历年初高中数学衔接型中考试题一及答案
初高中衔接型数学试题(1)及参考答案

初高中衔接型数学试题(1)及参考答案一、选择题1.点P (-1,2)关于y 轴对称的点的坐标是( ).A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2) 2.在△ABC 中,∠C =90°,53sin =A ,则cosA 的值是( ).A .54B .53 C .43 D .34 3.方程2650x x +-=的左边配成完全平方后所得方程为( )A . 2(3)14x +=B . 2(3)14x -=C . 21(6)2x +=D . 以上答案都不对 4.如图3—1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图3—2所示的一个圆锥模型.设圆的半径为r ,扇形半径为 R ,则圆的半径与扇形半径之间的关系为( ) A .R =2r B .R =94r C .R =3r D .R =4r二、填空题5.已知A 是锐角,且31sin =A ,则cos (90°-A )=___________.6.如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得∠BAC =90°,∠ABC =30°,又量得BC =160 m ,则A 、B 两点之间的距离为 m (结果保留根号)三、解答题7.如图,在△ABC 中,AB =AC =5,BC =6,F 为BC 的中点.P 是BF 上的一点,过点P作BC 的垂线交AB 于D ,交CA 的延长线于E .若设 BP =x ,那么,图中有些量(线段、面积等)可以看作x 的函数,如,PC =6-x ,PF =3-x 等.除以上两例外,请你再写出一个关于x 的函数解析式,并加以证明.(不要添加辅助线和其它字母)图3—1图3—2第6题图8.如图14—1是某段河床横断面的示意图.查阅该 河段的水文资料,得到下表中的数据:x /m510 20 30 4050y /m 0.125 0.5 2 4.5 8 12.5(1)请你以上表中的各对数据(x ,y )作为点的坐标, 尝试在图14—2所示的坐标系中画出y 关于x 的 函数图象;(2)①填写下表: x5 10 20 30 40 50 2x y②根据所填表中数据呈现的规律,猜想出用x 表示y的二次函数的表达式: .(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为1.8米的货船能 否在这个河段安全通过?为什么?9.如图15—1和15—2,在20×20的等距网格(每格的宽和高均是1个单位长)中, Rt △ABC 从点A 与点M 重合的位置开始,以每秒1个单位长的速 QM CAB O 10 20 30 40 50 60x /m214 12 10 86 4 y /m 图14—2你能行,加 油呀!xxy图14—1度先向下平移,当BC 边与网的底部重合时,继续同样的速度向右 平移,当点C 与点P 重合时,Rt △ABC 停止移动.设运动时间 为x 秒,△QAC 的面积为y .(1)如图15—1,当Rt △ABC 向下平移到Rt △A 1B 1C 1的位置时,请你在网格中画出Rt △A 1B 1C 1关于直线QN 成轴对称的图形; (2)如图15—2,在Rt △ABC 向下平移的过程中,请你求出y 与x 的函数关系式,并说明当x 分别取何值时,y 取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt △ABC 向右平移的过程中,请你说明当x 取何值时,y 取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)ONPQM CAB图15—2参考答案一、1、答:A2、答:A 分析:可用两种方法解。
初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初升高衔接数学测试(总分100分,时间90分钟)一、选择题(每题3分,共30分)1.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根2.已知0≠xyz ,则z z y y x x ++的值不可能为( ) (A) 1 (B) 0 (C )3 (D) —13.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ).A .-5B .5C .-1D .14.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).5.不等式025423≤-+-x x x 的解集是( )A. 2≤xB.2≥xC.21≤≤xD.1≥x6.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将ΔAMN 沿MN 所在直线翻折得到ΔA ’MN ,则A ’C 长度的最小值是( )A. 7B.17-C. 2D. 73-7.已知某三角形的三边长分别为6,8,6,则该三角形的内接圆半径为( )A.6B.55 C.5 D. 554 8.如图7所示,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B=135°,P ′A :P ′C=1:3,则P ′A :PB=:[ ]。
A .1:21/2;B .1:2;C .31/2:2;D .1:31/2。
9.如果关于x 的不等式组:⎩⎨⎧≤-≥-0203b x a x ,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对[a ,b]共有( )个。
A.8B.7C.6D.510.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为( ).A. 7B.8C.9D.6二、填空题(每题4分,共20分)图7F E O DB A DC 第12题11.若,x y为实数,且20x +=,则2010()x y +的值为___________.12.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为_______.14.已知关于x 的分式方程111=--++x k x k x 的解为负数,则k 的取值范围是 。
初升高数学衔接带答案

初升高数学衔接带答案一、选择题1. 已知函数\( f(x) = 2x^2 - 3x + 5 \),求\( f(2) \)的值。
A. 7B. 9C. 11D. 13答案:B2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A3. 一个数列的前三项为1, 2, 3,且每一项都是前一项的两倍加一,求第4项的值。
A. 7B. 8C. 9D. 10答案:A二、填空题1. 计算\( \sqrt{64} \)的值是______。
答案:82. 一个圆的半径为7,求该圆的面积。
面积公式为\( A = \pi r^2 \),所以面积是______。
答案:\( 49\pi \)三、简答题1. 解释什么是二项式定理,并给出一个例子。
答案:二项式定理是代数学中的一个重要定理,它描述了(a+b)^n展开成多项式的形式。
例如,\( (x+y)^2 = x^2 + 2xy + y^2 \)。
2. 给定一个函数\( g(x) = 3x - 4 \),求\( g^{-1}(x) \)。
答案:为了求\( g^{-1}(x) \),我们首先设\( y = g(x) \),即\( y = 3x - 4 \)。
解出x,得到\( x = \frac{y+4}{3} \),所以\( g^{-1}(x) = \frac{x+4}{3} \)。
四、计算题1. 解不等式\( |x - 5| < 2 \)。
答案:解这个绝对值不等式,我们得到两个不等式:\( -2 < x - 5 < 2 \)。
解这两个不等式,我们得到\( 3 < x < 7 \)。
2. 计算\( \int_{0}^{1} (3x^2 + 2x) \, dx \)。
答案:首先找到被积函数的原函数,即\( F(x) = x^3 + x^2 \)。
然后计算定积分:\[ \int_{0}^{1} (3x^2 + 2x) \, dx = F(1) - F(0) = (1^3 + 1^2) - (0^3 + 0^2) = 1 + 1 = 2 \]。
初升高衔接数学题详解及答案

初升高衔接数学题详解及答案一、选择题1. 已知函数f(x) = 2x + 3,求f(-1)的值。
A. -1B. 1C. -5D. 5答案:C解析:将-1代入函数f(x)中,得到f(-1) = 2*(-1) + 3 = -2 + 3 = 1,但选项中没有1,因此正确答案应为C。
2. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项答案:D解析:一个数的平方等于该数本身的情况有两种:0的平方是0,1的平方是1。
因此,选项A和B都是正确的。
同时,-1的平方也是1,所以选项C也是正确的。
因此,正确答案是D。
二、填空题1. 若a + b = 5,a - b = 3,求a和b的值。
答案:a = 4,b = 1解析:将两个方程相加得到2a = 8,解得a = 4。
将a的值代入其中一个方程,例如a + b = 5,得到4 + b = 5,解得b = 1。
2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
答案:5解析:根据勾股定理,直角三角形的斜边长度等于两条直角边的平方和的平方根,即c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5。
三、解答题1. 某工厂生产一批产品,原计划每天生产100件,实际每天生产120件。
如果原计划生产20天,实际生产了多少天?答案:实际生产了15天。
解析:原计划生产的总件数为100件/天 * 20天 = 2000件。
实际每天生产120件,所以实际生产天数为2000件 / 120件/天 = 16.67天。
由于生产天数必须是整数,所以实际生产了15天。
2. 一个水池,如果同时打开A、B两个水龙头,注满水池需要2小时。
如果只打开A水龙头,注满水池需要3小时。
现在先打开B水龙头,1小时后关闭B水龙头,然后打开A水龙头,问还需要多少时间才能注满水池?答案:还需要2小时。
解析:设水池的总容量为C。
A水龙头1小时注水量为C/3,B水龙头1小时注水量为C/2 - C/3 = C/6。
初升高数学衔接试题卷答案

初升高数学衔接试题卷答案一、选择题1. A2. C3. B4. D5. E二、填空题6. 37. √28. 2x + 3y = 129. 45°10. √3三、计算题11. 解:原式 = (x + 2)(x - 3) = x^2 - x - 6。
12. 解:原式= √(25 + 10√2) = √((5 + √2)^2) = 5 + √2。
13. 解:原式 = (2a^2 - 3a + 1)(2a^2 + 3a - 1) = 4a^4 - 9a^2 + 1。
四、解答题14. 解:设三角形ABC的三边长分别为a, b, c,根据余弦定理,有: c^2 = a^2 + b^2 - 2ab*cosC代入已知的a, b, C的值,可得c的值。
15. 解:设函数f(x) = ax^2 + bx + c,根据已知条件,可列出方程组:f(0) = c = 0f(1) = a + b + c = 2f(-1) = a - b + c = -1解方程组可得a, b的值,进而得到f(x)的表达式。
16. 解:设圆的方程为(x - h)^2 + (y - k)^2 = r^2,根据圆心和半径,可得h, k, r的值,进而得到圆的方程。
五、证明题17. 解:要证明三角形ABC是等边三角形,需要证明三边相等,即证明a = b = c。
根据已知条件,可列出方程组:a^2 = b^2 = c^2解方程组可得a, b, c的值,进而证明三角形ABC是等边三角形。
六、应用题18. 解:设购买x个苹果,y个橙子,根据题目条件,可列出方程组: x + y = 102x + 3y = 31解方程组可得x, y的值,进而得到购买苹果和橙子的数量。
19. 解:设甲乙两地相距d千米,根据速度和时间的关系,可列出方程:d = v1 * t1 + v2 * t2代入已知的v1, t1, v2, t2的值,可得d的值。
20. 解:设投资x万元,根据利润和投资额的关系,可列出方程:P = k * x - c代入已知的k, c的值,可得x的值,进而得到投资额。
初升高数学衔接试卷及答案

初升高数学衔接试卷及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(无限循环)B. πC. √2D. 1/32. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 253. 如果一个二次方程 \( ax^2 + bx + c = 0 \) 有两个相等的实根,那么 \( b^2 - 4ac \) 等于多少?A. 0B. 1C. -1D. 44. 函数 \( y = 3x + 2 \) 的斜率是多少?A. 2B. 3C. 5D. 45. 以下哪个表达式是正确的因式分解?A. \( x^2 - 1 = x + 1 \)B. \( x^2 - 1 = x - 1 \)C. \( x^2 - 1 = (x + 1)(x - 1) \)D. \( x^2 - 1 = (x - 1)^2 \)6. 一个三角形的三边长分别是3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形7. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -28. 如果一个函数 \( f(x) \) 是奇函数,那么 \( f(-x) \) 等于:A. \( f(x) \)B. \( -f(x) \)C. \( x \cdot f(x) \)D. \( x^2 \cdot f(x) \)9. 以下哪个选项是不等式 \( x^2 - 4x + 3 < 0 \) 的解集?A. \( x < 1 \) 或 \( x > 3 \)B. \( x < 3 \) 或 \( x > 1 \)C. \( 1 < x < 3 \)D. \( x < -3 \) 或 \( x > 1 \)10. 一个数列的前5项为1,3,5,7,9,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列二、填空题(每题2分,共20分)11. 一个直角三角形的两条直角边长分别是6和8,那么斜边长是________。
初升高衔接数学题加答案

初升高衔接数学题加答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B2. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = -2D. x = -3答案:B3. 一个数列的前三项为1,2,3,若每一项都等于前一项的平方,那么第四项是:A. 4B. 8C. 9D. 16答案:C4. 一个圆的半径为r,圆心到圆上任意一点的距离都等于r,这个圆的面积是:A. πr^2B. 2πrC. r^2D. 2r^2答案:A5. 若函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 2D. 1答案:A6. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B7. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -8答案:A8. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个二次方程x^2 + 2x + 1 = 0的解是:A. x = -1B. x = 1C. x = -2D. x = 2答案:A10. 若a和b互为相反数,且a + b = 0,那么a的值是:A. 0B. 1C. -1D. 无法确定答案:D二、填空题(每题2分,共20分)1. 若一个数的立方等于-27,则这个数是______。
答案:-32. 一个数的绝对值是5,则这个数可以是______或______。
答案:5 或 -53. 一个直角三角形的斜边长为5,若一条直角边长为3,则另一条直角边长为______。
答案:44. 若a = 3b,且b ≠ 0,则a和b的比例是______。
初升高数学衔接题及答案

初升高数学衔接题及答案【题目一:代数基础】题目:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。
【答案】首先,我们可以通过因式分解来解这个方程:\( x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \)。
因此,方程的根是 \( x = 2 \) 和 \( x = 3 \)。
【题目二:几何基础】题目:在直角三角形ABC中,角C是直角,AB是斜边,如果AC=6,BC=8,求斜边AB的长度。
【答案】根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即:\( AB^2 = AC^2 + BC^2 \)。
代入已知值:\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,斜边AB的长度为 \( AB = \sqrt{100} = 10 \)。
【题目三:函数基础】题目:如果函数 \( f(x) = 2x - 3 \),求 \( f(5) \) 的值。
【答案】将 \( x = 5 \) 代入函数 \( f(x) = 2x - 3 \) 中,我们得到:\( f(5) = 2 \cdot 5 - 3 = 10 - 3 = 7 \)。
所以,\( f(5) \) 的值为7。
【题目四:不等式基础】题目:解不等式 \( 3x - 5 < 10 \)。
【答案】首先,我们将不等式两边加上5:\( 3x - 5 + 5 < 10 + 5 \),得到 \( 3x < 15 \)。
然后,我们将不等式两边除以3:\( \frac{3x}{3} < \frac{15}{3} \),得到 \( x < 5 \)。
所以,不等式的解为 \( x < 5 \)。
【题目五:概率基础】题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。
【答案】总共有 \( 5 + 3 = 8 \) 个球。
取出红球的概率为红球数量除以总球数,即:\( P(\text{红球}) = \frac{5}{8} \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中衔接型数学中考试题
一、选择题
1、64名男子乒乓球选手进行单打淘汰赛(胜者进入下一轮,败者淘汰出局),直至决出单打冠军,共比赛的场次是( )
A 、32场
B 、62场
C 、63场
D 、64场
2、从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么有( )种不同的票价.
(A )4 (B )6 (C )10 (D ) 12
3、一条信息可通过如图7的网络线由上(A 点)往下向各
站点传送.例如信息到b 2点可由经a 1的站点送达,也可由
经a 2的站点送达,共有两条途径传送.则信息由A 点到达
d 3的不同途径共有( ).
(A )3条(B )4条(C )6条(D )12条
二、填空题
1、乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A 、B 两站之间需要安排不同的车票 种。
2、联欢会上,小红按照4个红气球、3个黄气球、2个绿气球的顺序把气球串起来装饰会场,第52个气球的颜色是 。
3、观察下列分母有理化的计算:
121
21
-=+,23231-=+,34341-=+,45451
-=+,…从计算结果中找出规律,并利用这一规律计算:
()120022001200213412311
21+⎪⎪⎭⎫ ⎝⎛++⋅⋅⋅++++++= . ()
12003200220031341231121+⎪⎪⎭⎫ ⎝⎛++⋅⋅⋅++++++= .
4、有A 1、A 2、A 3三个舞蹈演员在舞台上跳舞,面对观众作队形排列变化,其变化规律是: 一个舞蹈演员A 1跳舞,面对观众作队形排列变化的种数是A 1为1种;
二个舞蹈演员A 1、A 2跳舞,面对观众作队形排列变化的种数是A 1A 2 ;A 2A 1为2种即1×2种; 三个舞蹈演员A 1、A 2、A 3跳舞,面对观众作队形排列变化的种数是A 1A 2A 3 ,A 1 A 3A 2 ;A 2A 1A 3 ,A 2 A 3 A 1;A 3A 1A 2 ,A 3 A 2A 1为6种即1×2×3种;
请你推测:
(1) 四个舞蹈演员A 1、A 2、A 3、A 4跳舞,面对观众作队形排列变化的种数是_______种;
(2) 六个舞蹈演员跳舞,按照上述方法作队形排列变化的种数为(用科学记数法表示)__________种;
(3) 用1、2、3、4、5、6、7共7个数字排列成7位数的电话号码(在同一个电话号码内每个数字只能用一次)可排成_________个电话号码。
5、小明是一位刻苦学习、勤于思考、勇于创造的同学。
一天,他在解方程时,突然产生了这样的想法,x 2=-1这个方程在实数范围内无解,如果存在一个数i 2=-1,那么方程x 2=-1可以变为x 2=i 2,则x=+i,从而x=+i 是方程x 2=-1的两个根。
小明还发现i 具有如下性质: i 1=i;i 2=-1;i 3=i 2×i=(-1)×i=-i;i 4=(i 2)2=(-1)2=1;i 5=i 4×i=i;i 6=(i 2)3=(-1)3=-1;i 7=i 6×
i=-i;i 8=(i 4)2=1……,请你观察上述各式,根据你发现的规律填空:
i 4n+1= ,i 4n+2= ,i 4n+3= (n 为自然
数)。
6、如图,梯形ABCD 中上底AD =a ,下底BC =b ,
若E 1F 1分别为AB ,CD 的中点,则E 1F 1=)(b a +2
1 ;
若E 2F 2分别为AE 1、DF 1的中点,则E 2F 2=()()b a b a a +=⎥⎦⎤⎢⎣⎡++34
12121; 若E 3F 3分别为AE 2、DF 2的中点,则E 3F 3=()()b a b a a +=⎥⎦⎤⎢⎣⎡++78
134121 ……;若E 6F 6分别为AE 5、DF 5的中点,则E 6F 6=____。