勒让德多项式及球函数

合集下载

球的表面积公式6种推导

球的表面积公式6种推导

球的表面积公式6种推导球是一种常见的几何体,在生活中我们经常会接触到它,比如足球、篮球、乒乓球等等。

球的表面积是一个比较基础的数学问题,不同的推导方法可以帮助我们更好地理解球体的结构和特性。

本文将介绍6种球的表面积公式的推导方法。

一、解析几何推导法球的方程为:x + y + z = r其中,r为球的半径。

我们可以通过对球的方程进行求导,得到球的面积公式:S = 4πr二、微积分推导法我们可以将球体分成无数个微小的面元,每个面元的面积为dS。

将所有面元的面积加起来,就可以得到球的表面积S。

假设球的方程为:x + y + z = r则球的面积可以表示为:S = dS = cosθdxdy其中,θ为面元法向量与z轴的夹角。

将球的方程代入上式,可以得到:S = 2πr∫[0,π]cosθsinθdθ = 4πr三、向量叉积推导法我们可以用向量叉积来推导球的表面积公式。

假设球心在原点,球的方程为:x + y + z = r可以将球面表示为:r(θ,φ) = rcosθsinφi + rsinθsinφj + rcosφk 其中,r为球的半径,θ为经度,φ为纬度。

i、j、k为标准基向量。

对于球面上的两个向量a和b,它们的叉积为:a ×b = rsinφ(cosθ1 - cosθ2)i + rsinφ(sinθ2 - sin θ1)j + r(sinφ/2)(θ2 - θ1)k其中,θ1、θ2为两个经度,φ为纬度。

我们可以将球面分成无数个小面元,每个小面元的面积为dS。

对于每个小面元,可以找到两个向量a和b,它们的叉积即为该小面元的面积。

将所有小面元的面积加起来,即可得到球的表面积公式: S = dS = rsinφdφdθ = 4πr四、球坐标系推导法球坐标系是一种常见的坐标系,它可以用来描述球体的结构和特性。

在球坐标系下,球的方程为:r = r其中,r为球的半径,θ为极角,φ为方位角。

球的面积可以表示为:S = dS = rsinφdφdθ = 4πr五、三重积分推导法我们可以用三重积分来推导球的表面积公式。

关联勒让德函数

关联勒让德函数

勒让德函数(Legendre functions)是一类特殊的数学函数,它们是勒让德微分方程的解。

勒让德函数在物理学和工程学等领域中具有广泛的应用,特别是在描述球形对称问题和电势分布中常被使用。

勒让德函数包括勒让德多项式和勒让德球谐函数两种形式。

1. 勒让德多项式(Legendre polynomials)通常表示为Pn(x),其中n是多项式的次数。

勒让德多项式具有以下特点:
-是关于自变量x的多项式;
-是正交函数,即在一定区间上的内积为零;
-满足勒让德微分方程。

2. 勒让德球谐函数(Legendre spherical harmonics)通常表示为Ylm(θ, φ),其中l和m 是整数,θ和φ是球坐标系中的角度。

勒让德球谐函数具有以下特点:-描述球形对称问题中的解;
-与勒让德多项式有关,也涉及球坐标系的角度。

勒让德函数可以通过递推关系、积分定义和级数展开等方式求解。

它们在物理学中的应用包括描述量子力学中的杂化原子轨道、球形边界值问题中的电势、地球的引力场等。

此外,勒让德函数还与球面谐振子、球谐函数叠加和球形天体力学等领域密切相关。

14第十四章 勒让德多项式

14第十四章 勒让德多项式

( tan
m2 sin2
)
0,(0),
(
)
有限

本征值 l(l 1), l m, m 1, m 2,...

本征函数 Plm (cos ) (缔合勒让德函数)
结 论
m=0 时,本征函数为勒让德多项式 Pl (cos )
• 2u 0 球壳区域的通解:
u(r)
(cl rl dl rl1) Plm (cos )[am cos(m ) bm sin( m )]
[l(l
1)
m (m
1)] Pl(m)
0
证:对微分方程 [(1 x2 ) Pl] l(l 1) Pl 0
应用高阶导数公式求导 m 次
n
[ f ( x)g( x)](n) Cnk f (k) ( x) g(nk) ( x) k0 取 f 1 x2 , g Pl, n m 1
P0 ( x) 1
P1( x) x cos
P2( x) (3x2 1) / 2 P3( x) (5x3 3x) / 2
| Pl ( x) | 1, 1 x 1 Pl (1) 1, Pl (1) (1)l
Pl
(x)
1 2l l!
dl dx l
(x2
1)l
17
§14.2 勒让德多项式的性质
右边从 1 到 x 逐项积分 l 次,得到
l
m0
1 (l m)! ( x 1)ml 2m m! (l m)! (m l)!
( x 1)l 2l l!
l
Clm ( x 1)m 2l m
m0
(x
1)l ( x 2l l!
1
2)l
1 2l l!
(

第十三章勒让德多项式 球函数

第十三章勒让德多项式 球函数

第十三章 勒让德多项式 球函数(13)一、内容摘要1.幂级数解法:就是在某个任意点0z 的邻域上,把待求的解表为系数待定的幂级数,代入方程以逐个确定系数。

不失一般性,我们讨论复变函数()w z 的线性二阶常微分方程的级数解:()()()()2200010, 'd w dw p z q z w dzdzw z C w z C ++===.如果函数()p z 和()q z 在点0z 的领域中解析,则称0z 为方程的常点,如果0z 是函数()p z 或()q z 的奇点,则称0z 为方程的奇点。

定理:如果函数()p z 和()q z 在点0z 的邻域0z z R -<中解析, 则常微分方程在圆0z z R -=内存在唯一的满足相应定解条件的解析解。

既然在常点的邻域内存在唯一的解析解,就可以把它在该邻域内表示为Taylor 级数形式:()()00kk k w z a z z ∞==-∑。

2.勒让德方程的级数解:(1)0m =时的连带Legendre 方程称为Legendre 方程()()2221210d ydy x xl l y dxdx--++=由幂级数解法可得()0kkk y x ax∞==∑的系数的递推公式:()()()()()()()()21112121k k k k k l l k l k l a a a k k k k ++-+-++==++++这样l 阶Legendre 方程的级数解是:()()()()()()()()00112031;11,2!12.3!y x a y x a y x l l y x x l l y x x x =+-+=++-+=++可以判断l 阶 Legendre 方程的级数解在单位圆内收敛,在单位圆外发散且在1x =±处发散。

由递推公式易知,当0,1,2l = 时,()0y x 和()1y x 必定有一个成为l 次多项式。

这样我们就可以得到满足自然边界条件的幂级数解。

最新勒让德(legendre)多项式及其性质

最新勒让德(legendre)多项式及其性质

最新勒让德(legendre)多项式及其性质勒让德(legendre )多项式及其性质⼀.勒让德多项式勒让德多项式是由勒让德⽅程的通解推导出来的,所以我们⾸先引⼊勒让德⽅程,以及勒让德⽅程的幂级数解,勒让德⽅程的表达式如下:2'''(1)2(1)0x y xy n n y --++= 其中n 为⾮负实数(1.1)它的幂级数解如下:12y y y =+ (1.2)其中:2241200(1)(2)(1)(3)[1]2!4!kk k n n n n n n y a x a x x ∞=+-++==-+∑ (1.3)213522110(1)(2)(1)(3)(2)(4)[]3!5!k k k n n n n n n y a xa x x x ∞++=-+--++==-++∑ (1.4)由达朗贝尔判别法可知,当0n ≥不为整数时,这两个级数的收敛半径为1,在(1.3)式和(1.4)式中,0a 与1a 可以任意取值,它们起着任意常数的作⽤,显然,在区间(-1,1)内1y 和2y 都是⽅程(1.1)的解,所以(1.2)是(1.1)的通解。

上⾯(1.3)和(1.4)幂级数当||1x <时级数收敛,此外级数是发散的。

并且,我们发现,当n 取⾮负整数时,1y 和2y 中有⼀个便退化为n 次多项式,它就是⽅程(1.1)在闭区间[-1,1]上的有界解。

此时,适当的选定这个多项式的最⾼次幂系数n a ,所得的多项式称为n 阶勒让德多项式或第⼀类勒让德函数,记作()n P x ,下⾯我们来推导勒让德多项式()nP x 的表达式。

①当n 为正偶数时1y 退化为n 次多项式。

为求得()n P x 的表达式,在1y 中我们通过n a 来表⽰其它各项的系数。

为此,将系数递推关系式改写成下列形式:2(2)(1)()(1)k k k k a a k n k n +++=-++ (1.5)在(1.5)式中取2kn =-,得:n n n n a a n --=-- (1.6)习惯上取n a 为 2(2)2(!)n nn a n = (1.7)于是有:2(1)2(21)(22)!2(21)2(1)!(1)(2!)n n n n n n n a n n n n n n ----=-----(22)!2(1)!(2)!nn n n -=--- (1.8)在(1.5)式中取4kn =-,并利⽤2n a -之值得:42(2)(3)4(23)n n n n a a n ----=--2(2)(3)(22)!(1)4(23)2(1)!(2)!n n n n n n n ---=----2(24)!(1)2(2!)(2)!(4)!nn n n -=--- (1.9)⼀般地,我们有()()222!12!()!(2)!mn m n n m a m n m n m --=--- (0,1,,2nm =)(1.10)我们将这些系数带⼊(1.3)中,并把此时的1y 记作()n P x ,可得:(22)!()(1)2!()!(2)!n mn mn n m n m p x x m n m n m -=-=---∑ (1.11)这就是当n 为正偶数时勒让德多项式。

10-1勒让德多项式

10-1勒让德多项式

§10.1 勒让德多项式一、 引入拉普拉斯方程20u ∇=,在球坐标下为2222222111sin 0sin sin u u ur r r r r r r θθθθφ∂∂∂∂∂⎛⎫⎛⎫++= ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭ 它有分离变量形式的解()(),u R r Y θφ=,其中R (r )满足径向方程()210d dR r l l R dr dr ⎛⎫-+= ⎪⎝⎭其通解解为()1ll B R r Ar r +=+.(),Y θφ为球函数,它满足球函数方程()22211sin 10sin sin Y Yl l Y θθθθθφ∂∂∂⎛⎫+++= ⎪∂∂∂⎝⎭ (),Y θφ可以进一步分离变量为()()(),Y θφθφ=ΘΦ,()φΦ满足方程2"0m Φ+Φ=其解为()()cos sin 0,1,2,C m D m m ϕϕϕΦ=⋅+⋅=()θΘ满足方程:()22sin sin 1sin 0d d l l m d d θθθθθΘ⎛⎫⎡⎤++-Θ= ⎪⎣⎦⎝⎭ 该方程可以化为连带勒让德方程()()222212101d d m x x l l dx dx x ⎡⎤ΘΘ--++-Θ=⎢⎥-⎣⎦其中cos x θ=,当m=0,方程退化为勒让德方程:()()221210(1)d d x x l l dx dxΘΘ--++Θ= 这正是本节要研究的问题:m=0,意味着Φ=常数,与φ(方位角)无关,这在物理上代表轴对称问题。

其中(1)受边界条件“在x =1处有限”的限制,构成本征值问题,本征值:()1l l +本征函数:()0y x ,当l 为偶数,()0y x 截止到2lnx x =项()1y x ,当l 为奇数,()1y x 截止到21ln x x+=项其中()2020kk k y x ax +∞==∑,()21121k k k y x a x +∞++==∑系数递推公式为:()()()()22121k kk l k l a a k k +-++=++ 二、勒让德多项式约定最高项 ()()22!2!l kl l a a l =利用上述系数递推公式,反推全部系数,可得()()()()222!1!2!2!kl k l l k a k l k l k --=---如此,可将勒让德方程的解可以表示为:()()()()()22022!1!2!2!l kl k l lk l k P x k l k l k ⎡⎤⎣⎦-=-=---∑ 2l ⎡⎤⎢⎥⎣⎦表示不超过的最大整数(),2212ll l l l ⎧⎪⎡⎤⎨=⎢⎥⎣⎦-⎪⎩为偶数,为奇数勒让德多项式举例:()()()()()()()()()()()0122234241cos 11313cos 212411535cos33cos 28113530335cos 430cos 29864P x P x x P x x P x x x P x x x θθθθθθ====-=+=-=+=-+=++ , 1. 基本性质(1)()21n P x +为奇,()2n P x 为偶(2)()()()()()21221!!00,012!!nn n n P P n +-==- ()()()()()()()2!!2222464221!!2123531n n n n n n n =--⋅⋅-=--⋅⋅(3) ()()()11,11ll l P P =-=- (4)()()1,11l P x x ≤-≤≤ 2. 微分表示()()2112!l l l l l d P x x l dx=- 这叫罗德里格斯公式(Rodriguez ) 证明:()()()()()22220111!1112!2!2!!!l ll l l kkkkl kll l llllk k d d d l x Cxx l dx l dx l dx k l k --==-=-=--∑∑ 其中使用了二项式定理,经l 次求导,凡是幂次小于lx 的项最后都为0,所以最后结果值保留不小于l 次幂的项,即22l k l -≥,即2l l ≤上式()()()()()2202222121112!2!!l k l kl l k l k l k l k xl k l k ⎡⎤⎣⎦-=----+=--∑()()()()22022!12!!2!l kl k l k l k x k l k l k ⎡⎤⎣⎦-=-=---∑此即()l P x3. 积分表示利用积分公式()()()1!2nn c f d n f z i z ζζπζ+=-⎰,令()()21l f x x =-,由导数表示的公式可得()()()2111122ll l lcz P x dz i z x π+-=-⎰这里c 为围绕x 点的任一闭合回路,此积分叫做施列夫利积分;将c 取为圆心在z=x ,半径,i i z x dz d ψψψ-==代入积分表示式中,可得()[]011cos sin cos lll P x x d i d ππψψθθψψππ⎡⎤=+=+⎣⎦⎰⎰当x =1,很容易求得()11l P =;当()()1,11ll x P =-⇒-=-此外,()[]22211cos sin cos cos sin cos lll P x i d i d ππθθψψθθψψππ⎡⎤≤+=+⎣⎦⎰⎰22211cos sin 1ld d ππθθψψππ⎡⎤≤+==⎣⎦⎰⎰即()1l P x ≤(前提是11x -≤≤,但cos x θ=,所以肯定11x -≤≤)4. 正交性()()()110,k l P x P x dx k l -=≠⎰或者:()()()0cos cos sin 0,k l P P d k l πθθθθ=≠⎰模:若k l =,有:()()()11211221k l l P x P x dx P x dx l --=⇒⎡⎤⎣⎦+⎰⎰ 这个积分结果为勒让德多项式的模方为:2l N ,即l N =5. 完备性()l P x 是定义在[]1,1x ∈-区间上的函数族,任意一个定义于区间[]1,1-上的连续或者分段连续的函数()f x ,(只有第一类间断点,且是有限个第一类间断点,有限个极值点) 都可以以()l P x 为“基矢”展开,即()()0l l l f x C P x ∞==∑()l P x 的这一性质叫做它的完备性,展开系数l C 可以用前述正交性求得:()()()()1102121cos sin 22l l l l l C f x P x dx f P d πθθθθ-++==⎰⎰ 简证:把()()0l ll f x C P x ∞==∑两边同乘以()kP x()()()()0k l l k l f x P x C P x P x ∞==∑再两边同时取积分()()()()()11121110221k l l k k k k l f x P x dx C P x P x dx C P x dx C k ∞---====⎡⎤⎣⎦+∑⎰⎰⎰⇒ ()()11221k k C f x P x dx k -=+⎰评述:勒让德多项式()l P x 的正交、完备性,使之可以作为“基矢”,任意定义在[]1,1-上的分段连续的()f x 都可以用展开,这样的性质类似于傅里叶级数展开,称之为广义傅里叶展开。

数学物理方法--球函数

数学物理方法--球函数

l
再求导L次可得
积分表示
1 1 P ( x) l 2i 2l

( z 1) dz l 1 ( z x)
2 l
5
常用的勒让德多项式
P0 ( x ) 1 P1 ( x ) x cos P2 ( x ) 1 (3 x 2 1) 1 (3 cos 2 1) 2 4
k 0
( 1) k (2l 2k )! xl 2 k 2l k !(l k )!(l 2k )!
微分表示
1 d 2 l P ( x) l ( x 1) l l 2 l! dx
展开
1 1 l l! 2 l ( x 1) l ( x 2 ) ( l k ) ( 1) k 2l l ! 2 l ! k 0 (l k )! k !
2
2 (l m)! (N ) 正交性公式 2l 1 (l m)!
m相同的连带勒让德函数是完备的 模
f ( x) f l P m ( x) l
l 0
完备性
1 fl ( Nlm ) 2

1
1
f ( x) P ( x)dx l
m
19
一. 球函数
10.3
球函数
2 u 1 u 1 2u (r ) 2 (sin ) 2 2 0 2 r r r sin r sin
完备性
f ( , ) [ Alm cos m Blm sin m ]Pl m (cos )
m 0 l m


例1. 用球函数把下列函数展开 1.sin cos , 2.sin sin 例2. 用球函数把 3sin 2 cos 2 1展开

球函数

球函数
10
2k + 1 Ak = 2a k

+1
−1
半径为r 的半球, 例3 半径为r0 的半球,球面上温度分布为保持为u0 cos θ , 底面绝热, 底面绝热,确定半球内空间的稳定温度分布 u 。
∆ u = 0, r < a , θ < π / 2 定 解 问 题 为 : u | r = r0 = u 0 cos θ u |θ = π = 0 2
24


右边按球函数展开: 右边按球函数展开:
1 u0 sin 2 θ cos ϕ sin ϕ = u0 (3sin 2 θ ) sin 2ϕ 6 1 = u0 P22 (cos θ ) sin 2ϕ 6
比较系数得: 比较系数得
1 r0 B = u0 6 其它系数为零
2 2 2
方程的解为: 方程的解为:

∞ l =0
( Al r l + B l r − l −1 ) Pl (cos θ )
球内解要求 u ( 0 , θ ) 有界,半通解化为 u=

∞ l =0
Al r l Pl (cos θ )
2
由边界条件得: = x
根据完备性:

∞ l=0
Al a l Pl ( x )
Ax 2 Pk ( x ) dx =
2

k=0
( − 1) k ( 2 l − 2 k ) ! x l−2k 2 l k !( l − k ) !( l − 2 k ) !
♦ 微分表示
d Pl ( x ) = l 2 l ! dx
1
l l
( x 2 − 1) l
展开
l 1 1 l! 2 l ( x − 1) = l ∑ ( x 2 ) ( l − k ) ( − 1) k 2l l! 2 l ! k =0 (l − k ) ! k !
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(19.1.4)
若所讨论的问题具有旋转轴对称性,即定解问题的解与
无关,则
m0
,即有 (19.1.5)
1 d d sin l (l 1) 0 sin d d
称为 l 阶勒让德(legendre)方程.
电子科技大学物理电子学院
同样若记
arc cos x
( x 2 1) l展开
l 1 2 l 1 l l! 1 2 l k k k 2l 2 k ( x 1 ) ( x ) ( 1 ) ( 1 ) x l l l 2 l! 2 l! k 0 (l k )!k! 2 k!(l k )! k 0
在分离变量法一章中,我们已经知道拉普拉斯方程
1 2 u 1 u 1 2u (r ) 2 (sin ) 2 2 0 2 2 r r r r sin r sin
电子科技大学物理电子学院
在球坐标系下分离变量后得到欧拉型常微分方程
2 d R dR 2 r 2r l (l 1) R 0 2 dr dr
1 1 P3 ( x) (5 x3 3x) (5cos 3 3cos ) 2 8
1 1 P4 ( x) (35 x 4 30 x 2 3) (35cos 4 20cos 2 9) 8 64 1 1 P5 ( x) (63x5 70 x3 15 x) (63cos 5 35cos 3 30cos ) 8 128
电子科技大学物理电子学院
第三篇
特殊函数
本篇主要内容: 勒让德多项式及球函数;贝塞 尔函数和柱函数. 本篇重点:勒让德多项式和贝塞尔函数. 本篇特点:加强了思维能力的训练, 以及计算机 仿真绘图在特殊函数中的应用.
电子科技大学物理电子学院
第十九章 勒让德多项式 球函数
19.1 勒让德方程及其解的表示 19.1.1 勒让德方程 勒让德多项式
计算 Pl (0) ,这应当等于多项式
Pl ( x) 的常数项.
如 l

2n 1 (即为奇数)时,则 P2 n 1 ( x)
只含奇 数次幂,不含常数项,所以
P2 n 1 (0) 0

(19.1.8)
则 P2 n ( x) 含有常数项,即 l 2n (即为偶数)时, (19.1.7)中
电子科技大学物理电子学院
2 勒让德多项式的微分表示
1 dl 2 l Pl ( x) l ( x 1) 2 l ! dxl
(19.1.10)
上式通常又称为勒让德多项式的罗德里格斯(Rodrigues) 表示式.
下面证明表达式(19.1.10)和(19.1.7)是相同的.
【证明】 用二项式定理把
1 1 6 4 2 P6 ( x) (231x 315 x 105 x 5) (231cos 6 126cos 4 105cos 2 50) 16 512
电子科技大学物理电子学院
勒让德多项式的图形可通过计算机仿真(如MATLAB仿真) 得到
图 19.1
电子科技大学物理电子学院
P2 n (0) (1)n
k l 2n
的那一项,所以
(2n)! n (2n 1)!! ( 1) (19.1.9) n n 2 n !2 n ! (2n)!! 式中记号 (2n)!! (2n)(2n 2)(2n 4)6 4 2 而 (2n 1)!! (2n 1)(2n 3)(2n 5)5 3 1 因此, (2n)! (2n)!! (2n
l
阶勒让德方程
,则上述方程也可写为下列形式的
d 2 dy [(1 x ) ] l (l 1) y 0 dx dx
(19.1.6)
电子科技大学物理电子学院
19.1.2 勒让德多项式的表示
1. 勒让德多项式的级数表示 我们知道:在自然边界条件下,勒让德方程的解 P ( x ) l 为
(2l 2k )! Pl ( x) (1) l xl 2 k 2 k !(l k )!(l 2k )! k 0
k
l [ ] 2
(19.1.7)
式中
l , l [ ] 2 2 l 1 , 2
l 2n (n 0,1,2, ) l 2n 1
上式具有多项式的形式,故称
Pl ( x)

l
阶勒让德多项式.勒让德多项式也称为第一类勒让德函数.
电子科技大学物理电子学院
式(19.1.7)即为勒让德多项式的级数表示. 注意到 x cos , 故可方便地得出前几个勒让德多项式:
P0 ( x) 1
P1 ( x) x cos
P2 ( x) 1 1 (3x 2 1) (3cos 2 1) 2 4
x cos 和 y( x) ( x)
把自变数从 换为
x ,则方程(19.1.3)可以化为下列
形式的 l 阶连带勒让德方程
电子科技大学物理电子学院
2 2 d y d y m 2 (1 x ) 2 2 x l (l 1) y0 2 dx dx 1 x
(19.1.1)
和球谐函数方程
1 Y 1 2Y l (l 1)Y 0 sin 2 2 sin sin
(19.1.2)式的解 Y ( , ) 与半径 ,或简称为球函数.
(19.1.2)
r
无关,故称为球谐函数
电子科技大学物理电子学院
球谐函数方程进一步分离变量,令
Y ( , ) ( )( )
得到关于 的常微分方程
1 d d m2 sin l (l 1) 2 0 sin d d sin
(19.1.3)
称为 令
l
阶连带勒让德方程 . l
相关文档
最新文档