高中数学竞赛历年真题三角函数部分及答案
专题15三角函数与解三角形2022年高中数学联赛之历年真题分类汇编(2015-2021)

备战2022年高中数学联赛之历年真题分类汇编(2015-2021)专题15三角函数与解三角形第二缉1.【2018年贵州预赛】若边长为6的正△ABC 的三个顶点到平面α的距离分别为1, 2,3,则△ABC 的重心G 到平面α的距离为_______. 【答案】{0,23,43,2} 【解析】(1)当△ABC 的三个顶点在平面α的同侧时,由公式d =ℎ1+ℎ2+ℎ33求得重心G 到平面α的距离为2.(2)当△ABC 的三个顶点中,其中一点与另两点分别在平面α的异侧时,求得重心G 到平面α的距离分别为0,23,43.故答案为:{0,23,43,2}2.【2018年贵州预赛】函数y =2(5−x)sin nx −1(0≤x ≤10)的所有零点之和等于________. 【答案】60 【解析】函数y =2(5−x)sin nx −1(0≤x ≤10)的零点即为方程2(5-x )sinπx 在区间[0,10]上的解⇔函数y =2sinπx 的图像与函数y =15−x 的图像在区间[0,10]上的交点的横坐标.因为函数y =2sinπx 的图像与函数y =15−x 的图像均关于点(5,0)对称,且在区间[0,10]上共有12个交点(6组对称点).每组对称点的横坐标之和为10,即这12个点横坐标之和为60.所以函数y =2(5-x )sinπ-1(0≤x ≤10)的所有零点之和等于60. 故答案为:603.【2018年浙江预赛】已知α,β∈(3π4,π),cos(α+β)=45,得sin(α+β)=−35,cos (α−π4)=−513,所以cos (β+π4)=_____【答案】−5665 【解析】cos (β+π4)=cos (α+β)sin (α−π4)=−5665.4.【2018年浙江预赛】在△ABC 中,AB +AC =7,且三角形的面积为4,则sin ∠A 的最小值为________. 【答案】3249【解析】由AB +AC =7⇒AB ×AC ≤494,又12AB ×ACsin∠A =4⇒sin∠A ≥3249,AB =AC =72时取等号.5.【2018年浙江预赛】设x ,y ∈R 满足x −6√y −4√x −y +12=0,则x 的取值范围为________. 【答案】14−2√13≤x ≤14+2√13 【解析】由x −6√y −4√x −y +12=0⇒(√x −y −2)2+(√y −3)2=1. 令√x −y −2=cosθ,√y −3=sinθ⇒x =(2+cosθ)2+(3+sinθ)2=14+√52sin(θ+φ)(sinφ=√13), 所以14−2√13≤x ≤14+2√13.6.【2018年重庆预赛】在△ABC 中,sin 2A +sin 2C =2018sin 2B ,则(tanA+tanC)tan 2BtanA+tanB+tanC =________. 【答案】22017【解析】因为sin 2A +sin 2C =2018sin 2B 所以a 2+c 2=2018⋅b 2注意到:tanA +tanB +tanC =tanA ⋅tanB ⋅tanC 故(tanA+tanC)tan 2B tanA+tanB+tanC=(tanA +tanC)tan 2B tanA ⋅tanB ⋅tanC =(1tanA +1tanC)tanB=sin 2BsinA⋅sinC ⋅1cosB =b 2ac (2aca 2+c 2−b 2)=2b 22018b 2−b 2=22017. 故答案为:220177.【2018年陕西预赛】设ΔABC 的内角A,B,C 所对的边分别为a,b,c ,且A −C =π2.a,b,c 成等差数列,则cosB =________. 【答案】34 【解析】分析:根据三角形内角和定理及其关系,用∠C 表示∠A 与∠B ;根据a ,b ,c 成等差,得到2b =a +c ,利用正弦定理实现边角转化。
高一三角函数竞赛题(含答案)

竞赛试题选讲:三角函数一1.已知锐角α终边上一点A 的坐标为(2sin3,-2cos3),则角α的弧度数为的弧度数为( )A .3 B .π-3 C .3-2p D . 2p-3 2.若f (sin x )=cos2x ,则(cos )f x 等于(等于( ). A .-cos2xB .cos2xC .-sin2xD .sin2x答.A ∵f (sin x )=cos2x ,∴(cos )=(sin())=cos2()=cos(2)=cos 222f x f x x x x p pp ----3.已知:集合þýüîíìÎ-==Z k k x x P ,3)3(sin |p ,集合,集合þýüîíìÎ--==Z k ky y Q ,3)21(sin |p ,则P 与Q 的关系是 ( ).A .P ÌQ B .P ÉQ C .P=Q D .P ∩Q=φ 答.C∵(21)(3)(3)sinsin[8]sin333k k k pp p p ----=-+=,∴P=Q,∴P=Q4.化简sin(2)cos(2)tan(24)p p -+---所得的结果是(所得的结果是( ))A.2sin 2 B.0B.0 C.2sin 2- D.-1D.-1答.C答.C sin(2)cos(2)tan(24)=sin 2(cos 2)tan 22sin 2p p -+---+-=- 5.设99.9,412.721-==a a ,则21,a a 分别是第分别是第 象限的角象限的角若集合一、二若集合一、二 07.4122,2pp <-<得1a 是第一象限角;是第一象限角;9.994,2pp p <-+<得2a 是第二象限角是第二象限角6.|,3A x k x k k Z pp p p ìü=+££+Îíýîþ,{}|22B x x =-££,则B A =___[2,0][,2]3p-7.某时钟的秒针端点A 到中心点O 的距离为5cm ,秒针均匀地绕点O 旋转,当时间0t =时,点A 与钟面上标12的点B 重合,将,A B 两点的距离()d cm 表示成()t s 的函数,则d =π10sin60t,其中[0,60]t Î。
高中数学联赛之历年真题分类汇编(2015-2021):专题14三角函数与解三角形第一缉(解析版)

专题 14 三角函数与解三角形第一缉
1.【2021 年江西预赛】△ 퐴�
72° ,则∠� =
.
中,AB= �, � = �, 퐴 = � ,且�4 + �4 + �4 = 2�2 �2 + �2 ,若∠퐴 =
【答案】63
【解析】cos2
3
−
52 4
.
7.【2021 年浙江预赛】已知△ 퐴� 三个顶点的坐标为퐴(0,0), �(7,0), (3,4) ,过点(6 − 2 2, 3 − 2) 的
直线分别与线段 AC,BC 交于 P,Q。若�훥��
=
14 3
,则|
�| + |
�| =
.
【答案】4
+
42 3
【解析】如下图所示,
设
(6 − 2 2, 3 −
,
sin(�
+
�)
=−
3 5
, sin
�−�
4
=
12 13
.则 cos
�
+
� 4
的值为
.
【答案】−
56 65
【解析】因为�, � ∈
3� 4
,
�
.所以� + � ∈
3� 2
,
2�
,
�
−
� 4
∈
� 2
,
3� 4
.
因为
sin(�
+
�)
=−
3 5
,
sin
�−�
4
=
12 13
,
所以
高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)一、填空题1.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.2.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______.3.已知()()()cos sin 3cos 0f x x x x ωωωω=+>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.4.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.5.已知向量a ,b ,c 满足0a b c ++=,()()0a b a c -⋅-=,||9b c -=,则||||||a b c ++的最大值是___________.6.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)7.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.8.关于函数()()33cos sin f x x x x =+①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.二、单选题11.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-412.在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( )A B C D 13.已知1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,若在椭圆E 上存在点M ,使得12MF F △的面积等于2122sin b F MF ∠,则椭圆E 的离心率e 的取值范围为( )A .⎫⎪⎪⎣⎭B .⎛ ⎝⎦C .12⎛ ⎝⎦D .⎫⎪⎪⎣⎭14.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦15.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4516.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( )A .1B C .32D .217.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6B .7C .8D .919.设函数()3sinxf x mπ=,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞20.若函数()()11,0sin ,0133,1x x x f x x x x ππ⎧-++≤⎪=-<<⎨⎪-≥⎩,满足()()()()()f a f b f c f d f e ====且a 、b 、c 、d 、e 互不相等,则a b c d e ++++的取值范围是( )A .340,log 9⎛⎫ ⎪⎝⎭B .390,log 4⎛⎫ ⎪⎝⎭C .340,log 3⎛⎫ ⎪⎝⎭D .330,log 4⎛⎫ ⎪⎝⎭三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 23.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低?24.已知函数2()232sin cos ()f x x x x a a R =-++∈,且(0)3f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.25.已知函数2()6f x x ax =--(a 为常数,a R ∈).给你四个函数:①1()21g x x =+;②2()3xg x =;③32()log g x x =;④4()cos g x x =. (1)当5a =时,求不等式2(())0f g x ≥的解集; (2)求函数4(())y f g x =的最小值;(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为()g x ,()g x 满足条件:存在实数a ,使得关于x 的不等式(())0f g x ≤的解集为[,]s t ,其中常数s ,t R ∈,且0s >.对选择的()g x 和任意[2,4]x ∈,不等式(())0f g x ≤恒成立,求实数a 的取值范围.26.已知函数()223sin 2cos 2f x x x x =++. (1)求函数()f x 的最小正周期和单调递减区间; (2)求函数()f x 在02π⎡⎤⎢⎥⎣⎦,上的最大值和最小值.27.已知函数()f x a b =⋅,其中()3sin ,1a x =-,()1,cos b x =,x ∈R .(1)求函数()y f x =的单调递增区间; (2)求()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值.28.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.29.已知函数()()()2331?0f x cos x sin x cos x ωωωω=+-->,()12 1()3f x f x ==-,,且12min 2x x π-=.(1)求()f x 的单调递减区间; (2)若()237,,,sin 33235,25f ππβπαβαβ⎛⎫⎛⎫∈-=+=- ⎪ ⎪⎝⎭⎝⎭,求2f α⎛⎫⎪⎝⎭的值. 30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题 1.321163.140324.115.3310+31036.8,83⎛⎫ ⎪⎝⎭7.1π-##1π-+ 8.②③9735+ 1015二、单选题 11.A 12.A 13.A 14.A 15.C16.B 17.C 18.A 19.C 20.C 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】 【分析】 (1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫=⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭,即sin sin 2sincos22αβαβαβ+-+=(3) 因为222233()sin 2sin 22sin cos 3sin 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x x BCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55664y y +-≥=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力.23.(1)()16(13sin 6sin cos )S a θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos 4θ=时,()16()S af θθ=取得最小值 【解析】(1)根据题意可知4sin BF θ=,4cos AF θ=,进而求得Rt ABFS 与EFGH S 正方形再求得总造价S 即可.(2)由(1)有()16(13sin 6sin cos )S a θθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF 中,FAB θ∠=,4AB =,所以4sin BF θ=,4cos AF θ=. 由于Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE 是四个完全相同的直角三角形,所以4sin AE BF CG DH θ====,4(cos sin )EF FG GH HE θθ====-,所以Rt114cos 4sin 8sin cos 22ABFS AF BF θθθθ=⋅⋅=⨯⨯=, 2224(cos sin )16(12sin cos )EFGH S EF θθθθ==-=-正方形.所以()48sin cos 1016(12sin cos )1344sin S a a a θθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos (12sin cos )13sin ]a θθθθθ=+-⨯+ 16(13sin 6sin cos )a θθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)记()13sin 6sin cos f θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos 6(cos sin )12cos cos 612(cos )(cos )43f θθθθθθθθ'=--=-++=--+. 令()0f θ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos 4θ=或2cos 3θ=-(舍).记03cos 4θ=,所以当0(0,)θθ∈时,()0f θ'<,()f θ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题. 24.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.25.(1)[31log 2,)++∞;(2)2min–5,26,2245,2a a ay a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩;(3)1a ≥-. 【解析】(1)令()2u g x =,则()0f u ≥的解为1u ≤-或6u ≥,由后者可得2(())0f g x ≥的解. (2)令()4t g x =,则[1,1]t ∈-,分类讨论后可求26y t at =--,[1,1]t ∈-的最小值,该最小值即为原来函数的最小值.(3)取()32()log g x g x x ==,可以证明()g x 满足条件,再利用换元法考虑任意[2,4]x ∈,不等式(())0f g x ≤恒成立可得实数a 的取值范围.【详解】(1)当5a =时,()256f x x x =--.令()2u g x =,因为2560u u --≥的解为1u ≤-或6u ≥,所以31x ≤-(舍)或36x ≥,故31log 2x ≥+,所以2(())0f g x ≥的解集为[31log 2,)++∞.(2)令()4cos ,t g x x x R ==∈,则[1,1]t ∈-,函数4(())y f g x =的最小值即为()26h t t at =--,[1,1]t ∈-的最小值. 当()1,12a ∈-即22a -<<时, ()2min 64a h t =--. 当12a ≤-即2a ≤-时,()min 5h t a =-; 当12a >即2a >时, ()min –5h t a =-. 故2min –5,26,2245,2a a a y a a a -≥⎧⎪⎪=---<<⎨⎪-≤-⎪⎩. (3)取()32()log g x g x x ==,令2log u x =,设260u au --≤的解集为闭区间[]12,u u ,由12u u u ≤≤得1222u u x ≤≤,故(())0f g x ≤的解集为122,2u u ⎡⎤⎣⎦,取12u s =,则0s >,故()g x 满足条件.当[2,4]x ∈时,2[]1,u ∈,故()0f u ≤在[1,2]上恒成立,故2211602260a a ⎧-⨯-≤⎨--≤⎩,解得1a ≥-, 所以实数a 的取值范围是1a ≥-.【点睛】本题考查复合函数的性质及复合函数对应的不等式的解与恒成立问题,此类问题可通过换元法把复合函数问题转化为二次函数的最值问题或恒成立问题,本题有一定综合性,是难题.26.(1)T π=;2,63k k ⎛⎫++ ⎪⎝⎭ππππ(2)5; -2 【解析】【分析】(1)根据二倍角公式和辅助角公式化简即可(2)由02x ⎡⎤∈⎢⎥⎣⎦,π求出26x π+的范围,再根据函数图像求最值即可 【详解】(1)()2sin 2cos 22cos 232sin 236f x x x x x x x ⎛⎫=++=++=++ ⎪⎝⎭π, 22T ππ==,令3222,2,62263x k k x k k ⎛⎫⎛⎫+∈++⇒∈++ ⎪ ⎪⎝⎭⎝⎭πππππππππ, 即单减区间为2,,63k k k Z ππππ⎛⎫++∈ ⎪⎝⎭; (2)由702,2666x t x ⎡⎤⎡⎤∈⇒=+∈⎢⎥⎢⎥⎣⎦⎣⎦,ππππ,当76πt =时,()f x 的最小值为:-2; 当2t π=时,()f x 的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题27.(1)2[2,2],33k k k Z ππππ-++∈;(2)最小值为1- 【解析】【分析】 (1)先利用平面向量数量积的坐标运算律以及辅助角公式得出()2sin 6f x x π⎛⎫=- ⎪⎝⎭,然后解不等式()22262k x k k Z πππππ-+≤-≤+∈可得出函数()y f x =的单调递减区间;(2)由0,2x π⎡⎤∈⎢⎥⎣⎦得出6x π-的取值范围,然后再利用正弦函数的性质得出函数()y f x =的最大值和最小值.【详解】(1)()3sin ,1a x =-,()1,cos b x =,()1cos 2cos 2sin cos cos sin 266f x x x x x x x ππ⎫⎛⎫∴=-=-=-⎪ ⎪⎪⎝⎭⎝⎭2sin 6x π⎛⎫=- ⎪⎝⎭, 解不等式()2222k x k k Z ππππ-+≤≤+∈,得()22233k x k k Z ππππ-+≤≤+∈, 因此,函数()y f x =的单调递增区间为2[2,2],33k k k Z ππππ-++∈; (2)02x π≤≤,663x πππ∴-≤-≤,所以,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,则()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,()max 2sin 2sin 263f x πππ⎛⎫=-== ⎪⎝⎭因此,函数()y f x =在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为1- 【点睛】本题考查三角函数的单调性与最值,考查平面数量积的坐标运算,解这类问题首先要利用三角三角恒等变换公式将三角函数解析式化简,并将角视为一个整体,利用正弦函数或余弦函数的基本性质求解,考查分析问题和解题问题的能力,属于中等题.28.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可.【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫ ⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭ ()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴= ()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫ ⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m = ()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭ 令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.29.(1) 单调递减区间为7,,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2) 15. 【解析】【分析】(1)根据题意求出函数()f x 的解析式,然后可求出它的单调递减区间.(2)结合条件求出()424sin ,cos 3525πβαβ⎛⎫-=+=- ⎪⎝⎭,然后由()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦可得结果. 【详解】(1)()2()1f x cos x sin x x ωωω=221sin xcos x x ωωω=+221)1sin x cos x ωω=--221sin x x ωω=-2(2)13sin x πω=+-. ∵1(2)13sin x πω-≤+≤, ∴32(2)113sin x πω-≤+-≤, ∴()f x 的最大值为1,最小值为3-.又()()121,3f x f x ==-,且12min 2x x π-=, ∴函数()f x 的最小正周期为22ππ⨯=,∴1ω=, ∴()2(2)13f x sin x π=+-.由3222,232k x k k Z πππππ+≤+≤+∈, 得7,1212k x k k Z ππππ+≤≤+∈, ∴()f x 的单调递减区间为7[,],1212k k k Z ππππ++∈. (2)由(1)得3212335f sin βππβ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭, ∴4sin 35πβ⎛⎫-= ⎪⎝⎭. ∵2,33ππβ⎛⎫∈ ⎪⎝⎭, ∴0,33ππβ⎛⎫-∈ ⎪⎝⎭,∴3cos 35πβ⎛⎫- ⎪⎝⎭. ∵()7sin 25αβ+=-且2,,33ππαβ⎛⎫∈ ⎪⎝⎭, ∴24,33ππαβ⎛⎫+∈ ⎪⎝⎭,∴()24cos 25αβ+==-. ∴()2sin 12sin 1233f αππααββ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ()()2sin cos cos sin 133ππαββαββ⎡⎤⎛⎫⎛⎫=+--+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 7324421255255⎡⎤⎛⎫=⨯-⨯--⨯- ⎪⎢⎥⎝⎭⎣⎦15=. 【点睛】(1)解答有关三角函数性质的有关问题时,首项把函数解析式化为(x)Asin(x )f ωϕ=+的形式,然后再结合正弦函数的相关性质求解,解题时注意系数,A ω对结果的影响. (2)对于三角变换中的“给值求值”问题,在求解过程中注意角的变换,通过角的“拆”、“拼”等手段转化为能应用条件中所给角的形式,然后再利用整体思想求解.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
2022历年全国高中数学联赛《三角函数》专题真题汇编

历年全国高中数学联赛《三角函数》专题真题汇编 1、设sin α>0,cos α<0,且sin 3α>cos 3α,则3α的取值范围是( D )(A )(2k π+6π,2k π+3π), k ∈Z (B) (32πk +6π,32πk +3π),k ∈Z(C)(2k π+65π,2k π+π),k ∈Z (D)(2k π+4π,2k π+3π)Y(2k π+ ,2k +),k Z2、在四个函数y=sin|x|、y=cos|x|、y=|ctgx|、y=lg|sinx|中,以π为周期、在(0,π/2)上单调递增的偶函数是( D ). A.y=sin|x| B.y=cos|x|C.y=|ctgx| D.y=lg|sinx|3、若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是( ) (A) 125 2 (B) 116 2 (C) 116 3 (D) 1253 【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6], y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .4、设锐角θ使关于x 的方程x 2+4x cos θ+cot θ=0有重根,则θ的弧度数为( )A .π6B .π12或5π12C .π6或5π12D .π12【答案】B【解析】由方程有重根,故14∆=4cos 2θ-cot θ=0,∵ 0<θ<π2,⇒2sin2θ=1,⇒θ=π12或5π12.选B .5、设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则a cb cos 的值等于( C )A. 21-B. 21C. −1D. 1 6、arcsin(sin2000︒)=__________.【答案】-20°【解析】sin 2000°=sin(5×360°+200°)=sin200°=-sin20°故a rcsin(sin2000°)= a rcsin(-sin20°)= -a rcs in(sin20°)= -20°7、使不等式sin 2x+acosx+a 2≥1+cosx 对一切x ∈R 恒成立的负数a 的取值范围是 。
高中三角函数历年高考真题_含答案

历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。
高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。
高中数学联赛真题三角函数与解三角形A辑

备战2021年高中数学联赛之历年真题汇编(1981-2020)专题05三角函数与解三角形A 辑历年联赛真题汇编1.【2008高中数学联赛(第01试)】设△ABC 的内角A ,B ,C 所对的边a ,b ,c 成等比数列,则sinAcotC+cosA sinBcotC+cosB的取值范围是( )A .(0,+∞)B .(0,√5+12) C .(√5−12,√5+12) D .(√5−12,+∞)2.【2007高中数学联赛(第01试)】设函数f (x )=3sinx +2cosx +1.若实数a ,b ,c 使得af (x )+bf (x -c )=1对任意实数x 恒成立,则bcosc a的值等于( )A .−12B .12C .−1D .13.【2006高中数学联赛(第01试)】已知△ABC ,若对任意t ∈R ,|BA ⃑⃑⃑⃑⃑ −tBC ⃑⃑⃑⃑⃑ |≥|AC ⃑⃑⃑⃑⃑ |,则△ABC 一定为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .答案不确定4.【2005高中数学联赛(第01试)】△ABC 内接于单位圆,三个内角A ,B ,C 的平分线延长后分别交此圆于A1,B 1,C 1.则AA 1⋅cos A 2+BB 1⋅cos B 2+CC 1⋅cos C2sinA+sinB+sinC的值为( ) A .2 B .4 C .6D .85.【2004高中数学联赛(第01试)】设锐角使关于x 的方程x 2+4xcosθ+cotθ=0有重根,则θ的弧度数为( )A .π6B .π12或5π12C .π6或5π12D .π126.【2003高中数学联赛(第01试)】若x ∈[−5π12,−π3],则y =tan (x +2π3)−tan (x +π6)+cos (x +π6)的最大值是( )A .125√2B .116√2C .116√3D .125√37.【2001高中数学联赛(第01试)】在四个函数y =sin|x|,y =cos|x|,y =|cotx |,y =lg|sinx|中以π为周期,在(0,π2)上单调递增的偶函数是( )A .y =sin|x|B .y =cos|x|C .y =|cotx|D .y =lg|sinx|8.【2001高中数学联赛(第01试)】如果满足∠ABC =60°,AC =12,BC =k 的△ABC 恰有一个,那么k 的取值范围是( ) A .k =8√3B .0<k ⩽12C .k ≥12D .0<k ≤12或k =89.【2000高中数学联赛(第01试)】设sinα>0,cosα<0,且sin α3>cos α3,则α3的取值范围是( )A .(2kπ+π6,2kπ+π3),k ∈ZB .(2kπ3+π6,2kπ3+π3),k ∈ZC .(2kπ+5π6,2kπ+π),k ∈ZD .(2kπ+π4,2kπ+π3)∪(2kπ+5π6,2kπ+π),k ∈Z10.【1999高中数学联赛(第01试)】已知点A (1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B ,C ,那么,△ABC 是( ). A .锐角三角形 B .钝角三角形 C .直角三角形D .答案不确定11.【1997高中数学联赛(第01试)】设f(x)=x 2−πx,α=arcsin 13,β=arctan 54,γ=arccos (−13),δ=arccot (−54),则( )A.f(α)>f(β)>f(δ)>f(γ)B.f(α)>f(δ)>f(β)>f(γ)C.f(δ)>f(α)>f(β)>f(γ)D.f(δ)>f(α)>f(γ)>f(β)12.【1996高中数学联赛(第01试)】设x∈(−12,0),以下三个数:α1=cos(sinxπ),α2=sin(cosxπ),α3= cos(x+1)π的大小关系是( )A.α3<α2<α1B.α1<α3<α2C.α3<α1<α2D.α2<α3<α113.【1995高中数学联赛(第01试)】log in 1cos1,log sin1tan1,log geos 1sin1,log cos 1 tan 1的大小关系是( ) A.log sin1cos1<log cos1sin1<log sin1tan1<log cos1tan1B.log cos1sin1<log cos1tan1<log sin1cos1<log sin1tan1C.log sin1tan1<log cos1tan1<log cos1sin1<log sin1cos1D.log cos1tan1<log sin1tan1<log sin1cos1<log cos1sin114.【1994高中数学联赛(第01试)】设a,b,c是实数.那么对任何实数x,不等式asinx+bcosx+c>0都成立的充要条件是( )A.a,b同时为0,且c>0B.√a2+b2=cC.√a2+b2<c D.√a2+b2>c15.【1994高中数学联赛(第01试)】已知0<b<1,0<a<π4,则下列三数:x=(sina)log b sina,y=(cosa)log b cosa,z=(sina)log b cosa的大小关系是( )A.x<z<y B.y<z<x C.z<x<y D.x<y<z16.【1993高中数学联赛(第01试)】在△ABC中,∠A,∠B,∠C的对边边长分别是a,b,c,若c-a等于AC边上的高h,则sin C−A2+cos C+A2的值是( )A.1B.12C.13D.−117.【1992高中数学联赛(第01试)】在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c(b≠1),且CA ,sinB sinA都是方程log√bx=log b(4x−4)的根,则△ABC( ). A.是等腰三角形,但不是直角三角形B.是直角三角形,但不是等腰三角形C.是等腰直角三角形D.不是等腰三角形,也不是直角三角形18.【1990高中数学联赛(第01试)】设a∈(π4,π2),则(cosa)cosa,(sina)cosa,(cosa)sina的大小顺序是( )A.(cosα)cosα<(sinα)cosα<(cosα)sinαB.(cosα)cosα<(cosα)sinα<(sinα)cosαC.(sinα)cosα<(cosα)cosα<(cosα)sinαD.(cosα)sinα<(cosα)cosα<(sinα)cosα19.【1989高中数学联赛(第01试)】若A,B是锐角△ABC的两个内角,则复数z=cosB−sinA+i(sinB −cosA)在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限20.【1989高中数学联赛(第01试)】函数f(x)=arctanx+12arcsinx的值域是( ).A.(−π,π)B.[−3π4,3π4]C.(−3π4,3π4)D.[−π2,π2]21.【1987高中数学联赛(第01试)】边长为5的菱形,它的一条对角线的长不大于6,另一条不小于6,则这个菱形两条对角线长度之和的最大值是( )A.10√2B.14C.5√6D.1222.【1987高中数学联赛(第01试)】如图,△ABC的顶点B在单位圆的圆心上,A,C在圆周上,∠ABC=2a(0<a<π3).现将△ABC在圆内按逆时针方向依次作旋转,具体方法如下:第一次,以A为中心,使B落在圆周上;第二次,以B为中心,使C落到圆周上;第三次,以C为中心,使A落到圆周上,如此旋转直到第100次.那么,点A所走路程的总长度为( )A.22π(1+sina)−66a B.22π+683πsina−66aC.673πD.33π−66a23.【1986高中数学联赛(第01试)】设-1<a<0,θ=arcsina,那么不等式sinx<a的解集为( )A.{x|2nπ+θ<x<(2n+1)π−θ,n∈Z}B.{x|2nπ−θ<x<(2n+1)π−θ,n∈Z}C.{x|(2n−1)π+θ<x<2nπ−θ,n∈Z}D.{x|(2n−1)π−θ<x<2nπ+θ,n∈Z}24.【1985高中数学联赛(第01试)】已知方程arccos45−arccos(−45)=arcsinx,则( )A.x=2425B.x=−2425C.x=0D.这样的x不存在25.【1984高中数学联赛(第01试)】若动点P(x,y)以等角速度ω在单位圆上逆时针运动,则点Q(-2xy,y2-x2)的运动方式是( )A.以角速度ω在单位圆上顺时针运动B.以角速度ω在单位圆上逆时针运动C.以角速度2ω在单位圆上顺时针运动D.以角速度2ω在单位圆上逆时针运动26.【1983高中数学联赛(第01试)】已知等腰△ABC的底边BC及高AD的长都是整数,那么sinA和cosA中( )A.一个是有理数,另一个是无理数B.两个都是有理数C.两个都是无理数D.是有理数还是无理数要根据BC和AD的数值来确定27.【1983高中数学联赛(第01试)】任意△ABC,设它的周长、外接圆半径长与内切圆半径长分别为l,R与r,那么( )A.l>R+r B.l⩽R+r<R+r<6l D.A,B,C三种关系都不对C.16)都有( )28.【1982高中数学联赛(第01试)】对任何φ∈(0,π2A.sinsinφ<cosφ<coscosφB.sinsinφ>cosφ>coscosφC.sincosφ>cosφ>cossinφD.sincosφ<cosφ<cossinφ29.【1981高中数学联赛(第01试)】条件甲:两个三角形的面积和两条边对应相等.条件乙:两个三角形全等( )A.甲是乙的充分必要条件B.甲是乙的必要条件C.甲是乙的充分条件D.甲不是乙的必要条件,也不是充分条件30.【1981高中数学联赛(第01试)】条件甲:√1+sinθ=a.条件乙:sinθ2+cosθ2=aA.甲是乙的充分必要条件B.甲是乙的必要条件C.甲是乙的充分条件D.甲不是乙的必要条件,也不是充分条件31.【1981高中数学联赛(第01试)】设α≠kπ2(k=0,±1,±2,⋯),T=sinα+tanαcosα+cotαA.T取负值B.T取非负值C.T取正值D.T取值可正可负优质模拟题强化训练1.△ABC的三边长分别为AB=a,BC=b,CA=c.若{c=√a2−2+√b2−2a=√b2−3+√c2−3b=√c2−4+√a2−4,则→AB⋅→BC,→BC⋅→CA,→CA⋅→AB中小于0的个数为().A.3B.2C.1D.02.arccos13+12arccos79=().A.3π8B.2π3C.π2D.arcsin893.设f(x)=cos(ωx)的最小正周期为6,则f(1)+f(2)+⋯+f(2018)的值是().A.0B.1C.12D.√324.函数y=(sinx−1)(cosx−1)2+sin2x(x∈R)的最大值为().A.√22B.1C.12+√22D.√25.设曲线f(x)=acosx+bsinx的一条对称轴为x=π5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
)
A 焦点在x轴上的椭圆
B 焦点在x轴上的双曲线
C 焦点在y轴上的椭圆
D 焦点在y轴上的双曲线
12,(2005年)设, , 满足0 2 ,若对于任意的 x R
4
cosx cosx cosx 0,则 = 3 。
提示:令 f x cosx cosx cosx 0 ,则f f f 0 ,可解得:
解:原不等式变形为 cos2 x 1 acos x a2 0 对任意的 x R 恒成立。运用换元法,令t=cosx,则
g1 0
可得到
gt t2 1 at a2
0
对任意的
t 1,1 恒成立。只需要
g1 0
即可,又因为a为负数,
所以 a 2
6,(2003年)若
x
5 12
,
3
,则
2
所以
AA1 cos
A 2
2sin B
A cos 2
A 2
sin
B
sinA
B
sin
B
sin C
同理 BB1 sin A sin C,CC1 sin A sin B ,所以原式=2
11,(2005年 )方程 sin
x2 2 sin
3 cos
y2 2 cos
3 1 表示的曲线是(
y
tan
x
2 3
tan x cos x 6 6
的最大值是(
C
)
A 12 2
5
B
11 2 6
C 11 3
6
D 12 3
5
解:
y
tan x 2 tan x 3
cost sin t cost sin t cost
6
2
2 sin 2t
cot x 6
1,(2000年)设 sin A 2k
6
0, cos
,2k , k
3
0 ,且
Z
sin
3
B
c
os 3
,则
3
2k , 2k 3 6 3
的取值范围是(
, k Z 3
D
)
C 2k 5 ,2k , k Z
6
D 2k ,2k 2k 5 ,2k , k Z
7,(2004年)设锐角 使关于x 的方程x2 4x cos cot 0 有重根,则 的弧度数是(B )
A6
B 或 5
12 12
C 或 5
6 12
D
12
8,(2004年)设点O在ABC 内部,且有OA
2OB
3OC
0
,则
ABC的面积与 AOC
的面积比为( C A2
) B
3 2
C3
D
5 3
cos cos cos 1
2
,所以
,
,
2
3
,
4 3
,所以
4 3
13,(2006年)已知 ABC,若对任意的实数t,BA t BC AC ,则 ABC一定为( C )
A 锐角三角形 B 钝角三角形
C 直角三角形 D 答案不确定
解:设 BE t BC 则 BA t BC BA BE EA AC ,即线段AE的长度大于等于线段AC的长度, 即直线BC外一点A与直线BC上任一点的连线长度大于等于线段AC的长度,所以线段AC的 长度为A点到直线BC的距离,即 AC BC ,所以 ABC为直角三角形。
,
k
Z
,选D
2,(2000年) arcsin sin 2000
=
20或
-
9。
3,(2001年)在四个函数 y sin x , y cosx , y ctgx, y lg sin x 中以 为周期,在 0, 上
单调递增的偶函数是( D )
2
A y sin x B y cosx
A
解:做 OD 2OB,OF 3OC,做平行四边形ODEF ,则 ADF中
OA OD OF 0 ,所以点O为ADF的重心,所以
SAOD
SAOF
SDOF
S , 又SAOB
1 2
SAOD
S 2
,
SAOC
1 3
SAOF
S 3
, SBOC
1 2
SODC
1 6
SODF
S 6
OC
F
B
D
E
9,(2004年 )在平面直角坐标系xoy中,函数 f x asin ax cosaxa 0 在一个最小正周期长的区
C y ctgx D y lg sin x
4,(2001年)如果满足ABC 60, AC 12, BC k 的 ABC恰有一个,那么k的取值范围
是( D )
A k 8 3 B 0 k 12
C2
D 0 k 12或 k 8 3
解:ABC
中,由正弦定理知:
AC sin B
BC ,sin A sin A
BC sin B k sin 60
AC
12
3k 24
,因为满足条件的
ABC
只有一个,所以 0 A B或A ,即 0 sin A sin 60或sin A 1 ,解得 0 k 12或k 8 3
2
5,(2002年)使不等式 sin2 x acosx a2 1 cosx 对于一切 x R 恒成立的负数a的取值范围 是 a 2。
4
3
6
解:满足 sin 0,cos 0 的
的范围是
2k
2
,2k
,
k
Z
,于是
3
的取值范围是
2k 3
, 2k , k Z 6 3 3
,满足
sin 3
cos 3
的
3
的取值范围是
2k
Hale Waihona Puke 4,2k5 4
, k
Z
故所求范围是两个区间的交集,为
2k
4
,2k
3
2k
5 6
,2k
间上的图像与函数 gx a2 1 的图像所围成的封闭图形的面积是
。
解:f x a2 1sinax 由对称性可知, 所求封闭图形的面积为矩形ABCD面积
的一半。
AB 2
a2 1, BC T 2
a
S AB • BC 2 a2 1
2
a
10,(2005年)ABC内接于单位圆,三个内角A、B、C的平分线延长后分别交此圆于 A1, B1,C1
则
AA1
c
os
A 2
BB2
c
os
B 2
CC1
c
os
C 2
的值为(
A)
A
sin A sin B sin C
A2
B4
C6
D8
C
解:由AA1 是角A的平分线和同弧所对的圆周角相等可知
B
A1
CBA1 CAA1
A 2
,ABA1
B
A 2
,所以
ABC中应用正弦定理得:
AA1 2R 2 sin B A
cost,t
cos
sin
4
,
6
x
6
x 6
,令 g t
,令 t x , 6
2 cost,
sin 2t
x y
5 12
,
3
,t
4
,
2 与y cost 在 t sin 2t
6
,所以
4
,
6
是单调递增的,所以函数
gx
单调递增,所以
gmax
g 11 3 6 6