直角坐标系中的位似图形练习题演示.doc

合集下载

冀教版九年级数学上册《图形的相似》25.7.3平面直角坐标系中的位似

冀教版九年级数学上册《图形的相似》25.7.3平面直角坐标系中的位似
解:如图,△A1B1C1就是 所要画的三角形.
整合方法
(2) 以 点 C 为 位 似 中 心 , 在 网 格 中 画 出 △A2B2C , 使 △A2B2C 与 △ABC 位 似 , 且 △A2B2C 与 △ABC 的 位似比为2:1,并直接写出点A2的坐标.
解:如图,△A2B2C就是所要画的三角形, 点A2的坐标为(-2,-2).
D.12m,12n或-12m,-12n
夯实基础
【点拨】点P(m,n)是线段AB上一点,以原点O为 位似中心把△AOB放大到原来的两倍,则点P的对 应点的坐标为(m×2,n×2)或(m×(-2), n×(-2)),即(2m,2n)或(-2m,-2n).故选B. 【答案】B 误区诊断:本题易忽略其中一种情况,应考虑全面.
解:图案①与图案②关于x轴对称,图案① 与图案③关于y轴对称,图案②与图案③位 似,且位似中心为原点O.
探究培优
12.【中考·盐城】如果两个一次函数y=k1x+b1和y=k2x+b2 满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次 函数”.如图,已知函数y=-2x+4的图像与x轴、y轴分 别交于A,B两点,一次函数y=kx+b与y=-2x+4是“平 行一次函数”.
解:如图,根据位似比为1∶2得函 数y=kx+b的图像有两种情况:
探究培优
①不经过第三象限时,过点(1,0)和(0,2),这时函 数表达式为y=-2x+2; ②不经过第一象限时,过点(-1,0)和(0,-2),这 时函数表达式为y=-2x-2.
JJ版九年级上
第二十五章 图形的相似
25.7 相似多边形和图形的位似 第3课时 平面直角坐标系中的位似
习题链接
提示:点击 进入习题
1C 2A

27.3.2 平面直角坐标系中位似变换

27.3.2 平面直角坐标系中位似变换

4 2 3,3 .
4 2 综上所述,两个正方形的位似中心的坐标为(-2,0)或 , . 3 3返回知识点2源自在平面直角坐标系中画位似图形
7.在平面直角坐标系中画位似图形时,先确定 位似中心 ,再根据________ 相似比 找出关键点的对应点, __________ 最后连线,得到放大或缩小的图形.
返回
8 . (中考 · 铁岭 ) 如图,正方形 ABCD的顶点 A , B的坐标分别
为(-2,0),(-1,0),顶点C,D在第二象限内.以原点 O为位似中心,将正方形 ABCD放大为正方形A′B′C′D′, (4,-2) . 若点B′的坐标为(2,0),则点D′的坐标为____________
返回
9 . ( 中考 · 玉林 ) 如图,在平面直角坐标系网格中,将△ABC
进行位似变换得到△A1B1C1. 2∶ 1 ; (1)△A1B1C1与△ABC的相似比是________
(2)画出△A1B1C1关于y轴对称的△A2B2C2; 如图所示.
(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P
返回
6. (中考 · 烟台 )如图,在平面直角坐标系中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位似图形,且 1 相似比为 ,点A,B,E在x轴上,若正方形BEFG的边 3 长为6,则C点的坐标为( A ) A.(3,2) C.(2,2) B.(3,1) D.(4,2)
返回
(-2x-2,2y+2) . 后,点P的对应点的坐标为___________________
(2)如图,△A2B2C2即为所求.
(3)△A3B3C3 是由△A2B2C2 向左平移 2 个单位长度,再
向上平移2个单位长度得到的.(答案不唯一)

专项练习图形的位似变换与坐标

专项练习图形的位似变换与坐标
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系

22.4 第2课时 平面直角坐标系中图形的位似变换

22.4   第2课时 平面直角坐标系中图形的位似变换

第2课时 平面直角坐标系中图形的位似变换知识点 1 位似变换与坐标的变化1.如图22-4-14,在平面直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则点C 的坐标为( )图22-4-14A .(2,1)B .(2,0)C .(3,3)D .(3,1)2.教材练习第1题变式△ABC 的顶点坐标为A (0,2),B (-3,5),C (-6,3).按如下方式对△ABC 进行变换,不是位似变换的是( )A .(x ,y )→(23x ,23y )B .(x ,y )→(-2x ,-2y )C .(x ,y )→(y ,x )D .(x ,y )→(2x ,2y )3.如图22-4-15,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO 与△A ′B ′O ′是以点P 为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P 的坐标为( )图22-4-15A .(0,0)B .(0,1)C .(-3,2)D .(3,-2)4.2018·邵阳如图22-4-16,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .以坐标原点O 为位似中心将△AOB 缩小为原图形的12,得到△COD ,则CD 的长是( )图22-4-16A .1B .2C .4D .2 55.如图22-4-17,等腰三角形OBA 和等腰三角形ACD 是位似图形,则这两个等腰三角形位似中心的坐标是________.图22-4-176.在平面直角坐标系中有四个点A (0,-2),B (3,2),C (1,-1),D (-2,3).如果将各点的横、纵坐标都乘3,得到点A ′,B ′,C ′,D ′,那么四边形A ′B ′C ′D ′与四边形ABCD 的相似比为________.7.如图22-4-18,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶ 2.若点A 的坐标为(0,1),则点E 的坐标是________.图22-4-188.在平面直角坐标系中,已知A (8,4),B (8,0)两点,以坐标原点O 为位似中心,相似比为14,把线段AB 缩小后得到线段A ′B ′,则线段A ′B ′的长等于________.知识点 2 在平面直角坐标系中画位似图形9.如图22-4-19,△ABC 三个顶点的坐标分别为A (0,-3),B (3,-2),C (2,-4),正方形网格中,每个小正方形的边长是1个单位.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的相似比为2∶1,并直接写出点A 2的坐标.图22-4-1910.如图22-4-20,已知点O是坐标原点,B,C两点的坐标分别为(3,-1),(2,1).(1)以点O为位似中心在y轴的左侧将△OBC放大为原来的2倍(即新图形与原图形的相似比为2∶1),得到△OB′C′,画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出点M的对应点M′的坐标.图22-4-2011.若△ABC 的顶点坐标分别为(3,2),(4,3),(6,5),△DEF 的顶点坐标分别为(32,1),(2,32),(3,52),则△DEF 与△ABC 的对应边的比为( )A .2∶1B .1∶2C .1∶3D .1∶412.2018·潍坊在平面直角坐标系中,P (m ,n )是线段AB 上一点,以原点O 为位似中心把△AOB 放大到原来的2倍,则点P 的对应点的坐标为( )A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .(12m ,12n )D .(12m ,12n )或(-12m ,-12n )13.如图22-4-21,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )图22-4-21A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)14.如图22-4-22,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是________.图22-4-2215.如图22-4-23,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点坐标分别为(1,3),(2,5).若△ABC和△A1B1C1是位似图形,则△A1B1C1的第三个顶点的坐标为________.图22-4-2316.如图22-4-24,在平面直角坐标系xOy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且点O′的坐标为(-1,0),则点B′的坐标为________.图22-4-2417.如图22-4-25,△ABC的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1,B 1,C 1的坐标; (2)以原点O 为位似中心,在原点的另一侧画出△A 2B 2C 2,使AB A 2B 2=12.图22-4-25教师详解详析1.A [解析] 由A(6,3),B(6,0),知线段AB =3.因为AB ⊥x 轴,线段AB 到线段CD 的变换是以原点O 为位似中心且相似比为13的位似变换,所以CD =1,OD =2,即C(2,1).故选A.2.C3.C [解析] 如图所示,点P 即为所求,故点P 的坐标为(-3,2).4.B 5.(-2,0) 6.3∶1 7.(2,2)8.1 [解析] 根据A(8,4),B(8,0)可得AB =4.因为相似比为14,所以把线段AB 缩小后的线段A′B′的长等于14AB =1.9.解:(1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.点A 2的坐标为(-2,-2).10.解:(1)分别延长BO ,CO 到点B′,C′,使OB′,OC′的长度是OB ,OC 长度的2倍,顺次连接三点即可.如图.(2)B′(-6,2),C′(-4,-2).(3)点M 的对应点M′的坐标为(-2x ,-2y). 11.B12.B [解析] 通过位似把△AOB 放大到原来的两倍,则对应点的横、纵坐标分别乘2或-2,故点P(m ,n)的对应点的坐标为(2m ,2n)或(-2m ,-2n).13.D [解析] 把图形向右平移1个单位,则点C 与坐标原点O 重合,点B′的横坐标变为a +1,此时△ABC 以原点为位似中心的位似图形是△A′B′C ,则与点B′对应的点B 的横坐标为-12(a +1),把该点向左平移1个单位,则得到点B 的坐标为-12(a +1)-1,即为-12(a +3).14.(1,0) 或(-5,-2) 15.(3,4)或(0,4)16.(53,-4) [解析] 如图,作出△AOB 的位似图形△AO′B′,过点B′作x 轴的垂线,垂足为C ,过点B 作x 轴的垂线,垂足为E.∵△AB′O′是△ABO 关于点A 的位似图形, ∴AO AO′=BEB′C. ∵点A 的坐标为(3,0),点O′的坐标为(-1,0),点B 的坐标为(2,-3), ∴AO =3,AO′=4,BE =3,∴34=3B′C ,∴B′C =4.易得△O′B′C ∽△OBE ,∴OE CO′=BEB′C ,即2CO′=34,∴CO′=83,∴OC =83-1=53, ∴点B′的坐标为(53,-4).17.解:(1)△A 1B 1C 1如图所示,A 1(1,-3),B 1(4,-2),C 1(2,-1).(2)△A 2B 2C 2如图所示.。

平面直角坐标系中的位似变换

平面直角坐标系中的位似变换

2
标是( D )
y
A
A' A''
B''
A.(3,2) C.(12,8)
O
x
B'
B
B.(12,8)或(-12,8) D.(3,2)或(-3,-2)
(2)、在平面直角坐标系中,四边形OBCD与四边形OEFG位似,位似
中心是原点O,已知C与F是对应点,且C、F的坐标分别是C(3,7)F
(9,21),那么四边形OBCD与四边形OEFG的相似比是 1:3 ,
复习提问:
从下列图形中找出位似图形 : (1)(2)(4)
(1)
(2)
(3)
1、什么是位似图形? 2、如何判断两个图形位似? 3、怎样求两个图形的位似比?
(4)
学习目标
重点:能熟练在坐标系中根据坐标的变化规律做出位似图形 难点:理解位似图形的坐标变换规律.
问题探究
探究一:
如图,在平面直角坐标系中,△OAB三个顶点的坐标分别为
坐标 都
C
乘以
-
1 2
,画出所得到的图形,你发
现了什么?
x
探究点拨:当图中各点的 横、纵坐标缩小一定的倍 数k,依次连接各点所得到 新图形与原图形 位似 , 位似中心是 坐标原点,位似 比是 |k| 。
定理 在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘 同一个数k(k≠0),所对应的图形与原图形 位似 ,位似中心是 坐标原点 , 它们的位似比为 |k| .
D、 (m , n ) 22
课堂小结
定理
平面直角坐标系 中的位似变化
在平面直角坐标系中,将一个多边形每个顶点的横 坐标、纵坐标都乘同一个数k(k≠0),所对应的图形 与原图形位似,位似中心是坐标原点,它们的相似 比位|k|.

平面直角坐标系中的位似-配套练习(含答案)

平面直角坐标系中的位似-配套练习(含答案)

平面直角坐标系中的位似-练习一、选择题1.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4)B. (-1,-2)C. (-2,-4)D. (-2,-1)2.如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,则点B1的坐标是()A. (3,2)B. (-2,-3)C. (2,3)或(-2,-3)D. (3,2)或(-3,-2)3. 如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC 的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A. - aB. -(a+1)C. -(a-1)D. -(a+3)4. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A. (3,3)B. (4,3)C. (3,1)D. (4,1)二、解答题5. 如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C的坐标为(-4,2),求这两个正方形位似中心的坐标.(平面直角坐标系中的位似-练习参考答案一、选择题1. C.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A的坐标是(1,2),则点A′的坐标是(-2,-4),故选:C.2. D.解:∵若矩形OA1B1C1与矩形OABC关于点O位似,且矩形OA1B1C1的面积等于矩形OABC面积的,∴两矩形的相似比为1:2,∵B点的坐标为(6,4),∴点B1的坐标是(3,2)或(-3,-2).故选D.3.D. 解:∵点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.点B的对应点B′的横坐标是a,∴FO=a,CF=a+1,∴CE=(a+1),∴点B的横坐标是:-(a+1)-1=-(a+3).故选D.4.A. 解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.二、解答题5.解:①当两个位似图形在位似中心同旁时,位似中心就是CF与x轴的交点,设直线CF解析式为y=kx+b,将C(-4,2),F(-1,1)代入,得,解得即y=-x+,令y=0得x=2,∴O′坐标是(2,0);②当位似中心O′在两个正方形之间时,可求直线OC解析式为y=-x,直线DE解析式为y=x+1,联立,解得,即O′(-,).综上所述,两个正方形位似中心的坐标为:(2,0)或(-,)。

23.5位似图形(2)--平面直角坐标系中的位似变换

23.5位似图形(2)--平面直角坐标系中的位似变换

变换规律:
通过这种变换,可将变换前△ABC的任意 一点坐标(x,y)变换为(kx,ky)
已知:在平面直角坐标系中,△ABC的顶点坐标分别 为A(1,2),B(3,1),C(4,3).将A,B,C的横坐标都乘以 a,纵坐标都乘以b,得△ABC变换后的图形△A1B1C1, 变换后的△A1B1C1与△ABC一定相似吗?为什么?
a=1 b=3
伸缩变换: 将△ABC的任意一点坐标的横坐标x乘以a, 纵坐标乘以b,变换后的△A1B1C1 的坐标为(ax,by), 如果a≠b≠0 ,称这种变换为伸缩变换.
演示
通过演示可知,变换前后的两个图形不相似.
巩固新知,当堂训练 书本上第94页课后练习第1题
课堂小结:
通过本节课的学习,你有什么收获?
23.5位似图形(2)
复习
1.什么叫做位似图形? 2.位似变换与相似变换之间有什么关系? 3.位似变换有什么性质?
学习目标:
1.了解同向位似变换、反向位似变换、 伸缩变换的概念. 2.能在平面直角坐标系中把一个图形按要求 进行位似变换.
自学提纲:
阅读书本上第93-94页内容,解决以下问题:
1.已知:在平面直角坐标系中,△ABC的顶点坐标分 别为A(1,2),B(3,1),C(4,3).以原点O为位似中心,相 似比为3,作△ABC的位似图形.观察对应顶点的坐 标的变化, 你有什么发现?如果相似比是-3呢? 2.什么叫做同向位似变换?什么叫做反向位似变换? 3.你能发现位似图形的坐标与原图形的坐标之间存在 怎样的关系? 4.已知:在平面直角坐标系中,△ABC的顶点坐标分别 为A(1,2),B(3,1),C(4,3).将A,B,C的横坐标都乘以x, 纵坐标都乘以y,得△ABC变换后的图形△A1B1C1,变换 后的△A1B1C1与△ABC一定相似吗?为什么? 5.什么叫做伸缩变换?

《位似》习题

《位似》习题

《位似》习题一、选择题(每小题5分,共25分)1.下列每组的两个图形不是位似图形的是()A.B.C.D.2.如图所示的两个三角形是位似图形,它们的位似中心是( )A.点O B.点P C.点M D.点N第2题图第3题图3.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A 的坐标为(1,0),则E点的坐标为( )A.(2,0) B.(0,2) C.(2,2) D.(2,2)4.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是( )A.3 B.6 C.9 D.125.关于对位似图形的表述,下列命题正确的是( )①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.A.①②B.①④C.②③D .③④二、填空题(每小题5分,共25分)6.下列四幅图中的两个图形属于位似图形的是__________.(将序号填入横线上)B DCAEB①②③④7.如图所示,DC∥AB,OA=2OC,则OCD△与OAB△的位似比是__________.8.如图所示,△ABC与△A′B′C′是位似图形,且位似比是1:2,若AB=2cm,则A′B ′=_________cm.第7题图第8题图第10题图9.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO缩小,则点E的对应点E′的坐标是__________.10.如图,将△DE F缩小为原来的一半,操作方法如下:任意取一点P,连接DP,取DP的中点A,再连接EP、FP,取它们的中点B、C,得到△ABC,则下列说法正确的有________ __个.①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比是1:2;④△ABC与△DEF的面积比是1:2.三、解答题(共50分)11.(10分)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出位似中心.12.(10分)如图,在方格纸上,与是关于点O为位似中心的位似图形,他ABC∆111CBA∆们的顶点都在格点上.(1)画出位似中心O;(2)求出与的位似比;ABC∆111CBA∆CABD E(2)(1)O(4)(5)(3)以O 点为位似中心,再画一个使它与的位似比等于3222C B A∆13.(10分)如图,△ABC 在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的位似图形;A B C '''△(3)计算的面积S .A B C '''△14.(10分)如图,已知矩形ABCD 与矩形AB C D '''是位似图形,A 为位似中心,已知矩形ABCD 的周长为24,4,2BB DD ''==.求AB 与AD 的长.15.(10分)如图,在平面直角坐标系中,△AOB 的顶点坐标分别为A (2,1)、O (0,0)、B (1,-2).(1)P (a ,b )是△AOB 的边AB 上一点,△AOB 经平移后点P 的对应点为P 1(a -3,b +1),请画出上述平移后的△A 1O 1B 1,并写出点A 1的坐标;DB 'C 'D(2)以点O为位似中心,在y轴的右侧画出△AOB的一个位似△A2OB2,使它与△AOB的相似比为2:1,并分别写出点A、P的对应点A2、P2的坐标;(3)判断△A2OB2与△A1O1B1能否是关于某一点Q为位似中心的位似图形,若是,请在图中标出位似中心Q,并写出点Q的坐标.参考答案1.B【解析】根据位似图形的概念对各选项逐一判断,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形;据此可得A、C、D三个图形中的两个图形都是位似图形;而B的对应顶点的连线不能相交于一点,故不是位似图形.故选B.2.B.【解析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,故选B.3.C【解析】由题意可得OA:OD=1:2,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(1,0),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选C.4.D.【解析】∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.5.C【解析】如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,这个点是位似中心,但不是所有的相似图形都是位似图形,并且位似图形上对应点与位似中心的距离之比等于位似比.解:①相似图形不一定是位似图形,位似图形一定是相似图形,错误;②位似图形一定有位似中心,是对应点连线的交点,正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,正确;④位似图形上对应点与位似中心的距离之比等于位似比,错误.故选C.6.①②③【解析】根据位似图形的定义分析各图,对各选项逐一分析,即可得出答案.解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.根据位似图形的概念,①②③三个图形中的两个图形都是位似图形;④中的两个图形是相似三角形,但不符合概念,故不是位似图形.故填①②③.7.1︰2【解析】先证明△OAB∽△OCD,△OCD与OAB的对应点的连线都过点O,所以可得△OC D与△OAB的位似,即可求得△OCD与△OAB的位似比为OC:OA=1:2.解:∵DC∥AB∴△OAB∽△OCD∵△OCD与OAB的对应点的连线都过点O∴△OCD与△OAB的位似∴△OCD与△OAB的位似比为OC:OA=1:2.8.4.【解析】根据△ABC与△A′B′C′是位似图形,可知△ABC∽△A′B′C′,利用位似比是1:2,即可求得A′B′=4cm.解:∵△ABC与△A′B′C′是位似图形∴△ABC ∽△A ′B ′C ′∵位似比是1:2∴AB :A ′B ′=1:2∵AB =2cm ∴A ′B ′=4cm .9.(﹣2,1)或(2,﹣1)【解析】根据题意得:则点E 的对应点E ′的坐标是(﹣2,1)或(2,﹣1).10.3【解析】位似图形同时也是相似图形,位似比等于其相似比,等于其对应边的比,对应周长的比,面积比等于位似比的平方.解:由于△ABC 是由△DEF 缩小一半得到,所以△ABC 与△DEF 是位似图形,①正确;位似图形也是相似图形,②正确;将△DEF 缩小为原来的一半,得到△ABC ,所以△ABC 与△DEF 的位似比为1:2,所以其周长比也为1:2,③正确;所以其面积比为1:4,④错误.题中共有3个结论正确.11.答案见解析【解析】根据位似图形的定义及位似中心分析各图,即可得出答案.解:图(1)(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点P ,图(2)中的点A ,图(4)中的点O .12. 答案见解析【解析】(1)如下图所示;(2)与的位似比是2;ABC ∆111C B A ∆(3)如下图所示.e 【解析】(1)根据A (2,3),C (6,2),找出原点,求出点B 的坐标即可;(2)根据位似比为2,得出三角形各顶点坐标即可得出答案;(3)利用所画图形得出三角形的底与高求出即可.解:(1)B 点:(2,1)(2)(3)的面积S =16A B C '''△14. 答案见解析【解析】解:∵矩形ABCD 的周长为24∴12AB AD +=设,12AB x AD x==-则 ∴4,14AB AB BB x AD AD DD x ''''=+=+=+=- ∵矩形ABCD 与矩形AB C D '''是位似图形 ∴AB ADAB AD ='' 即12414x x x x-=+- 解得8x =∴8,4AB AD ==15.(1)作图见解析,A 1(﹣1,2);(2)作图见解析,A 2(4,2),P 2 (2a ,2b );(3)是,Q (﹣6,2).【解析】(1)如图所示,画出平移后的△A1O1B1,找出A1的坐标即可;(2)如图所示,画出位似图形△A2OB2,求出A2、P2的坐标即可;(3)根据题意得到△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形,找出Q坐标即可.解:(1)如图所示,A1(﹣1,2);(2)如图所示,A2(4,2),P2 (2a,2b);(3)如图所示,△A2OB2与△A1O1B1是关于点Q为位似中心的位似图形.此时Q(﹣6,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角坐标系中的位似图形练习题
1.下列图形中△ABC∽△DEF,则这两个三角形不是位似图形的是( )
A. B.
C. D.
2.如图,在直角坐标系中,有两点A(4, 2),
B(3, 0),以原点O为位似中心,A'B'与AB的相
似比为1
2A'B',正确的画法是( )
A. B.
3. 如图,△AOB缩小后得△COD,△AOB与△COD的相似比是3,若点C坐标为(1, 2),则点A的坐标为( )
A.(2, 4)
B.(2, 6)
C.(3, 6)
D.(3, 4)
4. 如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2, -1),B(-2, -3),O(0, 0),
△A1B1O1的顶点坐标分别为A1(1, -1),B1 (1, -5),O1(5,-1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为( )
A.(-5, 1)
B.(-5, -1)
C.(5, -1)
D.(-1, -5)
5. 如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F 的坐标分别为(-4, 4),(2, 1),则位似中心的坐标为( )
A.(0, 3)
B.(0, 2.5)
C.(0, 2)
D.(0, 1.5)
6. 如图,平面直角坐标系中,点A(-2, 0),B(0, 1),C(-3, 2),以原点O为位似中心,把△ABC缩小为△A'B'C',且△A'B'C'与△ABC 的相似比为1:2,则点C的对应点C'的坐标为( ) A.(-1.5, 1) B.(-1.5, 1)或(1.5, -1)
C.(-6, 4)
D.(-6, 4)或(6, -4)
7.已知A(0, -1),B(1, -3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为( )
A.(3, 9)
B.(6, 3)
C.(6, 9)
D.(9, 3)
8. 如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1, 0),则E点的坐标为( )
A.(2, 0)
B.(1, 1)
C.(2, 2)
D.(2, 2)
9.在直角坐标系中,已知点A(6, -3),原点O
为位似中心,相似比为1
3,把线段OA缩小为
OA',则点A'的坐标为( )
A.(2, -1)或(-2, -1)
B.(-2, 1)或(2, 1)
C.(2, 1)或(-2, -1)
10.如图,线段AB两个端点的坐标分别为
A(4, 4),B(6, 2),以原点O为位似中心,在第一
象限内将线段AB缩小为原来的1
2后得到线段
CD,则端点C和D的坐标分别为( )
A.(2, 2),(3, 2)
B.(2, 4),(3, 1)
C.(2, 2),(3, 1)
D.(3, 1),(2, 2)
11. 如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标为( )
A.(1, 0)
B.(0, 1)
C.(-1, 0)
D.(0, -1)
12. 如图,已知△OAB与△OA'B'是相似比为1:2的位似图形,点O为位似中心,若△OAB 内一点P(x, y)与△OA'B'内一点P'是一对对应点,则点P'的坐标为( )
A.(-x, -y)
B.(-2x, -2y)
C.(-2x, 2y)
D.(2x, -2y)
(12)(13)
13.如果两个几何图形存在一一对应,且每一对
对应点P和P'都与一定点O共线,同时OP OP'
=k
(k>0是常数),那么称这两个图形位似点O叫做位似中心,k是位似比,如图,△AOB三个顶点的坐标分别为A(8.0),O(0.0),B(8.-6),点M为OB的中点,以点O为位似中心,把
△AOB缩小为原来的1
2,得到的△A'O'B',以
点M'为O'B'的中点,则MM'的长为________.
14.△ABC三个顶点的坐标分别为A(2, 2),
B(4, 2),C(6, 4).以原点O为位似中心,将
△ABC缩小得到△DEF,其中点D与A对应,点E与B对应,△DEF与△ABC对应边的比为1:2,这时点F的坐标是_______.
15.在平面直角坐标系中,点A的坐标为(1,2),将点A沿x轴的正方向平移m 个单位后,得到的对应点的坐标为(4,2),则n=________.16.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A'B'O'是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为________.
(17)
17. 如图,正方形ABCD的顶点A,B的坐标分别为(-2, 0),(-1, 0).顶点C,D在第二象限内.以原点O为位似中心,将正方形ABCD 放大为正方形A'B'C'D',若点B'的坐标为(2, 0),则点D'的坐标为________.
18. 如图,正方形OEFG和正方形ABCD是位似图形,且点F与点C是一对对应点,点F的坐标是(1, 1),点C的坐标是(4, 2),则它们的位似中心的坐标是________.
(18)。

相关文档
最新文档