自动往返电动小车
小车自动往返控制PLC课程设计

小车自动往返控制PLC课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和结构,掌握其在小车自动往返控制系统中的应用。
2. 学生能掌握基本的逻辑控制语句和程序设计方法,实现对小车的自动往返控制。
3. 学生能了解传感器的工作原理,并将其应用于PLC控制系统中,实现小车行进中的障碍物检测和避让。
技能目标:1. 学生能运用PLC编程软件进行程序设计,实现小车自动往返控制的功能。
2. 学生能通过实际操作,调试和优化PLC控制程序,提高小车的运行效率和稳定性。
3. 学生能运用相关工具和仪器进行电路搭建和故障排查,培养实际操作能力和问题解决能力。
情感态度价值观目标:1. 学生通过课程学习,培养对自动化技术和PLC控制系统的兴趣,激发创新意识和探索精神。
2. 学生在小组合作中,学会沟通与协作,培养团队精神和责任感。
3. 学生能够关注PLC技术在工业生产和日常生活中的应用,认识到科技对社会发展的推动作用,树立正确的价值观。
课程性质:本课程为实践性较强的课程,注重理论知识与实际操作的结合,培养学生动手能力和创新能力。
学生特点:学生为高年级学生,具备一定的电子技术基础和编程能力,对新技术和新知识有较高的学习热情。
教学要求:教师需结合学生特点,采用任务驱动法、案例教学法和小组合作法等教学方法,引导学生主动探索,提高课程教学效果。
同时,注重过程评价,关注学生知识掌握和技能提升,培养其情感态度价值观。
通过分解课程目标为具体学习成果,便于后续教学设计和评估。
二、教学内容1. PLC基础知识:包括PLC的组成、工作原理、编程语言及编程软件的使用,重点讲解与小车自动往返控制相关的基础知识。
- 教材章节:第一章 PLC概述,第二章 PLC组成与工作原理,第三章 编程语言与编程软件。
2. 逻辑控制语句:介绍PLC常用的逻辑控制语句,如与、或、非、定时器、计数器等,通过实例分析,让学生掌握逻辑控制语句的应用。
自动往返电动小汽车(毕业设计)

一. 毕业实践任务书无锡职业技术学院毕业实践任务书课题名称:自动往返电动小汽车指导教师:XXXXXXX 职称:讲师指导教师:职称:专业名称:XXXXXXXX 班组:XXXXXX学生姓名:XXXXXXX 学号:05一. 课题需要完成的任务:设计并制作一个能自动往返于起跑线与终点线间的小汽车。
允许用玩具汽车改装,但不能用人工遥控(包括有线和无线遥控)。
图1跑道顶视图跑道宽度0.5m,表面贴有白纸,两侧有挡板,挡板与地面垂直,其高度不低于20cm。
在跑道的B、C、D、E、F、G各点处画有2cm宽的黑线,各段的长度如图1所示。
设计要求1、车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点线后停留10秒,然后自动返回起跑线(允许倒车返回)。
往返一次的时间应力求最短(从合上汽车电源开关开始计时)。
2. 达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以车辆中心点与终点线或起跑线中心线之间距离作为偏差的测量值)。
D~E间为限速区,车辆往返均要求以低速通过,通过时间不得少于8秒,但不允许在限速区内停车。
二. 课题计划:2006.3.3~2006.3.6 熟悉课题,可行性方案分析及方案论述。
2006.3.7~2006.3.19 查阅资料,设计各部分硬件。
2006.3.19~2006.4.10 画原理图,印刷线路板。
2006.4.10~2006.4.20 编写程序验证部分硬件。
2006.4.21~2006.4.25 写出毕业论文。
计划答辩时间:4.21-4.28XXXXX 系(部、分院)2006年02年18日二.外文翻译VIDEOCASSETTEBefore the videocassette recorder there was the movie projector and screen. Perhaps you remember your fifth-grade teacher pulling down a screen—or Dad hanging a sheet on the wall, ready to show visiting friends the enthralling account of your summer vacation at the shore. Just as the film got started, the projector bulb often blew out.Those days did have one advantage, though: the screen was light, paper-thin and could be rolled into a portable tube. Compare that with bulky television and computer screens, and the projector screen invokes more than just nostalgia. Could yesterday's convenience be married to today's technology?The answer is yes, thanks to organic light-emitting materials that promise to make electronic viewing more convenient and ubiquitous. Used in displays, the organic materials are brighter, consume less energy and are easier to manufacture (thus potentially cheaper) than current options based on liquid crystals. Because organic light-emitting diodes (OLEDs) emit light, they consume significantly less power, especially in small sizes, than common liquid-crystal displays (LCDs), which require backlighting. OLEDs also offer several exciting advantages over common LEDs: the materials do not need to be crystalline (that is, composed of a precisely repeating pattern of planes of atoms), so they are easier to make; they are applied in thin layers for a slimmer profile; and different materials (for different colors) can be patterned on a given substrate to make high-resolution images. The substrates may be inexpensive glass or flexible plastic or even metal foil.In the coming years, large-screen televisions and computer monitors could roll up for storage. A soldier might unfurl a sheet of plastic showing a real-time situation map. Smaller displays could be wrapped around a person's forearm or incorporated into clothing. Used in lighting fixtures, the panels could curl around an architectural column or lie almost wallpaperlike against a wall or ceiling.LEDs currently have longer lifetimes than organic emitters, and itwill be tough to beat the widespread LED for use in indicator lamps. But OLEDs are already demonstrating their potential for displays. Their screens put out more than 100 candelas per square meter (about the luminance of a notebook screen) and last tens of thousands of hours (several years of regular use) before they dim to half their original radiance.Close to 100 companies are developing applications for the technology, focusing on small, low-power displays [see box on page 80]. Initial products include a nonflexible 2.2-inch (diagonal) display for digital cameras and cellular phones made jointly by Kodak and Sanyo, introduced in 2002, and a 15-inch prototype computer monitor produced by the same collaborative venture. The global market for organic display devices was about $219 million in 2003 and is projected to jump to $3.1 billion by 2009, according to Kimberly Allen of iSuppli/Stanford Resources, a market-research firm specializing in displays.一、What LED to OLEDCRYSTALLINE semiconductors—the forerunners of OLEDs—trace their roots back to the development of the transistor in 1947, and visible-light LEDs were invented in 1962 by Nick Holonyak, Jr. They were first used commercially as tiny sources of red light in calculators and watches and soon after also appeared as durable indicator lights of red, green or yellow. (When suitably constructed, LEDs form lasers, which have spawned the optical-fiber revolution, as well as optical data storage on compact discs and digital video discs.) Since the advent of the blue LED in the 1990s [see “Blue Chip,” by Glenn Zorpette; Scientific American, August 2000], full-color, large-screen television displays made from hundreds of thousands of LED chips have appeared in spectacular fashion on skyscrapers and in arenas [see “In Pursuit of the Ultimate Lamp,” by M. George Crawford, Nick Holonyak, Jr., and Frederick A. Kish, Jr.; Scientific American, February 2001]. Yet the smaller sizes used in devices such as PDAs (personal digital assistants) and laptops are not as practical.LEDs and OLEDs are made from layers of semiconductors—materials whose electrical performance is midway between an excellent conductorsuch as copper and an insulator such as rubber. Semiconducting materials, such as silicon, have a small energy gap between electrons that are bound and those that are free to move around and conduct electricity. Given sufficient energy in the form of an applied voltage, electrons can “jump” the gap a nd begin moving, constituting an electrical charge. A semiconductor can be made conductive by doping it; if the atoms added to a layer have a smaller number of electrons than the atoms they replace, electrons have effectively been removed, leaving positively charged “holes” and making the material “p-type.” Alternatively, a layer that is doped so that it has an excess of negatively charged electrons becomes “n-type” [see box on opposite page]. When an electron is added to a p-type material, it may encounter a hole and drop into the lower band, giving up an amount of energy (equal to the energy gap) as a photon of light. The wavelength depends on the energy gap of the emitting material.For the production of visible light, organic materials should have an energy gap between their lower and higher conduction bands in a relatively small range, about two to three electron volts. (One electron volt is defined as the kinetic energy gained by an electron when it is accelerated by a potential difference of one volt. A photon with one electron volt of energy corresponds to the infrared wavelength of 1,240 nanometers, and a photon of two electron volts has a wavelength half as much—620 nanometers—a reddish color.)二、A Surprising GlowORGANIC semiconductors are formed as aggregates of molecules that are, in the technologies being pursued, amorphous—a solid material, but one that is noncrystalline and without a definite order. There are two general types of organic light emitters, distinguished by “small” and “large” molecule sizes. The first practical p-n-type organic LED, based on small molecules, was invented in 1987 by Ching W. Tang and Steven A. Van Slyke of Eastman Kodak, after Tang noticed a surprising green glow coming from an organic solar cell he was working on. The duo recognized that by using two organic materials, one a good conductor of holes and the other a good conductor of electrons, they could ensure that photon emission would take place near the contact area, or junction, of the two materials, as in acrystalline LED. They also needed a material that held its electrons tightly, meaning that it would be easy to inject holes. For the light to escape, one of the contacts must be transparent, and the scientists benefited from the fortunate fact that the most widely used transparent conducting material, indium tin oxide, bound its electrons suitably for p-type contact material.The structure they came up with has not changed much over the years and is often called “Kodak-type,” because Kodak had the basic patent [see box on opposite page]. Beginning with a glass substrate, different materials are deposited layer by layer. This process is accomplished by evaporating the constituent materials and letting them condense on the substrate. The total thickness of the organic layers is only 100 to 150 nanometers, much thinner than that of a conventional LED (which is at least microns in thickness) and less than 1 percent of the thickness of a human hair. Because the molecules of the materials used are relatively lightweight—even lighter than a small protein—the Kodak-type OLEDs are referred to as “small molecule” OLEDs.After their initial insight, Tang and Van Slyke tinkered with the design to increase efficiency. They added a small amount of the fluorescent dye coumarin to the emitter material tris (8-hydroxy-quinoline) aluminum. The energy released by the recombination of holes and electrons was transferred to the dye, which emitted light with greatly increased efficiency. Deposition of additional thin layers of indium tin oxide and other compounds next to the electrodes altered the interaction of the thicker layers and also improved the efficiency of the injection of holes and electrons, thereby further upping the overall power efficiency of the fluorescent OLED.Organic LEDs of this small-molecule type are used to make red, green and blue light, with green light having the highest efficiency. Such green-emitting OLEDs can exhibit luminous efficiencies of 10 to 15 candelas per ampere—about as efficient as commercial LEDs today—and seven to 10 lumens per watt, values that are comparable to those for common incandescent lamps.录像机在卡匣式录像机出来之前,我们用的是电影放映机与屏幕。
自动往返小车设计

题目自动往返小车设计目录自动往返小车设计一、方案的选择与论证根据题目要求,系统可以划分为几个基本模块,如图 1所示。
图 1对各模块的实现,分别有以下一些不同的设计方案:1. 电动机驱动调速模块方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。
更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。
方案三:采用由达林顿管组成的H型PWM电路。
用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。
这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调速技术。
基于上述理论分析,拟选择方案三。
2. 路面黑线探测模块探测路面黑线的大致原理是:光线照射到路面并反射,由于黑线和白纸的反射系数不同,可根据接收到的反射光强弱判断是否到达黑线。
方案一:可见光发光二极管与光敏二极管组成的发射-接收电路。
这种方案的缺点在于其他环境光源会对光敏二极管的工作产生很大干扰,一旦外界光亮条件改变,很可能造成误判和漏判;虽然采取超高亮发光管可以降低一定的干扰,但这又将增加额外的功率损耗。
方案二:不调制的反射式红外发射-接收器。
由于采用红外管代替普通可见光管,可以降低环境光源干扰;但如果直接用直流电压对管子进行供电,限于管子的平均功率要求,工作电流只能在1OM左右,仍然容易受到干扰。
方案三:脉冲调制的反射式红外发射-接收器。
考虑到环境光干扰主要是直流分量,如果采用带有交流分量的调制信号,则可大幅度减少外界干扰;另外,红外发射管的最大工作电流取决于平均电流,如果使用占空比小的调制信号,在平均电流不变的情况下,瞬时电流可以很大(50-100mA),这样也大大提高了信噪比。
自动往返运料小车控制系统设计

河南机电高等专科学校毕业设计(论文)自动往返运料小车控制系统设计系部:自动控制系专业: 电气自动化班级: 自 124姓名: 张晓需学号:指导老师: 赵新蕖二零一五年五月摘要运料小车在煤矿、仓库、港口车站、矿井等行业中被广泛应用,而其控制系统就是一种典型的PLC系统。
传统的运料小车大多是继电器控制,而继电器控制有着接线复杂、易出故障、维护维修不易等缺点。
为了降低运料小车的运行成本,实现自动化控制,应用可编程控制技术作为小车的控制系统。
本设计针对电气控制的运料小车系统,利用组态软件和西门子S7200 PLC实现对运料小车系统的监测和控制。
通过现场数据采集,进行集中的数据管理,从而实现对自动运料小车系统有效控制,系统状态实时监控,并由上位机生成可视化的动态监控界面。
方便管理人员对现场的管理,提高工作效率。
关键词:运料小车;组态软件;PLC;传感器;AbstractCarriage?is widely used in?coal mine,?warehouse,?station,?port?mine?and other industries,?and its control system?is?a?typical PLC system.?The transport cars?most of the traditional relay control,?relay control?with complex wiring,?easy?maintenance,?fault?repair?defect?is not easy.?In order to reduce the operation cost?of material transport trolley,?automatic control system,?the application of programmable?control?technology as the control?system?of car.The design for the?carriage?of electric control system,?realize the?monitoring and control of material transport trolley?system using configuration software and?S7200?PLC?Siemens.Through the field data acquisition,?data?management,?so as to realize the?automatic?control?of material transport trolley?system,?real-time monitoring system status,?and made the dynamic monitoring?interface PC?to generate visual.?Management?to facilitate the management of the site,?improve work efficiency.Keywords:?Material transport trolley;configuration software;?PLC;??sensor;?目录第1章绪论 01.1 本课题来源、目的和意义 01.1.1 本课题来源 01.1.2 本课题目的和意义 01.2 本课题内容及要求 (1)第2章控制方案的选择 (1)2.1自动往返运料小车设计思路 (1)2.2 可编程控制器(PLC)及运料小车的介绍 (1)2.2.1 可编程控制器(PLC)的分类 (1)2.2.2 PLC的工作原理 (3)2.3 自动运料小车控制系统 (3)2.4 系统硬件配置 (4)第3章控制系统的硬件选型 (5)3.1 系统硬件的选型 (5)3.2 PLC选型 (6)3.3 传感器的选型 (7)3.4 步进电机的选型 (8)第4章控制系统的软件实现 (9)4.1 PLC软件开发工具介绍 (9)4.1.1???硬件连接及软件的安装? (9)4.1.2???STEP7-Micro/WIN32软件的窗口组件 (10)4.2程序流程 (10)第5章组态设计 (12)5.1数据库设计 (12)5.2 MCGS与PLC的连接 (12)5.3 运料小车的组态设计 (13)5.4 运行调试动画界面 (13)第6章结论 (14)致谢 (15)参考文献 (15)第1章绪论1.1 课题来源、目的和意义1.1.1 课题来源随着科学技术的日新月异,对自动化程度要求越来越高,原有的生产线已不能满足要求。
送料小车自动往返的电气控制

FU2 FR SB1
KM1 合上电源开关QS
KM2 SB2 SQ1 FR U V M 3~ KM2 KM1 W SQ3 SQ4 KM1 KM2 SB3 SQ2
SQ3
SQ4
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 FR SB1
KM1 按下SB2, KM1线圈得电 FR U V M 3~ W
SQ3
SQ4
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 FR SB1
KM1 松开SB2 电动机继 续正转 FR U V M 3~ W
KM2 SB2 SQ1 KM1 KM2 SB3 SQ2
SQ3
SQ4
KM2
SQ3 SQ4
KM1
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
2.任务分析
(1)工作台怎么实现前进与后退功能? (2)工作台前进到终端后自动后退,退到原位又自动 前进,通过什么电气元件实现该功能? (3)电路中的短路、失压、过载和位置极限保护,分别 通过哪些电气器件来实现?
工作台自动往返示意图
2.任务分析 提问:能否在接触器联锁正反转控制线 路的基础上,作一些改进来实现这种自 动往返控制?
SQ3
SQ4
KM1 SQ1 SQ2
KM2
QS L1 L2 L3
FU1
FU2 FR SB1
KM1 按下SB1, 各开关复位 电机停转 FR U V M 3~ W
KM2 SB2 SQ1 KM1 KM2 SB3 SQ2
SQ3
SQ4
Байду номын сангаас
PLC控制技术项目一 改造自动往返小车控制电路

任务1 安装自动往返小车控制电路
CPU224XP AC/DC/RLY上下端子接线示意图
PLC
主 要 性 能
任务1 安装自动往返小车控制电路
【知识准备】
2.内部资源 PLC是以微处理器为核心的电子设备。PLC的指令是针对元器件而言的,使用时可以将它看成是由 继电器、定时器、计数器等元件的组合体。PLC的内部设计了供编程使用的各种元器件。 软元件的最大特点是:
根据上述改造方法,本项目将分为安装自动往返小车控制电路和调试自动往返 小车控制电路两个任务,介绍运用西门子S7-200 PLC对自动往返小车的继电器控制 电路进行改造。
【相关知识和技能】
1.了解PLC的基本组成与工作原理; 2.了解西门子S7-200系列PLC的构造、工作原理、功能特点和技术参数; 3.了解S7-200系列PLC软件、硬件的安装使用; 4.了解PLC编程语言的种类; 5.掌握电气控制线路图的读图、分析和绘图方法; 6.掌握PLC电气控制系统的设计过程及方法; 7.熟悉STEP 7–Micro/WIN32的基本操作界面及各项工具栏的功能; 8.熟悉小车自动往返控制电路的工作原理和运行过程; 9.掌握使用STEP7-Micro/WIN编程软件进行程序编写、下载、调试和监控
仪表使用不熟练扣3分
4
安全文明生产 1.遵守安全生产法规
2.遵守实训室使用规定
违反安全生产法规或实训室使用规 10
定每项扣3分
备注
合计
100
老师签字
年 月日
任务2 调试自动往返小车控制电路
【任务目标】 1.了解PLC编程语言的种类和编程软件的使用方法; 2.熟悉STEP7–Micro/WIN V4.0的基本操作界面及各项工具栏的功能; 3.熟悉小车自动往返控制电路的工作原理和运行过程; 4.掌握使用STEP7-Micro/WIN V4.0编程软件进行程序编写、下载、调试和监控 【任务分析】 在完成自动往返小车控制电路接线和程序设计后,即可进行控制电路的调试,调 试过程主要分为控制程序的录入、编译、下载、模拟调试及控制系统整体调试。 要完成上述调试任务,需掌握STEP7-Micro/WIN V4.0编程软件的基础知识,会使 用该软件进行程序输入、修改、编译、下载及监控调试的操作。
自动往返电动小车

设计自动往返电动小车的控制算法,包括路径规 划、速度控制、避障处理等。
3
程序编写与调试
按照算法设计,编写相应的程序并进行调试,确 保程序正确无误。
系统集成与测试方法
系统集成
将硬件电路、软件程序以及机 械结构等进行集成,搭建完整
的自动往返电动小车系统。
功能测试
对自动往返电动小车的各项功能进 行测试,包括前进、后退、左转、 右转等动作以及避障功能等。
能量回收技术
在小车制动或减速时,通过能量 回收系统将部分能量转化为电能 储存起来,提高能源利用效率。
节能控制技术
优化控制算法和硬件设计,降低 小车的能耗,提高小车的运行效
率和经济性。
04
设计与实现过程
总体设计方案制定
01
确定设计目标
明确自动往返电动小车的设计目标,如行驶速度、载重能力、续航里程
等。
01
02
稳定性
指自动往返电动小车在运动过程中保 持平稳、不倾覆的能力,以及在复杂 环境下的适应性。
03
精确性
指自动往返电动小车在导航、定位等 方面的精确度,包括位置误差、角度 误差等指标。
05
04
负载能力
指自动往返电动小车能够承载的最大 重量或体积限制,以及在不同负载下 的性能表现。
03
关键技术研究
自动往返电动小车
目录
• 引言 • 自动往返电动小车概述 • 关键技术研究 • 设计与实现过程 • 应用场景分析 • 挑战与未来发展方向
01
引言
背景与意义
自动化物流运输需求增长
降低人力成本
随着电子商务和智能制造的快速发展, 物流运输行业对自动化、智能化的需 求日益增长。
小车自动往返PPT课件

(a)位地址表示方式;(b)对应的位置
8
3.间接寻址 间接寻址是指使用地址指针来存取存储器 中的数据。使用前,首先将数据所在单元的 内存地址放入地址指针寄存器中,然后根据 此地址存取数据。S7-200CPU中允许使用 指针进行间接寻址的元器件有I,Q、V、M、 S、T、C。
9
4.1.3顺控指令
S7-200
S7-200 15
4.2任务分析
小车一个工作周期的动作要求如下: (I)按下启动按钮SB(I0.0),小车电机正转(Q1.0),小 车第一次前进,碰到限位开关SQ1(I0.1)后小车电机 反转(Q1.1),小车后退。 (2)小车后退碰到限位开关SQ2(I0.2)后,小车电机M 停转。停5s后,第二次前进,碰到限位开关 SQ3(I0.3),再次后退。 (3)第二次后退碰到限位开关SQ2(I0.2)时,小车停止。
情境4:运料小车的PLC控制
4.1任务资讯 4.2任务分析 4.3任务决策 4.4任务计划 4.5任务实施 4.6评价提高
S7-200
S7-200 1
情境4:运料小车的PLC控制
4.1任务资讯 4.2任务分析 4.3任务决策 4.4任务计划 4.5任务实施 4.6评价提高
S7-200
S7-200 2
22
23
4.4.2PLC资源分配
表5-8 运料小车的控制编程元件分配表
类别
地址 作用
I0.0 启动
输入器件
I0.1 中间限位开关 I0.2 左限位开关
I0.3 右限位开关
输出器件
Q1.0 Q1.1
电机正转 电机反转
M10.0 准备状态
M10.1 第一次前进状态
M10.2 第一次后退状态
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2/23/2021
自动往返电动小车
1
任务
➢ 设计任务:设计制作一个自动往返于起跑线与终 点之间的电动小车
➢ 实际目的:1.测试学生在单片机应用方面 的水平;2测试学生在电子电路设计与制作方面的 应用能力;3测试学生的实际动手能力等。
2/23/2021
自动往返电动小车
2
设计的要求
基本要求:
方案二:不调制的反射式红外发射-接收器。由于采用红外管代替普通可见 光管,可以降低环境光源干扰;但如果直接用直流电压对管子进行供电,限于
2/23/2021
自动往返电动小车
5
管子的平均功率要求,工作电流只能在1OM左右,仍然容易受到干扰。 方案三:脉冲调制的反射式红外发射-接收器。考虑到环境光干扰主要是直
方案三:采用由达林顿管组成的H型PWM电路。用单片机控制达林顿管使 之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作 在管子的饱和截止模式下,效 率非常高;H型电路保证了可以简单地实现转速 和方向的控制;电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM 调速技术。
基于上述理论分析,拟选择方案三。 2. 路面黑线探测模块
全隔离,利用光电藕合器传输信号。这样做虽然不如单电源方便灵活,但可 以将电动机驱动所造成的干扰彻底消除,提高了系统稳定性。
我们认为本设计的稳定可靠性更为重要,故拟采用方案二。
5. 小结
经过一番仔细的论证与比较,我们决定了系统各个主要模块的最终方案 如下:
电动机驱动与调速模块:采用达林顿管的H型PWM电动机驱动电路。 车轮检速模块: 采用光电断续开关构成的光电感应系统。 路面黑线检测模块:采用调制的反射式发射-接收器。
2/23/2021
自动往返电动小车
8
二、系统的具体设计与实现
1.系统的硬件设计
(1) 电动机PWM驱动模块的电路设计与实现 具体电路见图3。本电 路采用的是基于PWM原理的H型驱动电路。该电路采用11P132 大功率达林顿管,以保证电动机启动瞬间的8A电流要求。
2/23/2021
自动往返电动小车
图3
探测路面黑线的大致原理是:光线照射到路面并反射,由于黑线和白纸的 反射系数不同,可根据接收到的反射光强弱判断是否到达黑线。
方案一:可见光发光二极管与光敏二极管组成的发射-接收电路。这种方案 的缺点在于其他环境光源会对光敏二极管的工作产生很大干扰,一旦外界光 亮条件改变,很可能造成误判和漏判;虽然采取超高亮发光管可以降低一定的 干扰,但这又将增加额外的功率损耗。
目的。 但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主 要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而 且实现很困难。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车 的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时 间慢、机械结构易损坏、寿命较 短、可靠性不高。
电源:双电源供电(6节M电池+1节9V方型电池)
电动小汽车车体结构数据
名称
单位(cm)
车身长度
车身宽度
车头到路段检测传感器位置
24cm 14.cm 14.5cm
2/23/2021
自动往返电动小车
7
整形电路
路面检测
STC
整形电路 LED数码管
转速检测
PWM电动机驱动
前进/后退指示
图2 系统组成及原理框图如图2 所示。以下分为硬件和软件两个方面进行具体分析。
1.
2. 3. 4. 5.
车辆从起跑线出发(出发前,车体不得超出起跑线),到达终点先后停留 10s,然后自动返回起跑线(允许倒车返回)。往返一次的时间应力求最 短(从合上电源开关开始计时)。 到达终点线和返回起跑线时,停车位置离起跑线和终点线偏差应最小(以 车辆中心点与终点线或起跑线中心之间距离作为偏差的测量值)。 D-E之间为限速去,车辆往返均要求以低俗通过,通过时间不得少于8s, 但不允许在限速区内停车。 自动记录、显示一次往返时间(记录显示装置要求安装在车上)。 自动记录、先是行驶距离(记录显示装置要求安装在车上)。
2/23/2021
自动往返电动小车
3
一、电动小车系统设计方案
自动往返电动小车系统方框图如图1所示。采用单片机 作为自动往返电动小车的检测和控制核心。根据题目要求, 系统可以划分为几个基本模块,如图 1所示。
图1
对各模块的实现,分别有以下一些不同的设计方案:
2/23/2021
自动往返块 方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的
方案一:所有器件采用单一电源(6节M电池)。这样供电比较简单;但是由于 电动机启动瞬间电流很大,而且PWM驱动的电动机电流波动较大,会造成电 压
2/23/2021
自动往返电动小车
6
不稳、有毛刺等干扰,严重时可能造成单片机系统掉电,缺点十分明显。 方案二:双电源供电。将电动机驱动电源与单片机以及其周边电路电源完
流分量,如果采用带有交流分量的调制信号,则可大幅度减少外界干扰;另外, 红外发射管的最大工作电流取决于平均电流,如果使用占空比小的调制信号, 在平均电流不变的情况下,瞬时电流可以很大(50-100mA),这样也大大提高 了信噪比。
基于上述考虑,拟采用方案三。 3. 车轮检速及路程计算模块
方案一:采用霍尔集成片。该器件内部由三片霍尔金属板组成,当磁铁正 对金属板时,由于霍尔效应,金属板发生横向导通,因此可以在车轮上安装 磁片,而将霍尔集成片安装在固定轴上,通过对脉冲的计数进行车速测量。
9
当Ug1为高电平 ,Ug2为低电平时,Q3、Q6 管导通,Q4、Q5管截止,电动机正转。 当Ug1为低电平,Ug2为高电平时,Q3、Q6管截止,Q4、 Q5 管导通,电动机反转。 另外四个二极管可以在Ug1由高变低时,通过D2、D4 两个二管形成电动机电圈感应电 压的回路,起到了保护电动机的作用。
方案二:受鼠标的工作原理启发,采用断续式光电开关。由于该开关是沟 槽结构,可以将其置于固定轴上,再在车轮上均匀地固定多个遮光条,让其 恰好通过沟槽,产生一个个脉冲。通过脉冲的计数,对速度进行测量。
以上两种都是比较可行的转速测量方案。尤其是霍尔元件,在工业土得 到广泛采用。但是在本题中,小车的车轮较小,方案一的磁片密集安装十分 困难,容易产生相互干扰。相反,方案二适用于精度较高的场合,可以车轮 上加较多的遮光条来满足脉冲计数的精度要求,因此拟采用方案二。 4. 电源选择