合金元素对金属材料焊接性能的影响
焊缝金属的合金化及过渡系数

焊接材料(焊条、焊丝、焊剂)的成分对焊缝金属的化学成分、组织与性能有重要的影响。
为了使焊缝金属具有所要求的成分与性能,必须保证焊接材料中有益的合金元素含量和严格控制有害杂质的含量。
1 焊缝金属的合金化(1)焊缝金属的合金化就是把所需的合金元素通过焊接材料过渡到焊缝金属(或堆焊金属)中去。
焊接中合金化的目的是补偿焊接过程中由于蒸发、氧化等原因造成的合金元素的损失,消除焊接缺陷(裂纹、气孔等)和改善焊缝金属的组织和力学性能,或者是获得具有特殊性能的堆焊金属。
对金属焊接性影响较大的合金元素主要有C、Mn、Si、Cr、Ni、Mo、Ti、V、Nb、Cu、B等;低合金钢焊接中提高热影响区淬硬倾向的元素有C、Mn、Cr、Mo、V、W、Si等;降低淬硬倾向的元素有Ti、Nb、Ta等。
还应特别注意一些微量元素的作用,如B、N、RE等。
焊接中常用的合金化方式有以下几种。
①应用合金焊丝或带极把所需要的合金元素加入焊丝、带极或板极内,配合碱性药皮或低氧、无氧焊剂进行焊接或堆焊,把合金元素过渡到焊缝或堆焊层中去。
这种合金化方式的优点是可靠,焊缝成分均匀、稳定,合金损失少;缺点是制造工艺复杂,成本高。
对于脆性材料,如硬质合金不能轧制、拔丝,故不能采用这种方式。
②应用合金药皮或非熔炼焊剂把所需要的合金元素以铁合金或纯金属的形式加入药皮或非熔炼焊剂中,配合普通焊丝使用。
这种合金化方式的优点是简单方便,制造容易,成本低;缺点是由于氧化损失较大,并有一部分合金元素残留在渣中,故合金利用率较低,合金成分不够稳定、均匀。
③应用药芯焊丝或药芯焊条药芯焊丝的截面形状是各式各样的,最简单的是具有圆形断面的,外皮可用低碳钢其他合金钢卷制而成,里面填满需要的铁合金及铁粉等物质。
用这种药芯焊丝可进行埋弧焊、气体保护焊和自保护焊,也可以在药芯焊丝表面涂上碱性药皮,制成药芯焊条。
这种合金过渡方式的优点是药芯中合金成分的配比可以任意调整,因此可行到任意成分的堆焊金属,合金的损失较少;缺点是不易制造,成本较高。
合金钢中各元素对其性能的影响

合金钢中各元素对其性能的影响1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入 1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
耐蚀合金钢中添加微量元素对其焊接性能的影响研究

耐蚀合金钢中添加微量元素对其焊接性能的影响研究耐蚀合金钢是一种具有优异耐腐蚀性能的金属材料,在各个领域被广泛应用。
然而,焊接是将多个部件连接在一起的常见工艺,在合金钢的焊接中可能会面临一些挑战和问题。
因此,研究在耐蚀合金钢中添加微量元素对其焊接性能的影响,对于进一步提高合金钢的焊接质量具有重要意义。
在耐蚀合金钢的焊接中,添加不同微量元素可能会对焊接性能产生不同的影响。
首先,添加微量元素可以调节焊接过程中的熔池流动性。
熔池流动性的改善可以降低焊接缺陷的产生率,提高焊接强度和质量。
例如,添加微量的铌元素能够有效改善焊接熔池的流动性,减少焊接缺陷的发生。
这是因为铌元素能够形成高熔点物质,增加熔池的黏性,使其更容易控制焊接过程,提高焊缝形成的完整性和一致性。
其次,添加微量元素还可以改变焊接材料的宏观力学性能。
耐蚀合金钢的力学性能对其在实际工程中的应用至关重要。
通过添加适量的微量元素,可以调节焊接材料的抗拉强度、硬度和韧性等力学性能。
例如,添加微量的钼元素可以显著提高焊接材料的抗拉强度和硬度,同时保持较好的韧性。
这是由于钼元素能够形成固溶体和强化相,提高焊接材料晶界的强度和边界对位错运动的阻碍作用。
另外,添加微量元素还可以调节焊接材料的耐腐蚀性能。
耐蚀合金钢的主要特点之一是其良好的耐腐蚀性能,因此,在焊接过程中需要保持焊接区域的耐腐蚀性能。
通过添加特定的微量元素,可以提高焊接材料的抗腐蚀性能,延长其在恶劣环境下的使用寿命。
例如,添加微量的铬元素能够形成介稳态晶界,提高焊接材料的晶界耐腐蚀性能,减少焊接接头处的腐蚀倾向。
在实际的焊接过程中,对于耐蚀合金钢中添加微量元素对其焊接性能的影响的研究需要综合考虑多个因素。
首先是添加元素的类型和含量,不同的元素可能产生不同的效果,因此需要选择合适的添加元素。
其次是焊接参数的调节,焊接过程中的温度、焊接速度等参数也会对焊接性能产生影响,需要进行合理调节。
此外,还需注意研究焊接材料的微观结构和相变规律等因素,以全面分析添加微量元素对焊接性能的影响。
各元素对焊接的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
合金元素对钢力学和工艺性能的影响

合⾦元素对钢⼒学和⼯艺性能的影响 加⼊合⾦元素的⽬的是使钢具有更优异的性能,所以合⾦元素对性能的影响是我们最关⼼的问题。
合⾦元素主要通过对组织的影响⽽对性能起作⽤,因此,必须根据合⾦元素对相平衡和相变影响的规律来掌握其对⼒学性能的影响。
合⾦元素对强度的影响。
强度是⾦属材料最重要的性能指标之⼀,使⾦属材料的强度提⾼的过程称为强化。
强化是研制结构件材料的主要⽬的。
⾦属的强度⼀般是指⾦属对塑性变形的抗⼒。
⾦属强化⼀般有以下⼏种⽅式: a.固溶强化。
由于溶质原⼦与基体原⼦的⼤⼩不同,因⽽使基体品格发⽣畸变,造成⼀个弹性应⼒场。
此应⼒场增加了位错运动的阻⼒,产⽣强化。
固溶强化的强化量与溶质浓度有关,在达到极限溶解度之前,溶质浓度越⼤,强化效果越好。
⼀般⽽⾔,间隙固溶强化效果⽐置换固溶强化效果要强烈得多,其强化作⽤甚⾄可差1~2个数量级。
但是,固溶强化是以牺牲塑性和韧性为代价的,固溶强化效果越好,塑性和韧性下降越多。
b.细晶强化。
晶界或其他界⾯可以有效地阻⽌位错通过,因⽽可以使⾦属强化。
晶界强化的强化量与晶界数量,即晶粒⼤⼩有密切的关系。
晶粒越细,单位体积内的晶界⾯积越⼤,则强化量越⼤。
许多碳化物形成元素(如钒、钛、铌)由于其容易与碳形成熔点⾮常⾼的碳化物,可以阻碍晶粒长⼤,所以具有细化晶粒的作⽤。
晶粒细化是⼀种⾮常有效的强化⼿段,当晶粒细化达到5级以后,得到所谓的超细晶粒,这时纯铁或软钢的屈服强度可以达到400~600MPa,接近于中强度钢的屈服强度。
晶粒细化不仅可以提⾼强度,还可以改善钢的韧性,这是其他强化⽅式难以达到的。
因此细晶化,特别是超细晶化,是⽬前正在⼤⼒发展的重要强化⼿段。
c.弥散强化。
合⾦元素加⼊到⾦属中,在⼀定条件下会析出第⼆相粒⼦,⽽这些第⼆相粒⼦可以有效地阻⽌位错运动。
当运动位错碰到位于滑移⾯上的第⼆相粒⼦时,必须通过它,滑移变形才能继续进⾏。
这⼀过程需要消耗额外能量,或者需要提⾼外加应⼒,这就造成了强化。
合金元素在钢中的主要作用

合金元素在钢中的主要作用合金元素是指将两种或多种金属或非金属加入到基本金属中,以改变其物理、化学和机械性能的材料。
钢是一种合金,其中含有一定比例的碳和其他合金元素。
合金元素在钢中起到了重要的作用,使钢具有不同的特性和适用性。
首先,合金元素可以改变钢的力学性能。
例如,添加镍和铬可以增强钢的抗拉强度和硬度,使其具有更好的耐磨性和耐腐蚀性。
钴和钨的添加可以增强钢的抗磨性和高温强度,使其适用于高温工作环境。
钛和铌的加入可以改善钢的焊接性能,使其具有更好的可塑性和可加工性。
其次,合金元素可以改变钢的化学性质。
例如,锰的添加可以提高钢的硬化性能,促进碳的溶解和扩散。
磷和硫的加入可以改善钢的冷加工性能,使其具有更好的可塑性和可加工性。
硅的加入可以提高钢的热导率和抗腐蚀性能。
通过调整合金元素的含量和比例,可以满足不同要求的钢的化学性质。
此外,合金元素还可以改变钢的热性能。
例如,添加铝和钛可以提高钢的氧化稳定性,使其在高温环境下具有更好的耐热性。
镍和铜的加入可以改善钢的导热性能,在高温下具有更好的热传导性能。
铍和银的添加可以提高钢的导电性能,使其适用于电气工程。
同时,合金元素还可以改变钢的结构和相变性。
例如,钼和钒的加入可以改善钢的定向结构,提高其强度和塑性。
锑和铅的添加可以促进钢的相变行为,改善其物理性能。
通过对合金元素的选择和控制,可以调节钢的晶粒尺寸、晶界强度和晶界活性,从而改善钢的内部结构和力学性能。
综上所述,合金元素在钢中起着重要的作用,通过调节它们的含量和比例,可以改变钢的力学性能、化学性质、热性能和结构性能,使钢具有更好的性能和适用性。
合理的合金设计和控制是制造高品质钢材的关键。
各种合金元素对钢性能的影响

三、各种合金元素对钢性能的影响目前在合金钢中常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。
五大元素:硅、锰、碳、磷、硫。
五大杂质元素:氧、氮、磷、硫、氢。
1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
硅可提高强度、高温疲劳强度、耐热性及耐H2S等介质的腐蚀性。
硅含量增高会降低钢的塑性和冲击韧性。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
锰可提高钢的强度,增加锰含量对提高低温冲击韧性有好处。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
合金元素对金属性能的影响

合金元素对金属性能的影响合金是由两种或以上的金属元素和非金属元素组成的混合物。
合金的形成使得材料的性质和性能发生变化,并且通常具有比纯金属更优越的特性。
金属性能是指金属材料所具有的良好的导电性、导热性和可塑性等特性。
合金元素对金属性能的影响主要体现在以下几个方面:1.电导性能:合金元素的加入会影响合金的电导性能。
合金中添加一些具有较高电导性的金属元素(如银、铜等),可以提高合金的导电性能。
这是因为这些金属元素可以形成导电路径,促进电子的流动。
例如,黄铜是由铜和锌组成的合金,其电导性能比纯铜稍差。
然而,黄铜仍然具有良好的导电性能。
2.导热性能:合金元素的添加对合金的导热性能也有一定影响。
一些具有较高导热性的金属元素(如铝、银等)的添加可以提高合金的导热性能。
这是因为这些元素可以增加合金的热导率。
例如,铝合金由铝和其他金属元素(如铜、镁等)组成,可以具有较好的导热性能,广泛用于制造散热器等热传导设备。
3.可塑性:合金元素的存在对金属材料的可塑性也会产生一定的影响。
一些合金元素的加入可以提高金属材料的可塑性,使其更容易加工成各种形状。
例如,钢是由铁和一定量的碳组成的合金,碳的添加可以使钢具有更好的可塑性,可以通过锻造、拉伸等工艺加工成各种形式。
4.强度和硬度:合金元素的添加还会对合金的强度和硬度产生影响。
有些合金元素的加入可以增强合金的结晶能力,形成强耐蚀的晶界,从而提高合金的强度和硬度。
例如,不锈钢是一种由铁、铬、镍等元素组成的合金,具有较高的强度和硬度,同时具有良好的耐腐蚀性能。
5.耐蚀性:一些合金元素的加入可以提高合金的耐腐蚀性能。
例如,将铜合金中添加一定量的锡可以形成青铜,具有较好的耐腐蚀性能,广泛用于制造船舶、化工设备等。
总之,合金元素的加入可以对金属材料的金属性能产生重要的影响。
通过选择合适的合金元素和合金配比,可以制备出具有良好导电性、导热性、可塑性、耐蚀性等优秀特性的金属合金。
这些具有改善金属性能的合金在工业生产和科学研究中得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合金元素对金属材料焊接性能的影响
材料中一般不含铌。
铌对低合金钢焊缝,金属低温韧性有一
定影响,在C- M n系焊缝中,能促进焊缝金属侧板条铁素体组织的产生,使焊缝金属韧性恶化,而在C- M n- T i- B 系焊缝金属中,铌促进焊缝金属细小均匀针状铁素体组织的产生,从而提高焊缝金属的低温韧性。
除此以外,还有许多微合金元素亦对焊缝性能有着不同的影响,例如,硼(B)可以细化晶粒,并可提高焊缝的抗腐蚀开裂的能力:钒(V )可以细化焊缝金属的铸态组织,防止热影响区晶粒过分长大。
近年来,在焊接材料中广泛应用的稀土元素可以细化晶粒,并可提高焊缝组织的耐腐蚀能力。
2合金元素对不锈钢焊
接性能的影响 2.1对25-20 型奥氏体不锈钢焊接性的影响(1)Ni的影响:Ni是奥氏体化元素,是强烈形成热裂纹的元素;另外他与S、P、Ti、Nb等易形成低熔
点共晶体,在644 C时,可促进热裂纹的产生。
(2)Mn
的影响:Mn有脱S的作用,可与S形成MnS,从而减弱产生热裂纹的倾向;同时,在高Ni纯奥氏体钢中,Ni 促使产生低熔点共晶NiS 2 ,形成焊接裂纹,若用部分Mn代替Ni,可大大提高抗热裂纹性能。
(3)C的影响:
当(C)在0.18%〜0.2% 时,热裂倾向增大,因消除了西
格玛相之故,对于25- 20 钢,当焊缝金属中含Si量不变时,若含C量增加,热裂倾向减弱并促使焊缝金属强
度、塑性提高;但含(C)提高到0.2%〜0.3% 时,焊缝中会出现一次碳化物而使Cr25Ni20Si2 钢强度极限提高
到72 kg/mm 2 ,延伸率降低到20%〜25% ,冲击值K
00Cr12NiTi 铁素体不锈钢焊接接头HAZ组织及力学性。