD⊥DE,根据切线的判定推出即可;(2)根据题意求得AD,根据勾股定理求得BD,然后证得△CDE∽△ABD,根据相似三角形的性质即可求得DE.【解答】(1)证明:连接OD、BD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴D为AC中点,∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O的切线;(2)由(1)知BD是AC的中线,∴AD=CD==3,∵O的半径为5,∴AB=6,∴BD===,∵AB=AC,∴∠A=∠C,∵∠ADB=∠CED=90°,∴△CDE∽△ABD,∴,即=,∴DE=3.25.如图,二次函数y═ax2+bx+4的图象与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l 分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.【分析】(1)由题意得出方程组,求出二次函数的解析式为y=﹣x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),由DE=PF得出方程,解方程进而得出答案;(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.解:(1)将点A(﹣1,0),B(4,0),代入y═ax2+bx+4,得:,解得:,∴二次函数的表达式为:y=﹣x2+3x+4,当x=0时,y=4,∴C(0,4),设BC所在直线的表达式为:y=mx+n,将C(0,4)、B(4,0)代入y=mx+n,得:,解得:,∴BC所在直线的表达式为:y=﹣x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=﹣x2+3x+4=﹣(x﹣)2+,∴点D的坐标为:(,),将x=代入y=﹣x+4,即y=﹣+4=,∴点E的坐标为:(,),∴DE=﹣=,设点P的横坐标为t,则P的坐标为:(t,﹣t2+3t+4),F的坐标为:(t,﹣t+4),∴PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,由DE=PF得:﹣t2+4t=,解得:t1=(不合题意舍去),t2=,当t=时,﹣t2+3t+4=﹣()2+3×+4=,∴点P的坐标为(,);(3)存在,理由如下:如图2所示:由(2)得:PF∥DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∽△CDE,∴=,∵C(0,4)、E(,),∴CE==,由(2)得:DE=,PF=﹣t2+4t,F的坐标为:(t,﹣t+4),∴CF==t,∴=,∵t≠0,∴(﹣t+4)=3,解得:t=,当t=时,﹣t2+3t+4=﹣()2+3×+4=,∴点P的坐标为:(,).。

【最新】山东省聊城市中考数学模拟试卷(含答案)

【最新】山东省聊城市中考数学模拟试卷(含答案)

山东省聊城市中考数学模拟试卷(含答案)(考试时间:120分钟分数:100分)一.选择题(共12小题,每小题3分,满分36分)1.计算的结果是()A.0 B.1 C.﹣1 D.2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个4.10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C.D.5.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是()A.△ADC∽△CFB B.AD=DFC.=D.=6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.47.某商品的标价为150元,八折销售仍盈利20%,则商品进价为()元.A.100 B.110 C.120 D.1308.在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE.请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:小青:OE=OF;小何:四边形DFBE是正方形;小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF.这四位同学写出的结论中不正确的是()A.小青B.小何C.小夏D.小雨9.已知x a=2,x b=3,则x3a﹣2b等于()A.B.﹣1 C.17 D.7210.解不等式组,该不等式组的最大整数解是()A.3 B.4 C.2 D.﹣3 11.如图,△ABC的顶点都在正方形网格的格点上,则tan∠BAC的值为()A.2 B.C.D.12.一次函数y=(k﹣1)x﹣k的大致图象如图所示,关于该次函数,下列说法错误的是()A.k>1B.y随x的增大而增大C.该函数有最小值D.函数图象经过第一、三、四象限二.填空题(共5小题,满分15分,每小题3分)13.计算(+2)(﹣2)的结果是.14.因式分解:x2y﹣4y3=.15.某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x 和y元,根据题意,可列方程组为.16.同一个圆的内接正方形和正三角形的边心距的比为.17.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;三.解答题(共7小题,满分49分)18.已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.19.先化简,再求值:(x﹣2+)÷,其中x=﹣.20.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?21.刘阿姨到超市购买大米,第一次按原价购买,用了90元,几天后,遇上这种大米8折出售,她用120元又买了一些,两次一共购买了40kg.求这种大米的原价.22.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.23.我们定义:有一组邻角相等且对角线相等的凸四边形叫做“邻对等四边形”.概念理解(1)我们们所学过的特殊四边形中的邻对等四边形是;性质探究(2)如图1,在邻对等四边形ABCD中,∠ABC=∠DCB,AC=DB,AB>CD,求证:∠BAC与∠CDB互补;拓展应用(3)如图2,在四边形ABCD中,∠BCD=2∠B,AC=BC=5,AB=6,CD=4.在BC的延长线上是否存在一点E,使得四边形ABED为邻对等四边形?如果存在,求出DE的长;如果不存在,说明理由.24.如图,已知抛物线y=ax2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式.(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交轴BC于点N,求MN的最大值.第26题图(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x 轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P 的坐标.答案一.选择题1.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱,进一步由展开图的特征选择答案即可.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.【点评】此题由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.【解答】解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.【点评】本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.4.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:这15个人的总成绩10x+5×90=10x+450,除以15可求得平均值为.故选:D.【点评】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.5.【分析】依据∠ADC=∠BCD=90°,∠CAD=∠BCF,即可得到△ADC∽△CFB;过D作DM∥BE交AC于N,交AB于M,得出DM垂直平分AF,即可得到DF=DA;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,可得b=a,依据,即可得出=;根据E是CD边的中点,可得CE:AB=1:2,再根据△CEF∽△ABF,即可得到=()2=.【解答】解:∵BE⊥AC,∠ADC=∠BCD=90°,∴∠BCF+∠ACD=∠CAD+∠ACD,∴∠CAD=∠BCF,∴△ADC∽△CFB,故A选项正确;如图,过D作DM∥BE交AC于N,交AB于M,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴DF=DA,故B选项正确;设CE=a,AD=b,则CD=2a,由△ADC∽△CFB,可得=,即b=a,∴,∴=,故C选项错误;∵E是CD边的中点,∴CE:AB=1:2,又∵CE∥AB,∴△CEF∽△ABF,∴=()2=,故选D选项正确;故选:C.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质的综合应用,正确的作出辅助线构造平行四边形是解题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形6.【分析】根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【解答】解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质. 7.【分析】根据(1+利润率)×进价=标价×八折列方程,可得结论.【解答】解:设商品进价为x 元,根据题意得:150×80%=(1+20%)x ,x =100,答:商品进价为100元.故选:A .【点评】本题考查了一元一次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.【分析】利用平行四边形的性质、全等三角形的判定和性质,一一判断即可.【解答】解:∵四边形ABCD 是平行四边形,∴OA =OC ,CD ∥AB ,∴∠ECO =∠FAO ,(故小雨的结论正确),在△EOC 和△FOA 中,,∴△EOC ≌△FOA ,∴OE =OF (故小青的结论正确),∴S △EOC =S △AOF ,∴S 四边形AFED =S △ADC =S 平行四边形ABCD ,∴S 四边形AFED =S 四边形FBCE 故小夏的结论正确,∵△EOC ≌△FOA ,∴EC =AF ,∵CD =AB ,∴DE =FB ,DE ∥FB ,∴四边形DFBE 是平行四边形,∵OD =OB ,EO ⊥DB ,∴ED =EB ,∴四边形DFBE 是菱形,无法判断是正方形,故小何的结论错误,【点评】本题考查平行四边形的性质、全等三角形的判定和性质、线段的垂直平分线的性质正方形的判定、菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x a=2,x b=3,∴x3a﹣2b=(x a)3÷(x b)2=23÷32=.故选:A.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.10.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此可得其最大整数解.【解答】解:解不等式(x﹣1)≤1,得:x≤3,解不等式1﹣x<2,得:x>﹣1,则不等式组的解集为﹣1<x≤3,所以不等式组的最大整数解为3,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.【分析】如图,连接BD,先利用勾股定理逆定理得△ABD是直角三角形,再根据正切函数的定义求解可得.【解答】解:如图所示,连接BD,则BD2=12+12=2、AD2=22+22=8、AB2=12+32=10,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,则tan∠BAC===,故选:B.【点评】本题主要考查解直角三角形,解题的关键是构建直角三角形并掌握勾股定理逆定理、正切函数的定义.12.【分析】根据一次函数的增减性确定有关k的不等式组,求解即可.【解答】解:∵观察图象知:y随x的增大而增大,且交与y轴负半轴,函数图象经过第一、三、四象限,∴,解得:k>1,∵该函数没有最小值,故选:C.【点评】本题考查了一次函数的图象与系数的关系,解题的关键是了解系数对函数图象的影响,难度不大.二.填空题(共5小题,满分15分,每小题3分)13.【分析】利用平方差公式计算,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣22=3﹣4=﹣1,故答案为:﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.14.【分析】首先提公因式y,再利用平方差进行分解即可.【解答】解:原式=y(x2﹣4y2)=y(x﹣2y)(x+2y).故答案为:y(x﹣2y)(x+2y).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.【分析】设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据:购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元列出方程组求解即可;【解答】解:设甲、乙两种规格的课桌椅每套价格分别是x和y元,根据题意可得:,故答案为:,【点评】本题主要考查二元一次方程组的应用能力,根据题意准确抓住相等关系是解题的根本和关键.16.【分析】先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.【解答】解:设⊙O的半径为R,⊙O的内接正方形ABCD,如图,过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,∴O为正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;设⊙O的内接正△EFG,如图,过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,∵正△EFG是⊙O的外接圆,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案为::1.【点评】本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质解直角三角形等知识点,能综合运用知识点进行推理和计算是解此题的关键.17.【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.【解答】解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.三.解答题(共7小题,满分49分)18.【分析】根据平行线的性质得到∠BAD+∠ADC=180°;然后根据角平分线的定义,推知∠DAE+∠ADF=90°,即可得到∠AGD=90°.【解答】证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.【点评】本题考查了平行线的性质以及角平分线的定义的运用.解题时注意:两直线平行,同旁内角互补.19.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=6.经检验,x=6是原方程的解.答:这种大米的原价是每千克6元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.【分析】(1)根据根的判别式得出不等式,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,和已知组成方程组,求出方程组的解,再根据根与系数的关系求出m即可.【解答】解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1,即实数m的取值范围是m<1;(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.【点评】本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.23.【分析】概念理解(1)根据邻对等四边形的定义可得;性质探究(2)延长CD到点E,使CE=AB,根据“SAS”可证△ABC≌△ECB,可得∠BAC=∠BEC,AC=BE,可得∠BEC=∠BDE=∠BAC,根据平角的性质可得结论;拓展应用(3)存在,在BC的延长线上截取CE=CD=4,连接AE,BD,根据等腰三角形的性质和三角形外角的性质可得∠DEC=∠ABC,根据“SAS”可证△ACE≌△BCD,可得AE =BD,即四边形ABED为邻对等四边形,根据△ABC∽△DEC,可得DE的长.【解答】解:概念理解(1)∵矩形的对角线相等,且邻角相等∴矩形是邻对等四边形(2)如图,由AB>CD,则延长CD到点E,使CE=AB,∵AB=CE,∠ABC=∠ECB,BC=BC,∴△ABC≌△ECB(SAS)∴∠BAC=∠BEC,AC=BE,∵AC=BD∴BD=BE,∴∠BEC=∠BDE=∠BAC,∵∠BDC+∠BDE=180°∴∠BDC+∠BAC=180°即∠BAC与∠CDB互补;拓展应用(3)在BC的延长线上存在一点E,使得四边形ABED为邻对等四边形,如图,在BC的延长线上截取CE=CD=4,连接AE,BD,∵AC=BC,∴∠ABC=∠BAC,∵∠ACE=∠ABC+∠BAC,∴∠ACE=2∠ABC,且∠BCD=2∠ABC,∴∠ACE=∠BCD,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD,∵CD=CE,∴∠DEC=∠EDC,∵∠BCD=∠DEC+∠EDC,∴∠BCD=2∠DEC,且∠BCD=2∠ABC,∴∠DEC=∠ABC,∴四边形ABED为邻对等四边形,∵∠ABC=∠DEC=∠CAB=∠CDE,∴△ABC∽△DEC∴即∴DE=【点评】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,等腰三角形的性质,相似三角形的判定和性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24.【分析】(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.【解答】解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,故直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c得,解得.故抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).【点评】本题考查了二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.。

2020年山东省聊城市中考数学试卷(教师版)

2020年山东省聊城市中考数学试卷(教师版)

2020年山东省聊城市中考数学试卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个符合题目要求)1.在实数1-,2-,0,14中,最小的实数是( ). A. 1- B.14C. 0D. 2-【答案】D 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 【详解】∵10124>>->-, ∴在实数1-,2-,0,14中,最小的实数是2-, 故选:D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 2.如图所示的几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】找到从几何体的上面看所得到的图形即可.【详解】从上面看几何体所得到的图形为俯视图,其中看得见的轮廓画实线,选项C 符合题意. 故选:C .【点睛】本题主要考查了简单几何体的三视图,关键是掌握俯视图所看的位置.3.如图,在ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A. 120°B. 130°C. 145°D. 150°【答案】B 【解析】 【分析】根据等腰三角形的性质得到∠B=∠C ,利用平行线的性质得到∠ EDC =∠B ,利用三角形的外角性质即可求解.【详解】∵AB =AC , ∴∠B =∠C =65°, ∵DF ∥AB ,∴∠ EDC =∠B =65°,∴∠FEC =∠EDC +∠C =65°+65°=130°. 故选:B .【点睛】本题考查了等腰三角形的性质,平行线的性质,三角形的外角性质,需熟练掌握. 4.下列计算正确的是( ). A. 236a a a ⋅= B. 623a a a --÷= C. ()323628ab a b -=-D. 222(2)4a b a b +=+【答案】C 【解析】 【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方、完全平方公式逐一分析即可. 【详解】A .23235a a a a +⋅==,该项不符合题意; B .()86622a a a a ---÷==,该项不符合题意; C .()()()33323236228ab a b a b -=-⋅⋅=-,该项符合题意;D .222(2)44a b a ab b +=++,该项不符合题意; 故选:C .【点睛】本题考查同底数幂的乘法、同底数幂的除法、积的乘方、完全平方公式等内容,解题的关键是掌握运算法则.5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A. 92分,96分B. 94分,96分C. 96分,96分D. 96分,100分【答案】B【解析】【分析】根据中位数的定义和众数的定义分别求解即可.【详解】解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是9296=942+;由统计表得数据96出现的次数最多,∴众数为96.故选:B【点睛】本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.6.).A. 1B. 53C. 5D. 9【答案】A【解析】【分析】利用二次根式的乘除法则计算即可得到结果.÷=÷=1=,【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ).A.355B.175C.35D.45【答案】D 【解析】 【分析】过点A 作AD BC ⊥于点D ,在Rt ACD △中,利用勾股定理求得线段AC 的长,再按照正弦函数的定义计算即可.【详解】解:如图,过点A 作AD BC ⊥于点D ,则90ADC ∠=︒,∴225AC AD CD =+=,∴4sin 5AD ACB AC ∠==, 故选:D .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键. 8.用配方法解一元二次方程22310x x --=,配方正确的是( ).A. 2317416x ⎛⎫-= ⎪⎝⎭B. 23142x ⎛⎫-= ⎪⎝⎭C. 231324x ⎛⎫-= ⎪⎝⎭ D. 231124x ⎛⎫-= ⎪⎝⎭ 【答案】A【分析】按照配方法的步骤进行求解即可得答案. 【详解】解:22310x x --= 移项得2231x x -=, 二次项系数化1的23122x x -=, 配方得22233132424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭即2317416x ⎛⎫-= ⎪⎝⎭ 故选:A【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点M .连接OC ,DB .如果OC//DB ,23OC =,那么图中阴影部分的面积是( ).A. πB. 2πC. 3πD. 4π【答案】B 【解析】 【分析】 根据AB 是O 的直径,弦CD AB ⊥,由垂径定理得CM DM =,再根据OC//DB 证得MCO CDB ∠=∠,即可证明OMC BMD ≅△△,即可得出OBC S S =阴影扇形. 【详解】解:AB 是O 的直径,弦CD AB ⊥,90OMC ∴∠=︒,CM DM =.90MOC MCO ∴∠+∠=︒OC//DB MCO CDB ∴∠=∠又12 CDBBOC∠=∠1902MOC MOC∴∠+∠=︒60MOC∴∠=︒在OMC△和BMD中,OCM BDMCM DMOMC BMD∠=∠⎧⎪=⎨⎪∠=∠⎩OMC BMD∴≅△△,OMC BMDS S∴=△△()260232360OBCS Sππ⨯⨯∴===阴影扇形故选:B【点睛】本题考查了垂径定理,圆周角定理,平行线的性质,全等三角形的判定,扇形的面积,等积变换,解此题的关键是证出OMC BMDS S=△△,从而将阴影部分的面积转化为扇形OBC的面积,题目比较典型,难度适中.10.如图,有一块半径为1m,圆心角为90︒的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为().A.1m4B.3m4C.154D.3m2【答案】C【解析】【分析】首先利用扇形的弧长公式求得圆锥的底面周长,求得底面半径的长,然后利用勾股定理求得圆锥的高.【详解】解:设圆锥的底面周长是l,则l=9011801802n rπππ⨯⨯==m,则圆锥的底面半径是:()1224ππ÷=m,则圆锥的高是:2211514⎛⎫-= ⎪⎝⎭m . 故选:C .【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图表示,那么图㊿中的白色小正方形地砖的块数是( ).…A. 150B. 200C. 355D. 505【答案】C 【解析】 【分析】由图形可知图①中白色小正方形地砖有12块,图②中白色小正方形地砖有12+7块,图③中白色小正方形地砖有12+7×2块,…,可知图中白色小正方形地砖有12+7(n-1)=7n+5,再令n=50,代入即可. 【详解】解:由图形可知图中白色小正方形地砖有12+7(n-1)=7n+5(块) 当n=50时,原式=7×50+5=355(块) 故选:C【点睛】考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.12.如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A. 3213⎛⎫+ ⎪⎪⎝⎭B.31 C.31D.31【解析】 【分析】根据旋转的性质和30°角的直角三角形的性质可得AB '的长,进而可得B C '的长,过点D 作DM ⊥BC 于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,如图,则四边形B EMF '是矩形,解Rt △B EC '可得B E '的长,即为FM 的长,根据三角形的内角和易得30B DN C '∠=∠=︒,然后解Rt △B DF '可求出DF 的长,进一步即可求出结果.【详解】解:在Rt ABC △中,∵2AB =,30C ∠=︒, ∴AC =2AB =4,∵将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上, ∴2AB AB '==, ∴2B C '=,过点D 作DM ⊥BC 于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,交AC 于点N ,如图,则四边形B EMF '是矩形, ∴FM B E '=,在Rt △B EC '中,1sin 30212B E BC ''=⋅︒=⨯=,∴FM =1, ∵90,DB N CMN B ND MNC ''∠=∠=︒∠=∠, ∴30B DN C '∠=∠=︒,在Rt △B DF '中,3cos3023DF B D '=⋅︒=⨯=, ∴13DM FM DF =+=+, 即点D 到BC 的距离等于31+. 故选:D .【点睛】本题考查了解直角三角形、矩形的判定和性质以及旋转的性质等知识,正确作出辅助线、熟练掌握解直角三角形的知识是解题的关键.13.因式分解:(2)2x x x --+=________. 【答案】(2)(1)x x -- 【解析】 【分析】先把二、三两项分为一组,提取一个负号,再提取公因式(2)x -即可. 【详解】解:原式(2)(2)x x x =---(2)(1)x x =--【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式. 14.如图,在O 中,四边形OABC 为菱形,点D 在AmC 上,则ADC ∠的度数是________.【答案】60︒ 【解析】 【分析】连接OB ,证明△OAB ,△OBC 都是等边三角形,得到∠AOC=120°,进而求出ADC ∠. 【详解】解:连接OB ,∵四边形OABC 为菱形,OA=OB , ∴OA=OB=OC=AB=BC,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠BOC=60°, ∴∠AOC=120°, ∵=AC AC , ∴1602ADC AOC ∠=∠=︒ .故答案为:60°【点睛】本题考查了菱形的性质,圆的半径都相等,圆周角定理,等边三角形性质,综合性较强.解题关键是连接OB ,得到△OAB ,△OBC 都是等边三角形. 15.计算:2111a a a a⎛⎫+÷= ⎪--⎝⎭________. 【答案】a - 【解析】 【分析】分式的混合运算,根据分式的加减乘除混合运算法则可以解答本题,括号里先通分运算,再进行括号外的除法运算,即可解答本题. 【详解】解:2a 111a a a⎛⎫+÷ ⎪--⎝⎭ =21a a 11a 1a a a ⎛⎫+÷ ⎪--⎝⎭-- =2111a aa ÷-- =()1×a a 11a-- =−a故答案是:-a【点睛】本题考查的是分式的混合运算,能正确运用运算法则是解题的关键.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.【答案】13【解析】 【分析】先画出树状图求出所有等可能的结果数,再找出抽到同一类书籍的结果数,然后根据概率公式求解即可.【详解】解:“科技”、“文学”、“艺术”三类书籍分别用A 、B 、C 表示,则所有可能出现的结果如下图所示:由上图可知:共有9种等可能的结果数,其中抽到同一类书籍的结果数有3种, ∴抽到同一类书籍的概率=3193=. 故答案为:13. 【点睛】本题考查了求两次事件的概率,属于基础题型,熟练掌握画树状图或列表的方法是解题的关键. 17.如图,在直角坐标系中,点(1,1)A ,(3,3)B 是第一象限角平分线上的两点,点C 的纵坐标为1,且CA CB =,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为________.【答案】425+【解析】 【分析】先求出AC=BC=2,作点B 关于y 轴对称的点E ,连接AE ,交y 轴于D ,此时AE=AD+BD ,且AD+BD 值最小,即此时四边形ACBD 的周长最小;作FG ∥y 轴,AG ∥x 轴,交于点G ,则GF ⊥AG ,根据勾股定理求出AE 即可.【详解】解:∵(1,1)A ,点C 的纵坐标为1, ∴AC ∥x 轴,∵点(1,1)A ,(3,3)B 是第一象限角平分线上的两点, ∴∠BAC=45°, ∵CA CB =,∴∠BAC=∠ABC=45°, ∴∠C=90°, ∴BC ∥y 轴, ∴AC=BC=2,作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小,∴此时四边形ACBD的周长最小,作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,∴EG=2,GA=4,在Rt△AGE中,22224225AE AG EG=+=+=,∴四边形ACBD的周长最小值为2+2+25=4+25.【点睛】本题考查了四条线段和最短问题.由于AC=BC=2,因此本题实质就是求AD+BD最小值,从而转化为“将军饮马”问题,这是解题关键.三、解答题18.解不等式组131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.【答案】该不等式组的解集是435x-≤<,它的所有整数解为0,1,2.【解析】【分析】分别求出两个不等式,确定不等式组的解集,写出整数解即可.【详解】解:131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩①②解不等式①,得3x<.解不等式②,得45x≥-.在同一数轴上表示出不等式①,②的解集:所以该不等式组的解集是435x -≤<. 它的所有整数解为0,1,2.【点睛】本题考查了解不等式组,确定不等式组的解集可以借助数轴分别表示各不等式的解集,确定公共部分即可.19.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A “剪纸”、B “沙画”、C “葫芦雕刻”、D “泥塑”、E “插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a =________,b =________; (2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数. 【答案】(1)120,12,36;(2)详见解析;(3)625 【解析】 【分析】(1)由A 所占的百分比及参加A 类活动课的人数可求得总人数,再由总人数及B 和D 所占的百分比即可求得a 和b 的值,(2)先求得E 类活动课参加的人数,再补全条形统计图即可;(3)先求出抽样调查中喜爱“葫芦雕刻”的学生所占的百分比,即可求得全校喜爱“葫芦雕刻”的学生人数. 【详解】解:(1)1815%120÷=,12010%12a =⨯=,12030%36b =⨯=, 故答案为:120,12,36;(2)E 类别的人数为:1201812303624----=(人) 补全条形统计图如图所示:(3)C 类别所占的百分比为:3012025%÷=,302500625120⨯=(人) 答:全校喜爱“葫芦雕刻”的学生人数约为625人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图可以看出每个量所占的百分比.20.今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A 种树苗比每捆B 种树苗多10棵,每捆A 种树苗和每捆B 种树苗的价格分别是630元和600元,而每棵A 种树苗和每棵B 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍. (1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A 种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A 种树苗和B 种树苗各多少棵?并求出最低费用.【答案】(1)这一批树苗平均每棵的价格是20元;(2)购进A 种树苗3500棵,B 种树苗2000棵,能使得购进这批树苗的费用最低为111000元. 【解析】 【分析】(1)设这一批树苗平均每棵的价格是x 元,分别表示出两种树苗的数量,根据“每捆A 种树苗比每捆B 种树苗多10棵”列方程即可求解;(2)设购进A 种树苗t 棵,这批树苗的费用为w ,得到w 与t 的关系式,根据题意得到t 的取值范围,根据函数增减性即可求解.【详解】解:(1)设这一批树苗平均每棵的价格是x 元, 根据题意,得630600100.9 1.2x x-=, 解之,得20x .经检验知,20x是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A 种树苗每棵价格为0.12098⨯=元,种树苗每棵价格为20 1.224⨯=元, 设购进A 种树苗t 棵,这批树苗的费用为w ,则1824(5500)6132000w t t t =+-=-+.∵w 是t 的一次函数,60k =-<,w 随着t 的增大而减小,3500t ≤, ∴当3500t =棵时,w 最小.此时,B 种树苗有550035002000-=棵,35001320060111000w ⨯+==-.答:购进A 种树苗3500棵,B 种树苗2000棵,能使得购进这批树苗的费用最低为111000元.【点睛】本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.21.如图,已知平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长,交DC 的延长线于点F ,且AF =AD ,连接BF ,求证:四边形ABFC 是矩形.【答案】见解析 【解析】 【分析】先根据平行四边形的性质、平行线的性质得到两角一边对应相等,再根据三角形全等的判定定理与性质可得AB CF =,然后根据平行四边形的判定可得四边形ABFC 是平行四边形,又根据等量代换可得BC AF =,最后根据矩形的判定(对角线相等的平行四边形是矩形)可得四边形ABFC 是矩形.【详解】∵四边形ABCD 是平行四边形 ∴//,,AB CD AB CD AD BC == ∴,BAE CFE ABE FCE ∠=∠∠=∠ ∵E 为BC 的中点 ∴EB EC =∴()ABE FCE AAS ≅ ∴AB CF = ∵//AB CF∴四边形ABFC 是平行四边形AF AD =BC AF ∴=∴平行四边形ABFC 是矩形.【点睛】本题考查了平行四边形的判定与性质、三角形全等的判定定理与性质、矩形的判定等知识点,熟练运用各判定与性质是解题关键.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB 的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】约为30m【解析】【分析】过点N作EF∥AC交AB于点E,交CD于点F,可得AE=MN=CF=1.6,EF=AC=35,再根据锐角三角函数可得BE的长,进而可得AB的高度.【详解】解:过点N作EF∥AC交AB于点E,交CD于点F.则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=CD-CF=16.6-1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF-NF=35-15=20.在Rt△BEN中,∵tan∠BNE=BE EN,∴BE=EN·tan∠BNE=20×tan55°≈20×1.43=28.6°.∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义.23.如图,已知反比例函数ky x=的图象与直线y ax b =+相交于点(2,3)A -,(1,)B m .(1)求出直线y ax b =+的表达式;(2)在x 轴上有一点P 使得PAB △的面积为18,求出点P 的坐标.【答案】(1)33y x =--;(2)当点P 在原点右侧时,(3,0)P ,当点P 在原点左侧时,(5,0)P -. 【解析】 【分析】(1)通过点A 的坐标确定反比例函数的解析式,再求得B 的坐标,利用待定系数法将A ,B 的坐标代入,即可得到一次函数的解析式;(2)直线33y x =--与x 轴的交点为(1,0)E -,过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D ,得到9182PABSPE ==,即4PE =,分情况讨论即可解决. 【详解】解:(1)∵(2,3)A -在ky x=的图象上, ∴32k=-,6k =-, 又点(1,)B m 在6y x-=的图象上,6m =-,即(1,6)B -. 将点A ,B 的坐标代入y ax b =+,得326a ba b =-+⎧⎨-=+⎩,解得33a b =-⎧⎨=-⎩.∴直线的表达式为33y x =--.(2)设直线33y x =--与x 轴的交点为E , 当0y =时,解得1x =-.即(1,0)E -.分别过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D .1136922222PABSPE AC PE DB PE PE PE =⋅+⋅=+=. 又18PABS=,即9182PE =,∴4PE =.当点P 在原点右侧时,(3,0)P , 当点P 在原点左侧时,(5,0)P -.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是掌握数形结合的思想.24.如图,在ABC 中,AB =BC ,以△ABC 的边AB 为直径作⊙O ,交AC 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)试证明DE 是⊙O 的切线;(2)若⊙O 的半径为5,AC =610,求此时DE 的长.【答案】(1)见解析;(2)3 【解析】 【分析】(1)连接OD 、BD ,求出BD ⊥AD ,AD=DC ,根据三角形的中位线得出OD ∥BC ,推出OD ⊥DE ,根据切线的判定推出即可;(2)先利用勾股定理求出BD 的长,证得Rt △CDE 和Rt △ABD ,利用对应边成比例即可求解. 【详解】(1)证明:连接OD ,BD ,∵AB 为⊙O 的直径, ∴BD ⊥AD ,又∵AB=BC ,△ABC 是等腰三角形, ∴AD=DC ,∴OD 是△ABC 的中位线, ∴OD ∥BC , 又DE ⊥BC , ∴DE ⊥OD , ∴DE 是⊙O 的切线;(2)由(1)知,BD 是AC 边上的中线,10, 得10, ∵⊙O 的半径为5, ∴AB=10,在Rt △ABD 中,()22221031010AB AD -=-=,∵AB=BC ,∴∠A=∠C ,在Rt △CDE 和Rt △ABD 中,∵∠DEC=∠ADB=90°,∠C=∠A , ∴Rt △CDE ∽Rt △ABD , ∴CD DE AB BD =,即3101010=, 解得:DE=3.【点睛】本题综合考查了切线的判定、圆周角定理、相似三角形的判定与性质以及三角形中位线的判定与性质.解题的关键是熟练掌握和圆有关的各种性质定理,并且能够熟练运用.25.如图,二次函数y =ax 2+bx +4的图象与x 轴交于点A(-1,0),B(4,0),与y 轴交于点C ,抛物线的顶点为D ,其对称轴与线段BC 交于点E .垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数y =ax 2+bx +4和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标;(3)连接CP ,CD ,在移动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与DCE 相似,如果存在,求出点P 的坐标,如果不存在,请说明理由.【答案】(1)y=-x 2+3x +4,y=-x +4;(2)521,24⎛⎫⎪⎝⎭;(3)存在,1684,525⎛⎫ ⎪⎝⎭【解析】 【分析】(1)运用待定系数法,利用A ,B 两点的坐标构建二元一次方程组求解二次函数的表达式,利用B ,C 两点的坐标确定直线BC 的表达式;(2)先求得DE 的长,根据平行四边形的性质得到PF=DE ,点P 与点F 的横坐标相同,故利用抛物线与直线的解析式表示它们的纵坐标,根据其差等于DE 长构建一元二次方程求解;(3)结合图形与已知条件,易于发现若两三角形相似,只可能存在△PCF ∽△CDE 一种情况.△CDE 的三边均可求,(2)中已表示PF 的长,再构建直角三角形或借助两点间距离公式,利用勾股定理表示出CF 的长,这样根据比例式列方程求解,从而可判断点P 是否存在,以及求解点P 的值. 【详解】(1)由题意,将A(-1.0),B(4.0)代入24y ax bx =++,得4016440a b a b -+=⎧⎨++=⎩,解得13a b =-⎧⎨=⎩, ∴二次函数表达式为234y x x =-++,当0x =时,y=4, ∴点C 的坐标为(0,4),又点B 的坐标为(4,0), 设线段BC 所在直线的表达式为y mx n =+,∴440n m n =⎧⎨+=⎩,解得14m n =-⎧⎨=⎩,∴BC 所在直线的表达式为4y x =-+;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,此时四边形DEFP即为平行四边形.由二次函数y=-2x+3x+4=(x-32) 2+254,得D的坐标为(32,254),将32x=代入4y x=-+,即y=-32+4=52,得点E的坐标为(32,52),∴DE=254-52=154,设点P的横坐标为t,则P(t,-t2+3t+4),F(t,-t+4),PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF,得-t2+4t=154,解之,得t1=32(不合题意,舍去),t2=52,当t=52时,-t2+3t+4=-(52)2+3×52+4=214,∴P的坐标为(52,214);(3)由(2)知,PF∥DE,∴∠CED=∠CFP,又∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有当∠PCF=∠CDE时,△PCF∽△CDE,由D (32,254),C(0,4),E(32,52),利用勾股定理,可得=DE=25515 424-=,由(2)以及勾股定理知,PF=-t2+4t,F(t,-t+4),CF==,∵△PCF∽△CDE,∴PF CFCE DE=21542=,∵t≠0,∴154(4t-+)=3,∴t=165,当t=165时,-t2+3t+4=-(165)2+3×165+4=8425.∴点P的坐标是(165,8425).【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理的应用等知识,解题的关键是,学会用数形结合的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

山东省聊城市2022年中考数学真题试题(含解析)

山东省聊城市2022年中考数学真题试题(含解析)

2022年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2D.2a(2a+1)25.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲 B.乙 C.丙 D.丁6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A. B. C. D.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A. B. C. D.8.在如图的2022年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,t an21°≈0.38)()A.169米 B.204米 C.240米 D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:= .14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2022B2022C2022的顶点B2022的坐标是.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km 缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2022年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲 B.乙 C.丙 D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b 与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.在如图的2022年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠AD C的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米 B.204米 C.240米 D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣O D=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:= 12 .【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k>﹣且k≠0.【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2022B2022C2022的顶点B2022的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2022的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2022÷8=252∴B2022的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2022的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km 缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△AB G的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S四边形A2O2HG=S△A2O2C2﹣S△C2GH=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。

2021年山东省聊城市莘县中考数学一模试卷(解析版)

2021年山东省聊城市莘县中考数学一模试卷(解析版)

2021年山东省聊城市莘县中考数学一模试卷一.选择题(共12小题).1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b24.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×1065.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,37.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.28.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>111.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.112.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=.14.写出不等式组的解集为.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.19.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共36分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.2【分析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出﹣的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【分析】根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.4.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1230000用科学记数法表示为1.23×106.故选:D.5.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.解:﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意;故选:C.6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,3【分析】找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.7.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.2【分析】连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°﹣∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∵AD是直径,∴∠ACD=90°,∵∠CAD=30°,AD=8,∴CD=AD=4,∴AC===4,故选:B.8.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.解:由三视图可知,原几何体为圆锥,∵l==5(cm),∴S侧=•2πr•l=×2π××5=15π(cm2).故选:B.9.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>1【分析】根据不等式的性质求出不等式①的解集,根据不等式组的解集得出a+1≤2,求出不等式的解集即可.解:,∵解不等式①得:x>2,解不等式②得:x>a+1,又∵不等式组的解集是x>2,∴a+1≤2,∴a≤1.故选:C.11.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.1【分析】连接MC,证出四边形MECF为矩形,由矩形的性质得出EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,得出MC=BC=2,即可得出结果.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.12.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,∴3a+c>0,故④正确;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集解:不等式①的解集为x<3,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣1≤x<3.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.【分析】因为圆锥的高,底面半径,母线构成直角三角形.先求出扇形的半径,再求扇形的弧长,利用扇形的弧长等于圆锥底面周长作为相等关系求底面半径.解:设扇形OAB的半径为R,底面圆的半径为r,则R2=()2+,解得R=2cm,∴扇形的弧长==2πr,解得,r=cm.故答案为cm.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=20110.【分析】观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),依此求出a4,a200,再相加即可求解.解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解:原式=•=,由3x+7>1,解得x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,∴原式=319.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C,令y=0,则x+5=0,∴x=﹣10,∴C(﹣10,0),过点A、B分别作x轴的垂线交x轴于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品单价x元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A型学习用品20元,B型学习用品30元;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a)+30a≤28000,解得:a≤800.答:最多购买B型学习用品800件.24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.【解答】(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,∠CBA=60°,∴AB===4,∴AF=2.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.综上所述,P点的横坐标是或.。

2019年山东聊城中考数学真题--含解析

2019年山东聊城中考数学真题--含解析

2019年山东省聊城市初中学业水平考试数学(满分120分,考试时间120分钟)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分1.(2019山东聊城,1题,3分) 的相反数为A. C.【答案】D【解析】只有符号不同的两个数互为相反数,(,故选D.【知识点】相反数2.(2019山东聊城,2题,3分)如图所示的几何体的左视图是第2题图【答案】B【解析】A中间是虚线,∴是从右边看得到的图形,故A错误;B是左视图,正确;C是主视图,故C错误;D是俯视图,故D错误;故选B.【知识点】三视图3.(2019山东聊城,3题,3分)如果分式11xx-+的值为0,那么x的值为A.-1B.1C.-1或1D.1或0【答案】B【解析】要想使分式的值为零,应使分子为零,即|x|-1=0,分母不为零,即x+1≠0,∴x=1,故选B. 【知识点】分式的定义4.(2019山东聊城,4题,3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示,这些成绩的中位数和众数分别是A.96分,98分B.97分,98分C.98分,96分D.97分,96分第4题图 【答案】A 【解析】由统计图可知:按顺序排列,第13名同学的分数为96分,故中位数为96分,得分人数最多的是98分,共9人,故众数为98分,故选A. 【知识点】中位数,众数5.(2019山东聊城,5题,3分) 下列计算正确的是A.a 6+a 6=2a 12B.2-2÷20×23=32C.()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭D.()531220a a a a ⋅-⋅=-【答案】D【解析】A.a 6+a 6=2a 6,故A 错误;B.2-2÷20×23=2,故B 错误; C.()32275122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭,故C错误;D.()531220a a a a ⋅-⋅=-,D 正确,故选D.【知识点】合并同类项,实数运算,积的乘方,幂的乘方,同底数幂的乘法6.(2019山东聊城,6题,3分)下列各式不成立的是=5=【答案】C 【解析】A.=,A 正确;B.=,B 正确;C.==错误;正确;故选C.【知识点】二次根式的化简7.(2019山东聊城,7题,3分) 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为 A.m ≤2 B.m<2 C.m ≥2 D.m>2【答案】A【解析】解不等式①,得x>8,,由不等式②,知x<4m,当4m ≤8时,原不等式无解,∴m ≤2,故选A. 【知识点】解不等式组,解集的确定8.(2019山东聊城,8题,3分)如图,BC是半圆O的直径,D,E是»BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°第8题图【答案】C【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.【知识点】三角形内角和定理,圆周角定理9.(2019山东聊城,9题,3分)若关于x的一元二次方程(k-2)x2-2kx+k=6有实数根,则k的取值范围为A.k≥0B.k≥0且k≠2C.k≥32D.k≥32且k≠2【答案】D【解析】∵原方程是一元二次方程,∴k-2≠0,∴k≠2,∵其有实数根,∴(-2k)2-4(k-2)k≥0,解之得,k≥32,∴k的取值范围为k≥32且k≠2,故选D.【知识点】一元二次方程根的判别式10.(2019山东聊城,10题,3分)某快递公司每天上午9:00——10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲,乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为A.9:15B.9:20C.9:25D.9:30第10题图【答案】B【解析】由图可知,两仓库的快件数量y(件)与时间x(分)都是一次函数关系,故用待定系数法求出y甲=6x+40,y乙=-4x+240,令y甲=y乙,得x=20,则两仓库快递件数相同时的时间为9:20.【知识点】待定系数法求一次函数解析式,求交点坐标11.(2019山东聊城,11题,3分)如图在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是A.AE+AF=ACB.∠BEO+∠OFC=180°C.OE+OF=2BCD.S四边形AEOF =12S△ABC第11题图【答案】C【解析】连接AO,易得△AEO≌△CFO,∴AE+AF=CF+AF=AC,故A正确;∠BEO+∠OFC=∠BEO+∠AEO=180°,故B正确;随着三角形的转动,OE和OF的长度会变化,故C错误;S四边形AEOF =S△AEO+S△AFO=S△CFO +S△AFO=12S△ABC,故D正确;故选C.第11题答图【知识点】旋转,三角形全等12.(2019山东聊城,12题,3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P 的坐标为A.(2,2)B.(52,52) C.(83,83) D.(3,3)第12题图【答案】C【思路分析】先求出点D和点C坐标,从而求出BD,BC长度,然后分析DP+CP的最小值,找到点D关于AO的对称点D',连接CD'交点即为点P,此时DP+CP取得最小值,即四边形PDBC周长最小,联立解出点P的坐标.【解题过程】由题可知:A(4,4),D(2,0),C(4,3),点D 关于AO 的对称点D'(0,2),设l D'C :y =kx+b,将D'(0,2),C(4,3)代入,可得y =14x+2,与y =x 联立,得,x =83,y =83,∴P(83,83)故选C.第12题答图【知识点】坐标运算,轴对称,一次函数,交点坐标二、填空题:本大题共5小题,满分15分,只填写最后结果,每小题填对得3分.13.(2019山东聊城,13题,3分)计算:115324⎛⎫--÷ ⎪⎝⎭________.【答案】23-【解析】原式=542=653-⨯-【知识点】有理数的计算14.(2019山东聊城,14题,3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为________.第14题图【答案】120° 【解析】由图可知,圆锥的底面周长为2π,圆锥的母线AC =3,∴设圆锥侧面展开图圆心角的度数为n °,根据弧长公式可得2π=180n rπ,n =120.∴圆心角的度数为120. 【知识点】勾股定理,弧长公式 15.(2019山东聊城,15题,3分)在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是________. 【答案】14【解析】两人从四个组中抽一个组,共有16种等可能的结果,其中,两人抽到同一组的结果有4种,∴小亮和大刚恰好抽到同一个组的概率=41=164.【知识点】概率16.(2019山东聊城,16题,3分)如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,DE 为△ABC 的中位线,延长BC 至F,使CF =12BC,连接FE 并延长交AB 于点M,若BC =a,则△FMB 的周长为________.第16题图 【答案】92a【解析】∵BC =a,∴CF =12BC =12a,∴BF =32a ∵DE 为△ABC 的中位线,∴DE ∥BF,DE =12a,∴△MED ∽△MFB,∴MD EDMB FB=,在Rt △ABC 中,∠ACB =90°,∠B =60°,∴∠A =30°,AB =2a,BD =a,∴MD =12a,MB =32a,∵MB =FB,∠B =60°,△BMF 是等边三角形,周长=92a. 【知识点】三角函数17.(2019山东聊城,17题,3分)数轴上O,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处,按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n (n ≥3,n 是整数)处,那么线段A n A 的长度为________(n ≥3,n 是整数).第17题图 【答案】4-212n -【思路分析】依次计算OA 1,OA 2,OA 3,找到规律,得到OA n ,A n A =AO =OA n . 【解题过程】∵AO =4,∴OA 1=2,OA 2=1,OA 3=12,OA 4=212,可推测OA n =212n -,∴A n A =AO =OA n =4-212n -.【知识点】找规律三、解答题:本大题共8小题,满分78分,要写出必要的文字说明、证明过程或演算步骤. 18.(2019山东聊城,18题,7分)计算:2216313969a a a a a +⎛⎫-+÷⎪+--+⎝⎭【思路分析】先因式分解,然后进行通分,计算括号内的,再将除法变成乘法,进行计算.【解题过程】原式=()()()2336361133+3+3+3a a a a a a a a --+--⨯=-=+-【知识点】因式分解,分式加减,分式乘除19.(2019山东聊城,19题,8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率,九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数,频率分布表和5 t≥40 3第19题图请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为______,表中的a=______b,=______,c=______;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数. 【思路分析】(1)用第3组的人数和频率求出样本容量,然后根据每组的已知信息得到a,b,c的值;(2)扇形圆心角=360°×频率;(3)计算每天课前预习时间不少于20min的频率,得到概率,进而求得人数.【解题过程】(1)第3组人数为16人,频率为0.32,故样本容量为16÷0.32=50,a=50×0.10=5,b =50-2-5-16-3=24,c=24÷50=0.48;(2)第4组频率为0.48,∴圆心角度数=360°×0.48=172.8°;-0.10=0.86,∴1000×(3)由数据知每天课前预习时间不少于20min的人数的频率为1-2500.86=860(人).答:九年级每天课前预习时间不少于20min的学生约有860人.【知识点】频数,频率,扇形统计图,频率估计概率.20.(2019山东聊城,20题,8分)某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销:倍多5 (2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的32件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【思路分析】(1)根据题意列出方程组,解得两种进货单价;(2)根据题意列出不等式,求得解集,再取值进行计算,得到结果.【解题过程】(1)设A,B 两种品牌运动服的进货单价分别为x 元和y 元,根据题意得:203010200304014400x y x y +=⎧⎨+=⎩,解之,得:240180x y =⎧⎨=⎩,经检验,方程组的解符合题意.答:A,B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进A 品牌运动服m 件,则购进B 品牌运动服(32m+5)件,∴240m+180(32m+5)≤21300,解得,m ≤40,经检验,不等式的解符合题意,∴32m+5≤32×40+5=65.答:最多能购进65件B 品牌运动服. 【知识点】二元一次方程组的应用,不等式的应用21.(2019山东聊城,21题,8分)在菱形ABCD 中,点P 是BC 边上一点,连接AP,点E,F 是AP 上的两点,连接DE,BF,使得∠AED =∠ABC,∠ABF =∠BPF. 求证:(1)△ABF ≌△DAE;(2)DE =BF+EF.第21题图【思路分析】(1)由菱形性质得到边相等和平行,然后进行角的转化,得到三角形全等的条件进行证明;(2)由全等得到对应边相等,通过转化,得到结论.【解题过程】(1)∵四边形ABCD 是菱形,∴AB =AD,AD ∥BC,∴∠BPA =∠DAE.在△ABP 和△DAE 中,又∵∠ABC =∠AED,∴∠BAF =∠ADE.∵∠ABF =∠BPF 且∠BPA =∠DAE,∴∠ABF =∠DAE,又∵AB =DA,∴△ABF ≌△DAE(ASA);(2)∵△ABF ≌△DAE,∴AE =BF,DE =AF,∵AF =AE+EF =BF+EF,∴DE =BF+EF. 【知识点】菱形性质,平行线的性质,全等三角形22.(2019山东聊城,22题,8分)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD 部分),在起点A 处测得大楼部分楼体CD 的顶端C 点的仰角为45°,底端D 点的仰角为30°,在同一剖面沿水平地面向前走20米到达B 处,测得顶端C 的仰角为63.4°(如图②所示),求大楼部分楼体CD 的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈≈1.73)第22题图【思路分析】分别在Rt △AEC,Rt △CEB,Rt △DAE 中,利用三角函数和已知边长,得到边的关系,建立方程,则可求得楼体CD 的高度.【解题过程】设楼高CE 为x 米,∵在Rt △AEC 中,∠CAE =45°,∴AE =CE =x,∵AB =20,∴BE =x -20,在Rt △CEB 中,CE =BEtan63.4°≈2(x -20),∴2(x -20)=x,解得x =40,在Rt △DAE 中,DE =AEtan30°=,∴CD =CE -DE =40≈17(米).答:大楼部分楼体CD 的高度约为17米. 【知识点】三角函数应用23.(2019山东聊城,23题,8分) 如图,点A(32,4),B(3,m)是直线AB 与反比例函数n y x=(x>0)图象的两个交点,AC ⊥x 轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.第23题图 【思路分析】(1)先用点A 坐标求出反比例函数表达式,然后求出点B 坐标,再用待定系数法求得AB 的表达式;(2)利用坐标,分别算出两个三角形的面积,进而求得二者之差. 【解题过程】(1)由点A,B 在反比例函数n y x=的图象上,∴4=32n,∴n =6,∴反比例函数表达式为6y x =(x>0),将点B(3,m)代入,得m =2,∴B(3,2),设直线AB 的表达式为y =kx+b,∴34223k bk b ⎧=+⎪⎨⎪=+⎩,解得:436k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的表达式为:463y x =-+. (2)由点A,B 的坐标得AC =4,点B 到AC 的距离为3-32=32,∴S 1=12×4×32=3,设AB 与y 轴的交点为E,可得E(0,6),∴DE =6-1=5,由点A(32,4),B(3,2)知点A,B 到ED 的距离分别为32,3,∴S 2=S △BED -S △AED =154,∴S 2-S 1=34. 【知识点】待定系数法求反比例函数,一次函数解析式,三角形面积24.(2019山东聊城,24题,10分)如图,△ABC 内接于e O,AB 为直径,作OD ⊥AB 于点D,延长BC,OD 交于点F,过点C 作e O 的切线CE,交OF 于点E. (1)求证:EC =ED ;(2)如果OA =4,EF =3,求弦AC 的长.第24题图【思路分析】(1)连接OC,根据等边对等角,等角的余角相等,得到相等的角,进而在△CDE中,利用等角对等边得到EC=ED;(2)由AB是直径得到Rt△ABC,易得其与△AOD相似,只要求出OD的长,即可通过比例式求得AC,通过等角对等边,勾股定理和线段和差关系得到OD,进而得到AD,则AC可求.【解题过程】(1)连接OC,∵CE与e O相切,OC是e O的半径,∴OC⊥CE,∴∠OCA+∠ACE=90°,∵OA =OC,∴∠A=∠OCA,∴∠ACE+∠A=90°,∵OD⊥AB,∴∠ODA+∠A=90°,∵∠ODA=∠CDE,∴∠CDE+∠A=90°,∴∠CDE=∠ACE,∴EC=ED;第24题答图(2)∵AB为直径,∴∠ACB=90°,在Rt△DCF中,∠DCE+∠ECF=90°,∠DCE=∠CDE,∴∠CDE+∠ECF =90°,∵∠CDE+∠F=90°,∴∠ECF=∠F,∴EC=EF,∵EF=3,∴EC=DE=3,在Rt△OCE中,OC=4,CE=3,∴OE5,∴OD=OE-DE=2,在Rt△OAD中,AD在Rt△AOD和Rt△ACB中,∵∠A=∠A,∴Rt△AOD∽Rt△ACB,∴AO AD=,∴AC.AC AB【知识点】切线性质,等边对等角,等角的余角相等,等角对等边,圆周角定理,勾股定理,相似三角形25.(2019山东聊城,25题,12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x 轴正方向从O运动到B(不含O点和B点),且分别交抛物线,线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.第25题图【思路分析】(1)由点A,B,C 的坐标,利用待定系数法,求得抛物线的表达式;(2)△AOC 确定,因此可根据点P 的运动状态表示出AE,PE,根据相似比得到方程,即可解得点P 的坐标;(3)表示出△PFD 的面积,利用二次函数的最值得到三角形面积的最大值.【解题过程】(1)由已知,将C(0,8)代入y =ax 2+bx+c,∴c =8,将点A(-2,0)和B(4,0)代人y =ax 2+bx+8,得428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩,∴抛物线的表达式为y =-x 2+2x+8; (2)∵A(-2,0),C(0,8),∴OA =2,OC =8,∵l ⊥x 轴,∠PEA =∠AOC =90°,∵∠PAE ≠∠CAO,只有当∠PAE =∠ACO 时,△PEA ∽△AOC.此时AE PE CO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD =S PD S BC ⎛⎫ ⎪⎝⎭△△BOC ,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC =又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值. 【知识点】待定系数法求二次函数表达式,相似三角形,解一元二次方程,三角形面积,二次函数最值。

2019年山东省聊城市莘县中考数学一模试卷

2019年山东省聊城市莘县中考数学一模试卷

2019年山东省聊城市莘县中考数学一模试卷一、选择题:(每小题3分,共36分)1.实数的平方根( )A.3B.﹣3C.±3D.±2.下列图形中可以作为一个三棱柱的展开图的是( )A.B.C.D.3.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=22°,那么∠2的度数是( )A.30°B.23°C.20°D.15°4.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )A.567×103B.56.7×104C.5.67×105D.0.567×1065.图中三视图对应的几何体是( )A.B.C.D.6.不等式组的解集在数轴上表示正确的是( )A.B.C.D.7.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为( )A.(3,1)B.(2,0)C.(3,3)D.(2,1)8.下列二次根式中属于最简二次根式的是( )A.B.C.D.9.正三角形的高、外接圆半径、内切圆半径之比为( )A.3:2:1B.4:3:2C.4:2:1D.6:4:310.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=10,AC=6,BC=8,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.B.C.D.11.如图,正方形ABCD边长为4,M,N分别是边BC,CD上的两个动点且AM⊥MN,则AN的最小值是( )A.4B.5C.2D.412.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣5,0),对称轴为直线x=﹣2,给出四个结论:①abc>0;②4a+b=0;③若点B(﹣3,y1)、C(﹣4,y2)为函数图象上的两点,则y2<y1;④a+b+c=0.其中,正确结论的个数是( )A.1B.2C.3D.4二、填空题(每題3分,共15分)13.已知y=++5,则x+3y= .14.甲、乙两人分别到A、B、C三个餐厅的其中一个用餐,那么甲乙在同一餐厅用餐的概率是 .15.已知圆锥的底面半径为3cm,母线长为9cm,PA、PB为圆锥的两条相对的母线,AB为底面直径,C为母线PB的中点,在圆锥的侧面上,从A到C的最短距离是 cm.16.若关于x的分式方程无解,则a= .17.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,第六个叠放的图形中,小正方体木块总数应是 .三、解答题(本大题共8小题,共69分)18.(5分)先化简,再求值:(+a)÷,其中a=2.19.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次抽样调查了 个家庭;(2)将图①中的条形图补充完整;(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;(4)若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?20.(8分)如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.21.(8分)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.价格/类型A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?22.(8分)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为2米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米)参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈23.(10分)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC ,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,交AC边于点E.过点D作⊙O的切线,交AC于点F,交AB的延长线于点G,连接DE.(1)求证:BD=CD;(2)若∠G=40°,求∠AED的度数.(3)若BG=6,CF=2,求⊙O的半径.25.(12分)如图所示,已知直线与抛物线交于A、B两点,点C是抛物线的顶点.(1)求出点A、B的坐标;(2)求出△ABC的面积;(3)在AB段的抛物线上是否存在一点P,使得△ABP的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.2019年山东省聊城市莘县中考数学一模试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是,故选:D.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,本题属于基础题型.2.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有B是三棱柱的展开图.故选:B.【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.3.【分析】直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.【解答】解:∵AB∥CD,∴∠AFE=∠2,∵∠GFE=45°,∠1=22°,∴∠AFE=23°,∴∠2=23°,故选:B.【点评】此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:567000=5.67×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此即可得出结论.【解答】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度相同,从俯视图推出上面是圆柱体,直径等于下面柱体的宽.由此可以判断对应的几何体是C.故选:C.【点评】不同考查三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.6.【分析】分别解两个不等式得到x≤3和x>﹣2.5,然后利用大小小大中间找确定不等式组的解集,最后根据数轴表示不等式的解集的方法对各选项进行判断.【解答】解:,解①得x≤3,解②得x>﹣2.5,所以不等式组的解集为﹣2.5<x≤3.故选:A.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.8.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、是最简二次根式,此选项正确;B、=,此选项错误;C、=,此选项错误;D、=|x|,此选项错误;故选:A.【点评】本题主要考查最简二次根式,掌握(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式是解题的关键.9.【分析】连接OB,AO,延长AO交BC于D,根据⊙O是等边三角形ABC的外接圆求出∠OBC =30°,推出OB=2OD,求出OD=AD,代入求出即可.【解答】解:连接OB,AO,延长AO交BC于D,如图所示:∵⊙O是等边三角形ABC的外接圆,∴AD⊥BC,∠OBC=∠ABC=×60°=30°,∴OD=OB,OD为△ABC内切圆半径,∵OB=OA,∴OD=OA,∴OD=AD,∴正三角形的高、外接圆半径、内切圆半径之比=AD:OB:OD═3:2:1;故选:A.【点评】本题考查的是正多边形和圆、等边三角形的性质、直角三角形的性质,根据题意画出图形,运用等边三角形和直角三角形的性质是解答此题的关键.10.【分析】根据AB=10,AC=6,BC=8,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=10,AC=6,BC=8,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==2,∴S△ABC=AC•BC=×8×6=24,S圆=4π,∴小鸟落在花圃上的概率==;故选:C.【点评】本题考查了几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半.同时也考查了勾股定理的逆定理.11.【分析】在Rt△ADN,AN=,而AD=4为定值,所以当DN取最小值时,AN也取最小值.于是设BM=x,利用△ABM∽△MCN,求出CN的长,即可表示出DN的长,根据二次函数的最值求法即可得到正确结果.【解答】解:∵AM⊥MN∴∠AMB+∠CMN=90°而∠AMB+∠MAB=90°∴∠MAB=∠NMC又∵∠B=∠C=90°∴△ABM∽△MCN∴若设BM=x,则CM=4﹣x于是有∴CN=x(4﹣x)∴DN=4﹣CN=x2﹣x+4=(x﹣2)2+3即:当BM=2时,DN取最小值为3,而AN=,而AD=4为定值,所以当DN取最小值时,AN也取最小值此时AN==5即当DN取最小值3时,AN也取最小值5.故选:B.【点评】本题考查的是相似三角形的性质应用与二次函数求最值的结合,把代数与几何问题进行了相互渗透,本题中运用二次函数求线段的最值是解题的关键.12.【分析】根据二次函数图象的性质即可判断.【解答】解:由图象可知:开口向下,故a<0,抛物线与y轴交点在x轴上方,故c>0,∵对称轴x=﹣<0,∴b<0,∴abc>0,故①正确;∵对称轴为x=﹣2,∴﹣=﹣2,∴b=4a,∴4a﹣b=0,故②不正确;当x<﹣2时,此时y随x的增大而增大,∵﹣3>﹣4,∴y1>y2,故③正确;∵图象过点A(﹣5,0),对称轴为直线x=﹣2,∴点A关于x=﹣2对称点的坐标为:(1,0)令x=1代入y=ax2+bx+c,∴y=a+b+c=0,故④正确故选:C.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象性质,本题属于中等题型.二、填空题(每題3分,共15分)13.【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵y=++5,∴,解得:x=2,故y=5,则x+3y=17.故答案为:17.【点评】此题主要考查了二次根式有意义的条件,正确解不等式是解题关键.14.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树状图得:∴甲、乙两人一共有9种用餐情况,甲乙在同一餐厅用餐的情况有3种,∴甲乙在同一餐厅用餐的概率是=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.15.【分析】算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.【解答】解:解:圆锥的底面周长是6π,则6π=,∴n=120°,即圆锥侧面展开图的圆心角是120°,∴∠APB=60°,∵PA=PB,∴△PAB是等边三角形,∵C是PB中点,∴AC⊥PB,∴∠ACP=90°,∵在圆锥侧面展开图中AP=9,PC=4.5,∴在圆锥侧面展开图中AC==故答案为:.【点评】本题考查的是圆锥的计算,把最短距离的问题最后都要转化为平面上两点间的距离的问题是解题的关键.16.【分析】分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.【解答】解:方程两边都乘x(x﹣1)得,x(x﹣a)﹣3(x﹣1)=x(x﹣1),整理得,(a+2)x=3,当整式方程无解时,a+2=0即a=﹣2,当分式方程无解时:①x=0时,a无解,②x=1时,a=1,所以a=1或﹣2时,原方程无解.故答案为:1或﹣2.【点评】分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.17.【分析】可用逐条分析的方法,从最高的那条开始计数.根据所给图形可知,从上到下逐层条是添加四个小正方体,通过计算得出结果.【解答】解:根据题意可得知:图(1)中有1×1=1个小正方体;图(2)中有1×2+4×1=6个小正方体;图(3)中有1×3+4×2+4×1=15个小正方体;以此类推第六个叠放的图形中,小正方体木块总数应是1×6+4×5+4×4+4×3+4×2+4×1=66个.故答案为:66.【点评】此题考查了学生由特殊到一般的归纳能力.注意此题中第六个叠放的图形中,小正方体木块总数应是1×6+4×5+4×4+4×3+4×2+4×1=66个.三、解答题(本大题共8小题,共69分)18.【分析】先化简分式,再代入求值.【解答】解:原式=×=×=当a=2时,原式=3.【点评】本题主要考查了分式的化简.解决本题先做括号里面的,再做除法比较简便.19.【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5﹣1小时的家庭所占的百分比求出学习0.5﹣1小时的家庭数,再用总人数减去其它家庭数,求出学习2﹣2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【解答】解:(1)本次抽样调查的家庭数是:30÷=200(个);故答案为:200;(2)学习0.5﹣1小时的家庭数有:200×=60(个),学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;故答案为:36;(4)根据题意得:3000×=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个.【点评】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.【分析】(1)根据矩形的性质先证明四边形AECF是平行四边形,然后证明∠EAC=∠ACE 得出AE=CE,从而可证得四边形AECF是菱形;(2)首先设BF=x,则FC=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2,求出x的值,得出FC ,再根据菱形面积计算方法即可求得答案.【解答】证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=20【点评】此题考查了矩形的性质、菱形的判定与性质以及勾股定理.注意掌握折叠前后图形的对应关系是解此题的关键.21.【分析】(1)首先设购进A种新型节能台灯x盏,B种新型节能台灯y盏,由题意可得两个等量关系:①A、B两种新型节能台灯共50盏,②这批台灯共用去2500元,根据等量关系列出方程组,解方程组可得答案;(2)设购进B种新型节能台灯a盏,则购进A种新型节能台灯(50﹣a)盏,由题意可得不等关系:a盏B种新型节能台灯的利润+(50﹣a)盏B种新型节能台灯的利润≥1400元,根据不等关系列出不等式,解可得答案.【解答】解:(1)设购进A种新型节能台灯x盏,B种新型节能台灯y盏,由题意得:,解得:,答:购进A型节能台灯30盏,B型节能台灯20盏;(2)设购进B种新型节能台灯a盏,则购进A种新型节能台灯(50﹣a)盏,由题意得:(100﹣65)a+(60﹣40)(50﹣a)≥1400,解得:a≥26,∵a表示整数,∴至少需购进B种台灯27盏,答:至少需购进B种台灯27盏.【点评】此题主要考查了二元一次方程组的应用,以及一元一次不等式的应用,关键是首先弄清题意,设出未知数,根据题目中的关键语句列出方程组或不等式.22.【分析】(1)过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.(2)根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD,根据BC=DF=AD﹣AF计算即可.【解答】解:(1)过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=AB sin∠BAF=2sin37°≈=1.2.∴真空管上端B到AD的距离约为1.2米.(2)在Rt△ABF中,∵cos∠BAF=,∴AF=AB cos∠BAF=2cos37°≈1.6,∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=0.7米,在Rt△EAD中,∵tan∠EAD=,∴=,∴AD=1.75米,∴BC=DF=AD﹣AF=1.75﹣1.6=0.15≈0.2∴安装热水器的铁架水平横管BC的长度约为0.2米.【点评】此题考查了解直角三角形的应用,培养学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.23.【分析】(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.【解答】解:(1)∵点A的坐标为(m,2),AC平行于x轴,∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=可得k=8,∵点B(2,n)在y=的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=AC•BE=×4×2=4,即△ABC的面积为4.【点评】本题主要考查反比例函数与一次函数的交点问题,根据三角形的面积求得点A的坐标及待定系数法求函数解析式是解题的关键.24.【分析】(1)连接AD,根据圆周角定理得出AD⊥BC,根据等腰三角形的性质得出即可;(2)连接OD,根据切线的性质求出∠ODG=90°,求出∠BOD、∠ABC,根据圆内接四边形求出即可;(3)求出△ODG∽△AFG,得出比例式,即可求出圆的半径.【解答】(1)证明:连接AD,∵AB为直径,∴∠ACB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)解:连接OD,∵GF是切线,OD是半径,∴OD⊥GF,∴∠ODG=90°,∵∠G=40°,∴∠GOD=50°,∵OB=OD,∴∠OBD=65°,∵点A、B、D、E都在⊙O上,∴∠ABD+∠AED=180°,∴∠AED=115°;(3)解:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△GOD∽△GAF,∴=,∴设⊙O的半径是r,则AB=AC=2r,∴AF=2r﹣2,∴=,∴r=3,即⊙O的半径是3.【点评】本题考查了切线的性质,圆内接四边形,相似三角形的性质和判定,圆周角定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键.25.【分析】(1)由直线y=﹣x与抛物线y=﹣x2+6交于A、B两点,可得方程﹣x=﹣x2+6,解方程即可求得点A、B的坐标;(2)首先由点C是抛物线的顶点,即可求得点C的坐标,又由S△ABC=S△OBC+S△OAC即可求得答案;(3)首先过点P作PD∥OC,交AB于D,然后设P(a,﹣a2+6),即可求得点D的坐标,可得PD的长,又由S△ABP=S△BDP+S△ADP,根据二次函数求最值的方法,即可求得答案.【解答】解:(1)∵直线y=﹣x与抛物线y=﹣x2+6交于A、B两点,∴﹣x=﹣x2+6,解得:x=6或x=﹣4,当x=6时,y=﹣3,当x=﹣4时,y=2,∴点A、B的坐标分别为:(6,﹣3),(﹣4,2);(2)∵点C是抛物线的顶点.∴点C的坐标为(0,6),∴S△ABC=S△OBC+S△OAC=×6×4+×6×6=30;(3)存在.过点P作PD∥OC,交AB于D,设P(a,﹣a2+6),则D(a,﹣a),∴PD=﹣a2+6+a,∴S△ABP=S△BDP+S△ADP=×(﹣a2+6+a)×(a+4)+×(﹣a2+6+a)×(6﹣a)=﹣(a﹣1)2+(﹣4<a<6),∴当a=1时,△ABP的面积最大,此时点P的坐标为(1,).【点评】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。

2022年山东省聊城市中考数学试卷(带详解)

2022年山东省聊城市中考数学试卷(带详解)

2022年山东省聊城市中考数学试卷一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.实数a的绝对值是54,a的值是( )A. 54B. −54C. ±45D. ±542.如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是( )A.B.C.D.3.下列运算正确的是( )A. (−3xy)2=3x2y2B. 3x2+4x2=7x4C. t(3t2−t+1)=3t3−t2+1D. (−a3)4÷(−a4)3=−14.要检验一个四边形的桌面是否为矩形,可行的测量方案是( )A. 测量两条对角线是否相等B. 度量两个角是否是90°C. 测量两条对角线的交点到四个顶点的距离是否相等D. 测量两组对边是否分别相等5. 射击时,子弹射出枪口时的速度可用公式v =√2as 进行计算,其中a 为子弹的加速度,s 为枪筒的长.如果a =5×105m/s 2,s =0.64m ,那么子弹射出枪口时的速度(用科学记数法表示)为( )A. 0.4×103m/sB. 0.8×103m/sC. 4×102m/sD. 8×102m/s6. 关于x ,y 的方程组{2x −y =2k −3,x −2y =k的解中x 与y 的和不小于5,则k 的取值范围为( )A. k ≥8B. k >8C. k ≤8D. k <87. 用配方法解一元二次方程3x 2+6x −1=0时,将它化为(x +a)2=b 的形式,则a +b 的值为( )A. 103B. 73C. 2D. 43 8. “俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元 频数 一x ≤10 二10<x ≤15 12 三15<x ≤20 15 四20<x ≤25 a 五 x >25 5关于这次调查,下列说法正确的是( )A. 总体为50名学生一周的零花钱数额B. 五组对应扇形的圆心角度数为36°C. 在这次调查中,四组的频数为6D. 若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人 9. 如图,AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P.已知∠P =30°,∠AOC =80°,则BD⏜的度数是( )A. 30°B. 25°C. 20°D. 10°10.如图,在直角坐标系中,线段A1B1是将△ABC绕着点P(3,2)逆时针旋转一定角度后得到的△A1B1C1的一部分,则点C的对应点C1的坐标是( )A. (−2,3)B. (−3,2)C. (−2,4)D. (−3,3)11.如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是( )A. ∠BAQ=40°BDB. DE=12C. AF=ACD. ∠EQF=25°12.如图,一次函数y=x+4的图象与x轴,y轴分别交于点A,B,点C(−2,0)是x轴上一点,点E,F分别为直线y=x+4和y轴上的两个动点,当△CEF周长最小时,点E,F的坐标分别为( )A. E(−52,32),F(0,2) B. E(−2,2),F(0,2)C. E(−52,32),F(0,23) D. E(−2,2),F(0,23)二、填空题(本大题共5小题,共15.0分)13.不等式组{x−6≤2−x,x−1>3x2的解集是______.14.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,−1;转盘B被四等分,分别标有数字3,2,−2,−3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是______.15.若一个圆锥体的底面积是其表面积的14,则其侧面展开图圆心角的度数为______.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______元(利润=总销售额−总成本).17.如图,线段AB=2,以AB为直径画半圆,圆心为A1,以AA1为直径画半圆①;取A1B的中点A2,以A1A2为直径画半圆②;取A2B的中点A3,以A2A3为直径画半圆③…按照这样的规律画下去,大半圆内部依次画出的8个小半圆的弧长之和为______.三、解答题(本大题共8小题,共69.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

赛”,经选拔后有 50 名学生参加决赛,这 50 名学生同时听写 50 个汉字,若每正确听写出
一个汉字得 1 分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别
成绩 x 分
频数(人数)
第 1组
25≤ x< 30 4
第 2组
30≤ x< 35 8
第 3组
35≤ x< 40 16
第 4组
【分析】 找中位数要把数据按从小到大的顺序排列, 位于最中间的一个数 (或两个数的平均
数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
【解答】 解:在这一组数据中 9 是出现次数最多的,故众数是 90;
二、填空题:本题共 25 个小题,每小题 3 分,共 15 分 13.已知关于 x 的方程 3a+x= ﹣ 5 的解为 2, a 的值是 ______.
14.比较大小:
______ .(填“>”,“<”或“ =”)
15.如图的一座拱桥,当水面宽 AB为 12m时,桥洞顶部离水面 4m,已知桥洞的拱形是抛物 线,以水平方向为 x 轴, 建立平面直角坐标系, 若选取点 A 为坐标原点时的抛物线解析式是
④若 P( x, y)在图象上,则 P′(﹣ x,﹣ y)也在图象上.
其中正确的是(

A.①② B .②③ C.③④ D.①④
12.如图, 在半径为 2,圆心角为 90°的扇形内, 以 BC为直径作半圆交 AB于点 D,连接 CD,
则阴影部分的面积是(

2 / 22
A. π﹣ 1 B. π﹣ 2 C.π﹣ 2 D.π﹣ 1
B 不符合题意;
C、明天会下雨是随机事件,故 C 不符合题意;
D、打开电视,正在播放新闻是随机事件,故
D 不符合题意;
故选: A.
5.一元一次不等式组
的解集在数轴上表示出来,正确的是(

A.
B.
C.
D.
【考点】 在数轴上表示不等式的解集;解一元一次不等式组. 【分析】分别求出不等式组中两不等式的解集, 找出解集的公共部分确定出不等式组的解集, 表示在数轴上即可.
40≤ x< 45 a
第 5组
45≤ x< 50 10
请结合图表完成下列各题:
(1)求表中 a 的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于 40 分为优秀,则本次测试的优秀率是多少?
(4)第 5 组 10 名同学中,有 4 名男同学,现将这 10 名同学平均分成两组进行对抗练习,
由矩形的性质容易得出结
∴∠ ABC=∠BCD=∠ CDA=∠BAD=90°, AC=BD, OA= AC, OB= BD,
∴OA=OB, ∴A、 B、 C正确, D错误, 故选: D.
7.一个几何体的三视图如图所示,那么这个几何体的侧面积是(

A.4π B.6π C.8π D.12π 【考点】 由三视图判断几何体. 【分析】 根据三视图正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱 体.侧面积 =底面周长×高. 【解答】 解:∵圆柱的直径为 2,高为 3,
∴侧面积为 2× × 2×3π=6π.
故选 B.
8.某校 10 名学生参加“心理健康”知识测试,他们得分情况如下表:
人数
2
3
4
1
分数
80
85
90
95
那么这 10 名学生所得分数的众数和中位数分别是(

A. 95 和 85 B. 90 和 85 C. 90 和 87.5 D. 85 和 87.5
【考点】 众数;中位数.
的解集在数轴上表示出来,正确的是(

A.
B.
C.
D.
6.如图,在矩形 ABCD中,对角线 AC、 BD交于点 O,以下说法错误的是(

A.∠ ABC=90° B. AC=BD C. OA=OB D. OA=AD
7.一个几何体的三视图如图所示,那么这个几何体的侧面积是(

A.4π B.6π C.8π D.12π
2016 年山东省聊城市中考数学模拟试卷(一)
一、选择题:本大题共 12 小题,每小题 3 分,在每小题给出的四个选项中,只有一一项符
合题目要求
1.在﹣ 4,2,﹣ 1,3 这四个数中,比﹣ 2 小的数是(

A.﹣ 4 B. 2 C.﹣ 1 D. 3
2.如图,将三角形纸板的直角顶点放在直尺的一边上,∠ 1=20°,∠ 2=40°,则∠ 3 等于
在第一象限内把线段 AB缩小后得到线段 CD,则点 C的坐标为(

A.( 2, 1) B.( 2, 0) C.( 3, 3) D.( 3, 1)
11.反比例函数 y= 的图象如图所示,以下结论:
①常数 m<﹣ 1;
②在每个象限内, y 随 x 的增大而增大;
③若 A(﹣ 1, h), B( 2, k)在图象上,则 h<k;
1 / 22
8.某校 10 名学生参加“心理健康”知识测试,他们得分情况如下表:
人数
2
3
4
1
分数
80
85
90
95
那么这 10 名学生所得分数的众数和中位数分别是(

A. 95 和 85 B. 90 和 85 C. 90 和 87.5 D. 85 和 87.5
9.如图,直线 l 外不重合的两点 A、 B,在直线 l 上求作一点 C,使得 AC+BC的长度最短,
3 / 22
三、解答题:本题共 8 小题,共 69 分
18.先化简再求值:
,其中 a=2,b=﹣ 1.
19.如图,点 B 是线段 AC的中点,点 D是线段 CE的中点,点 M是 AE的中点,四边形 BCGF 和 CDHN都是正方形,求证:△ FMH是等腰直角三角形.
20.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大
4.下列事件是必然事件的是(

A.地球绕着太阳转
B.抛一枚硬币,正面朝上
C.明天会下雨
D.打开电视,正在播放新闻
【考点】 随机事件.
【分析】 根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【解答】 解: A、地球绕着太阳转是必然事件,故 A 符合题意;
B、抛一枚硬币,正面朝上是随机事件,故
5 / 22
25.在平面直角坐标系中, O为原点,直线 y=﹣ 2x﹣ 1 与 y 轴交于点 A,与直线 y=﹣ x 交于
点 B,点 B 关于原点的对称点为点 C.
(1)求过 A, B, C三点的抛物线的解析式;
(2) P 为抛物线上一点,它关于原点的对称点为
Q.
①当四边形 PBQC为菱形时,求点 P 的坐标;
【解答】 解:ຫໍສະໝຸດ ,由①得: x≤ 1; 由②得: x>﹣ 2, ∴不等式组的解集为﹣ 2< x≤1, 表示在数轴上,如图所示:

故选 B.
6.如图,在矩形 ABCD中,对角线 AC、 BD交于点 O,以下说法错误的是(

8 / 22
A.∠ ABC=90° B. AC=BD C. OA=OB D. OA=AD 【考点】 矩形的性质. 【分析】 矩形的性质:四个角都是直角, 对角线互相平分且相等; 论. 【解答】 解:∵四边形 ABCD是矩形,
()
A.50° B .30° C.20° D.15°
3.下列运算正确的是(

A. 4m﹣ m=3 B.﹣( m+2n) =﹣ m+2n
C.(﹣ m3)2=m9
4.下列事件是必然事件的是(

A.地球绕着太阳转
B.抛一枚硬币,正面朝上
C.明天会下雨
D.打开电视,正在播放新闻
D. 2m2?m3=2m5
5.一元一次不等式组
4 / 22
22.为了研究吸烟是否对肺癌有影响, 某肿瘤研究所随机地调查了 10000 人,并进行统计分
析,结果显示:在吸烟者中患肺癌的比例是
2.5%,在不吸烟者中患肺癌的比例是 0.5%,吸
烟者患肺癌的人数比不吸烟者患肺癌的人数多
22 人,这次调查人数中吸烟者和不吸烟者患
肺癌各多少人?
23.某游泳馆普通票价 20 元/ 张,暑假为了促销,新推出两种优惠卡:
作法为:①作点 B 关于直线 l 的对称点 B′;②连接 AB′与直线 l 相交于点 C,则点 C 为所
求作的点.在解决这个问题时没有运用到的知识或方法是(

A.转化思想 B.三角形的两边之和大于第三边 C.两点之间,线段最短 D.三角形的一个外角大于与它不相邻的任意一个内角
10.如图,在直角坐标系中,有两点 A( 6,3),B( 6,0),以原点 O位似中心,相似比为 ,
y=﹣ ( x﹣ 6)2 +4,则选取点 B 为坐标原点时的抛物线解析式是 ______.
16.如图,将边长为 2 的等边三角形 ABC绕点 C旋转 120°,得到△ DCE,连接 BD,则 BD 的长是 ______.
17.如图,正方形 A1A2A3A4,A5A6A7A8, A9A10A11A12,…,(每个正方形从第三象限的顶点开始, 按顺时针方向顺序,依次记为 A1, A2, A3, A4; A5, A6, A7, A8; A9 ,A10, A11, A12;…)正方 形的中心均在坐标原点 O,各边均与 x 轴或 y 轴平行,若它们的边长依次是 2, 4, 6,…, 则顶点 A2016的坐标为 ______.
①金卡售价 600 元 / 张,每次凭卡不再收费.
②银卡售价 150 元 / 张,每次凭卡另收 10 元.
暑假普通票正常出售,两种优惠卡仅限暑假使用, 不限次数. 设游泳 x 次时,所需总费用为
相关文档
最新文档