半导体物理第4章
合集下载
半导体物理学第四章

2
算术平均速度:
8kT 5 7 10 m / s 10 cm / s * m
作为比较: 声速~ 340m / s ,波音767~272m / s
§4.1 载流子的漂移运动,迁移率
无规则运动的原因:载流子(电子)在运动过程中 遭到散射,每次散射后它们的运动方向及速度大小 均发生变化,而且这种变化是随机的,所以速度不 能无限增大。 ②有规则运动(条件:存在电场或载流子浓度梯度)
a) 施加电场,电子(空穴)作 漂移运动,在电场方向上获 得加速度。
设电压为 V ,则电场
q * F qE m a a * E m
V E L
,
图4-1-1 电子在电 场中的运动
§4.1 载流子的漂移运动,迁移率
每次散射经过时间△t,得到附加度 j nqd 。
n型,n p, n N D , n 1 1 N D qn
n
§4.1 载流子的漂移运动,迁移率
1 p型, p n, p N A , p p N A q p
本征,ni pi , i 1
1
i
1 ni q( n p )
n type, 用N D N A 代替N D 存在杂质补偿时 p type, 用N A N D 代替N A
V ( x)
x 0,V (0) V0 示意图 V ( x) V0 Ex V0 x xd ,V ( xd ) 0, E x const d V0 电子电势能 qV ( x) qV0 qEx qV0 q x x0 设 xd 处为电势零点,对应的导带底为 Ec 0 V0 Ec ( x) Ec 0 qV ( x) Ec 0 qV0 qEx Ec 0 qV0 q x 则: xd
算术平均速度:
8kT 5 7 10 m / s 10 cm / s * m
作为比较: 声速~ 340m / s ,波音767~272m / s
§4.1 载流子的漂移运动,迁移率
无规则运动的原因:载流子(电子)在运动过程中 遭到散射,每次散射后它们的运动方向及速度大小 均发生变化,而且这种变化是随机的,所以速度不 能无限增大。 ②有规则运动(条件:存在电场或载流子浓度梯度)
a) 施加电场,电子(空穴)作 漂移运动,在电场方向上获 得加速度。
设电压为 V ,则电场
q * F qE m a a * E m
V E L
,
图4-1-1 电子在电 场中的运动
§4.1 载流子的漂移运动,迁移率
每次散射经过时间△t,得到附加度 j nqd 。
n型,n p, n N D , n 1 1 N D qn
n
§4.1 载流子的漂移运动,迁移率
1 p型, p n, p N A , p p N A q p
本征,ni pi , i 1
1
i
1 ni q( n p )
n type, 用N D N A 代替N D 存在杂质补偿时 p type, 用N A N D 代替N A
V ( x)
x 0,V (0) V0 示意图 V ( x) V0 Ex V0 x xd ,V ( xd ) 0, E x const d V0 电子电势能 qV ( x) qV0 qEx qV0 q x x0 设 xd 处为电势零点,对应的导带底为 Ec 0 V0 Ec ( x) Ec 0 qV ( x) Ec 0 qV0 qEx Ec 0 qV0 q x 则: xd
半导体物理-第四章-载流子的输运现象PPT课件

• 学习的目的:最终确定半导体器件I-V特性的基础。 • 本章所作的假设:虽然输运过程中电子和空穴净流动,
但是热平衡状态不受到干扰。
.
2
4.1 载流子的漂移运动
一、电导微观理论(刘恩科书p106)
单位: 西门子/米 1S=1A/V=1/Ω
.
3
.
4
二、半导体的电导率和迁移率
.
5
4.2 载流子的散射
一、
.
6
1、
.
7
.
8
.
9
二、
.
10
.
11
.
12
.
13
小结:
.
14
4.3 迁移率与杂质浓度和温度的关系
一、
.
15
.
16
.
17
二、
.
18
.
19
4.4 强电场下的输运
一、欧姆定律的偏离和热载流子
.
20
.Leabharlann 21.22
.
23
.
24
第四章 载流子的输运现象
书 第五章
.
1
• 在半导体中电子和空穴的净流动产生电流,把载流子的 这种运动称为输运。
• 本章介绍半导体晶体中两种基本输运机制: 1、漂移运动:由电场引起的载流子运动。 2、扩散运动:由浓度梯度引起的载流子运动。 此外半导体的温度梯度也引起载流子的运动,但是由于 半导体器件尺寸越来越小,这一效应可以忽略。
但是热平衡状态不受到干扰。
.
2
4.1 载流子的漂移运动
一、电导微观理论(刘恩科书p106)
单位: 西门子/米 1S=1A/V=1/Ω
.
3
.
4
二、半导体的电导率和迁移率
.
5
4.2 载流子的散射
一、
.
6
1、
.
7
.
8
.
9
二、
.
10
.
11
.
12
.
13
小结:
.
14
4.3 迁移率与杂质浓度和温度的关系
一、
.
15
.
16
.
17
二、
.
18
.
19
4.4 强电场下的输运
一、欧姆定律的偏离和热载流子
.
20
.Leabharlann 21.22
.
23
.
24
第四章 载流子的输运现象
书 第五章
.
1
• 在半导体中电子和空穴的净流动产生电流,把载流子的 这种运动称为输运。
• 本章介绍半导体晶体中两种基本输运机制: 1、漂移运动:由电场引起的载流子运动。 2、扩散运动:由浓度梯度引起的载流子运动。 此外半导体的温度梯度也引起载流子的运动,但是由于 半导体器件尺寸越来越小,这一效应可以忽略。
《半导体物理》第四章

1 nq a exp( ) 1 k0T
长声学波,声子数最多,作用最大。
电子和声子的碰撞
• 声子的能量为:
1 1 1 a E (n )a a 2 2 exp(a ) 1 k0T
• 电子与声子的碰撞过程:
k 'k q E ' E h
• 具有单一极值、球形等能面的半导体,对导带电子散射 的几率是
k T (m ) Ps v 4 u
2 c 0 * 2 n 2
由形变引起导带底的变化
Ec c
V V0
最后,因电子热运动速度与T1/2成正比,声学波散射几率
Ps T 3 / 2
• 对于硅、锗具有旋转椭球等能面的半导体,切变也会引 起能带极值的变化,即横声学波也参与对电子的散射。 总的散射几率依然如上式,为T3/2关系。
§4.3 迁移率与杂质浓度和温度的关系
1、平均自由时间τ和散射几率P的关系 1 P
当几种散射机构同时存在时
总散射几率: 相应的平均自由时间:
P Pj
j
1
j
1
j
τ-P关系的数学推导 用N(t)表示t时刻未遭到散射的电子数,则在 t ~ t t 被 散射的电子数
• 对于硅、锗及III-V族化合物,其原胞结构均由两套 面心立方原子套构而成,基元有2个原子,三维结构 每个波矢q共有6支格波:3支声学波和3支光学波。 • 3支声学波为2横1纵。声学波是 q = 0时,=0。 • 长声学波代表质心的振动。在长波范围内,波数q越 大,波长越短,能量越大,声子数越少。 同时,其能 量 为量子化的: (n+1/2)h 。
载流子的散射 存在破坏周期性势场的作用因素: 载流子在半导体中运动时,不断与振动 杂质 着的晶格原子或杂质离子发生碰撞,碰撞后 缺陷 载流子速度的大小及方向均发生改变,这种 晶格热振动 现象称为载流子的散射。
长声学波,声子数最多,作用最大。
电子和声子的碰撞
• 声子的能量为:
1 1 1 a E (n )a a 2 2 exp(a ) 1 k0T
• 电子与声子的碰撞过程:
k 'k q E ' E h
• 具有单一极值、球形等能面的半导体,对导带电子散射 的几率是
k T (m ) Ps v 4 u
2 c 0 * 2 n 2
由形变引起导带底的变化
Ec c
V V0
最后,因电子热运动速度与T1/2成正比,声学波散射几率
Ps T 3 / 2
• 对于硅、锗具有旋转椭球等能面的半导体,切变也会引 起能带极值的变化,即横声学波也参与对电子的散射。 总的散射几率依然如上式,为T3/2关系。
§4.3 迁移率与杂质浓度和温度的关系
1、平均自由时间τ和散射几率P的关系 1 P
当几种散射机构同时存在时
总散射几率: 相应的平均自由时间:
P Pj
j
1
j
1
j
τ-P关系的数学推导 用N(t)表示t时刻未遭到散射的电子数,则在 t ~ t t 被 散射的电子数
• 对于硅、锗及III-V族化合物,其原胞结构均由两套 面心立方原子套构而成,基元有2个原子,三维结构 每个波矢q共有6支格波:3支声学波和3支光学波。 • 3支声学波为2横1纵。声学波是 q = 0时,=0。 • 长声学波代表质心的振动。在长波范围内,波数q越 大,波长越短,能量越大,声子数越少。 同时,其能 量 为量子化的: (n+1/2)h 。
载流子的散射 存在破坏周期性势场的作用因素: 载流子在半导体中运动时,不断与振动 杂质 着的晶格原子或杂质离子发生碰撞,碰撞后 缺陷 载流子速度的大小及方向均发生改变,这种 晶格热振动 现象称为载流子的散射。
华南理工半导体物理—第四章

E=0 2
1 6 3 随机热运动 4
5
当一个小电场E施加于半导体时,每一个电子会从电场上 受到一个-qE的作用力,且在各次碰撞之间,沿着电场的反向 被加速。因此,一个额外的速度成分将再加至热运动的电子上 ,此额外的速度成分称为漂移速度(drift velocity) 一个电子由于随机 的热运动及漂移成分两 者所造成的位移如图所 示。 值得注意的是,电 子的净位移与施加的电 场方向相反。
电离杂质散射 • 半导体中的电离杂质形成正、负电中心, 对载流子有吸引或排斥作用,从而引起载 流子散射。
电离杂质散射几率
Pi N iT
3
2
上式表明,随着温度的降低,散射几率 增大。因此,这种散射过程在低温下是 比较重要的。
Байду номын сангаас
晶格振动散射
半导体晶体中原子的振动是引起载流子 被散射的主要原因之一。
mn n 0.26 0.911030 kg 1000104 m2 / V s c q 1.6 1019 C
1.48 1013 s 0.148 ps.
又
1 3 3kT 2 mn vth kT vth 107 cm / s 2 2 mn
所以,平均自由程则为
漂移运动,迁移率与电导率
• 漂移运动:载流子在电场力作用下的定向运动, 定向运动的速度称为漂移速度
j E
vd n E
j nqvd
jn nqn E
n nqn
J jn j p (nqn nq p ) E
(nqn nq p )
载流子散射
j E
dI dV J E ds dl
半导体中电流的大小还可以从另一个角度 来理解。
第半导体物理课件 第四章

用,对电子产生散射作用。
• 横声学波要引起一定的切变,对具有多极值、旋转椭球等 能面的锗、硅来说,也将引起能带极值的变化。
光学波散射
• 离子性半导体中,长纵光学波有重要的散射作用。 • 每个原胞内正负离子振动位移相反,正负离子形成硫密 相间的区域,造成在一半个波长区域内带正电,另一半 个波长区域内带负电,将产生微区电场,引起载流子散 射。 长声学波振动,声子的速度很小,散射前后电子能量基本不 变,--弹性散射 光学波频率较高,声子能量较大,散射前后电子能 量有较大的改变,--非弹性散射。
迁移率和杂质与温度关系
杂质浓度较低,迁移率随温度升高迅速减小,晶格散射起主要作用; 杂质浓度高,迁移率下降趋势不显著,说明杂质散射机构的影响为主。当 杂质浓度很高时,低温范围内,随温度升高,电子迁移率缓慢上升,直到
很高温度(约550K左右)才稍有下降,这说明杂质散射起主要作用。晶格 振动散射与前者比影响不大,所以迁移率随温度升高而增大;温度继续升 高后,又以晶格振动散射为主,故迁移随温度下降。
② 计算中假设散射后的速度完全无规则,即散射后载流子向各个方向运动 的几率相等。这只适用于各向同性的散射.对纵声学波和纵光学波的散射确 实是各向同性的.但是电离杂质的散射则偏向于小角散射。所以精确计算还 应考虑散射的方向性。
下节较精确地计算半导体的电导率,为简单起见,仍限于讨论各向同性的 散射。
5 玻耳兹曼方程· 电导率的统计理论
• 各向同性晶体特点:
a、声学波散射: Ps∝T3/2 b、光学波散射:P o∝[exphv/k0T)]-1
2)电离杂质散射:即库仑散射
散射几率Pi∝NiT-3/2(Ni:为杂质浓度总和)。
3)其它散射机构
第4章.-半导体物理-半导体的导电性

p
pq2 m*p
p
一般混合型半导体:
nq2 mn*
n
pq2 m*p
p
意义:平均自由时间愈长,或说单位时间内遭受散射的次数愈少,
载流子的迁移率愈高;电子和空穴的迁移率不同,因为它们的平均
自由时间和有效质量不同。一般电子迁移率大于空穴迁移率。
The Scattering of Carriers
b、光学波散射:
Po
[exp(
1
k0T
)
1]1
举例:GaAs
小结:
半导体中的散射机构是电离杂质散射和晶格振动散射,而 晶格振动散射主要是以长纵光学波和长纵声学波为主。
散射作用的强弱用散射几率P来衡量。
电离杂质散射: P
NiT
3
2;长纵声学波:P
T
3 2
(3)其它散射机构
散射几率 Pi NiT 3/ 2
杂质浓度总和Ni越大,载流子受到散射的机会越大 T越高,载流子热运动平均速度越大,散射几率越少
电离施主杂质散射
电离受主杂质散射
电离杂质散射示意图
(2)晶格振动散射
各原子对平衡位置的位移可以分为若干不同频率位移波的迭加。 原子的平衡位置
R As exp[ i(q r t)]
(vdn和vdp分别为电子和空穴的平均漂移速度)
在本征情况下, J= Jn+ Jp
电场不太强时,漂移电流遵从欧姆定律 J E
n型半导体,n>>p,Jn>>Jp E nqvdn
vdn
nq
E
半导体物理_第四章

以简化为玻尔兹曼分布函数,即:
其中NC称为导带的有效态密度函数,若取mn*=m0, 则当T=300K时, NC=2.5E19cm-3,对于大多数半导 体材料来说,室温下NC确实是在1019cm-3的数量级。
其中NV称为价带的有效态密度函数,若取mp*=m0,则 当T=300K时, NV=2.5E19cm-3,对于大多数半导体 材料来说,室温下NV确实是在1019cm-3的数量级。 热平衡状态下电子和空穴的浓度直接取决于导带和 价带的有效态密度以及费米能级的位置。
为了求解热平衡状态下的载流子浓度,首先必须确 定费米能级EF的位置。对于本征半导体材料(即纯净 的半导体材料,既没有掺杂,也没有晶格缺陷)来说, 在绝对零度条件下,所有价带中的能态都已填充电子, 所有导带中的能态都是空的,费米能级EF一定位于导 带底EC和价带顶EV之间的某个位置。 当温度高于绝对零度时,价带中的部分电子将获得 足够的热运动能量,进而跃迁到导带中,产生一个导 带电子,同时也产生一个价带空穴。也就是说电子- 空穴成对出现,因而费米能级的位置几乎不变。
参见右图所示,当 半导体材料中掺入 施主杂质后,导带 中的电子浓度将大 于价带中的空穴浓 度,半导体材料成 为N型材料,其费 米能级的位置也将 由禁带中心附近向 导带底部上移。
而当半导体材料 中掺入受主杂质 后,价带中的空 穴浓度将大于导 带中的电子浓度, 半导体材料则变 成P型材料,其费 米能级的位置也 将由禁带中心附 近向价带顶部下 移,如右图所示。
右图给出了几种常见半导体材 料的本征载流子浓度与温度之间的 变化关系。 根据上式计算出的室温下硅材 料本征载流子浓度为 ni=6.95E9cm-3,这与实测的本征 载流子浓度为ni=1.5E10cm-3有很 大偏离,原因在于:电子和空穴的 有效质量通常是在低温下利用回旋 共振实验方法测得的,室温下会有 一定的偏差;态密度函数是利用三 维无限深势阱模型得到的,这也与 实际情况有一定偏离。
其中NC称为导带的有效态密度函数,若取mn*=m0, 则当T=300K时, NC=2.5E19cm-3,对于大多数半导 体材料来说,室温下NC确实是在1019cm-3的数量级。
其中NV称为价带的有效态密度函数,若取mp*=m0,则 当T=300K时, NV=2.5E19cm-3,对于大多数半导体 材料来说,室温下NV确实是在1019cm-3的数量级。 热平衡状态下电子和空穴的浓度直接取决于导带和 价带的有效态密度以及费米能级的位置。
为了求解热平衡状态下的载流子浓度,首先必须确 定费米能级EF的位置。对于本征半导体材料(即纯净 的半导体材料,既没有掺杂,也没有晶格缺陷)来说, 在绝对零度条件下,所有价带中的能态都已填充电子, 所有导带中的能态都是空的,费米能级EF一定位于导 带底EC和价带顶EV之间的某个位置。 当温度高于绝对零度时,价带中的部分电子将获得 足够的热运动能量,进而跃迁到导带中,产生一个导 带电子,同时也产生一个价带空穴。也就是说电子- 空穴成对出现,因而费米能级的位置几乎不变。
参见右图所示,当 半导体材料中掺入 施主杂质后,导带 中的电子浓度将大 于价带中的空穴浓 度,半导体材料成 为N型材料,其费 米能级的位置也将 由禁带中心附近向 导带底部上移。
而当半导体材料 中掺入受主杂质 后,价带中的空 穴浓度将大于导 带中的电子浓度, 半导体材料则变 成P型材料,其费 米能级的位置也 将由禁带中心附 近向价带顶部下 移,如右图所示。
右图给出了几种常见半导体材 料的本征载流子浓度与温度之间的 变化关系。 根据上式计算出的室温下硅材 料本征载流子浓度为 ni=6.95E9cm-3,这与实测的本征 载流子浓度为ni=1.5E10cm-3有很 大偏离,原因在于:电子和空穴的 有效质量通常是在低温下利用回旋 共振实验方法测得的,室温下会有 一定的偏差;态密度函数是利用三 维无限深势阱模型得到的,这也与 实际情况有一定偏离。
半导体物理与器件-第四章 平衡半导体

ni严重依赖温度
16
4.1 半导体中的载流子
4.1.3 本征载流子浓 度
P81例4.3
ni随温度的升高而明显增大。
• 与温度关系很大: • 温升150度时,浓度增大4个数量级。
17
4.1 半导体中的载流子
4.1.4 本征费米能级位置
由电中性条件:n0=p0
禁带中央
本征费米能级精确位于禁带中央;
本征费米能级会稍高于禁带中央; 本征费米能级会稍低于禁带中央;
平征半导体(Intrinsic Semiconductor)
本征激发:共价键上的电子激发成为准自由电子,也就是 价带电子获得能量跃迁到导带的过程。
本征激发的特点:成对的产生导带电子和价带空穴。
14
4.1 半导体中的载流子
4.1.3 本征载流子浓度
说明: 本征半导体中电子的浓度=空穴的浓度即n0=p0 (电中性条件)记为ni=pi
3、施主杂质原子增加导带电子,但并不产生价带空穴,因此,这样的半导体称为 n型半导体。
22
4.2掺杂原子与能级 施主杂质
■ 电子脱离施主杂质的束缚成为导电电子的过程称为施主电 离,所需要的能量
ΔED=Ec-Ed 称为施主杂质电离能。ΔED的大小与半导体材料和杂质种类
有关,但远小于Si和Ge的禁带宽度。 ■ 施主杂质未电离时是中性的,称为束缚态或中性态,电离后
4.4施主和受主的统计学分布 4.4.2完全电离和束缚态
与室温条件相反,当T=0K时,杂质原子没有电离: 1、对n型半导体,每个施主原子都包含一个电子,nd=Nd
费米能级高于施主能级
2、对p型半导体,杂质原子不包含外来电子,na=Na,费米能级低于受主能级
束缚态:
没有电子从施主能态热激发到导带 中,
16
4.1 半导体中的载流子
4.1.3 本征载流子浓 度
P81例4.3
ni随温度的升高而明显增大。
• 与温度关系很大: • 温升150度时,浓度增大4个数量级。
17
4.1 半导体中的载流子
4.1.4 本征费米能级位置
由电中性条件:n0=p0
禁带中央
本征费米能级精确位于禁带中央;
本征费米能级会稍高于禁带中央; 本征费米能级会稍低于禁带中央;
平征半导体(Intrinsic Semiconductor)
本征激发:共价键上的电子激发成为准自由电子,也就是 价带电子获得能量跃迁到导带的过程。
本征激发的特点:成对的产生导带电子和价带空穴。
14
4.1 半导体中的载流子
4.1.3 本征载流子浓度
说明: 本征半导体中电子的浓度=空穴的浓度即n0=p0 (电中性条件)记为ni=pi
3、施主杂质原子增加导带电子,但并不产生价带空穴,因此,这样的半导体称为 n型半导体。
22
4.2掺杂原子与能级 施主杂质
■ 电子脱离施主杂质的束缚成为导电电子的过程称为施主电 离,所需要的能量
ΔED=Ec-Ed 称为施主杂质电离能。ΔED的大小与半导体材料和杂质种类
有关,但远小于Si和Ge的禁带宽度。 ■ 施主杂质未电离时是中性的,称为束缚态或中性态,电离后
4.4施主和受主的统计学分布 4.4.2完全电离和束缚态
与室温条件相反,当T=0K时,杂质原子没有电离: 1、对n型半导体,每个施主原子都包含一个电子,nd=Nd
费米能级高于施主能级
2、对p型半导体,杂质原子不包含外来电子,na=Na,费米能级低于受主能级
束缚态:
没有电子从施主能态热激发到导带 中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BN i AT + 3 2 T NI很小时,[1013(高纯) —1017cm-3(低掺)]. BNI /T3/2<<AT3/2.
32
μ∝
1
所以,随着温度的升高,迁移率μ下降.即T↑,μ↓.此时 晶格散射起主要作用.
NI ↑→电离杂质散射渐强→ μ随T 下降的趋势变缓 NI很大时(如1019cm-3),在低温的情况下, T↑,μ ↑(缓慢), 说明杂质电离项作用显著;在高温的情况下, T↑,μ↓,说明晶 格散射作用显著.
θ
电离杂质对电子和空穴的散射 电离杂质对载流子散射的问题,与α粒子被原子核散射的情形 很类似。 载流子的轨道是双曲线,电离杂质在双曲线的一个焦点上。
为描述散射作用强弱,引入散射几率P,它定义为单位时间内 一个载流子受到散射的次数。 如果离化的杂质浓度为Ni,电离杂质散射的散射几率Pi与Ni及 其温度的关系为
2. 晶格振动散射
一定温度下的晶体其格点原子(或离子)在各自平衡位置附近振 动。半导体中格点原子的振动同样要引起载流子的散射,称为 晶格振动散射。 格点原子的振动都是由若干个不同基本波动按照波的迭加原理 迭加而成。 基本波动被称作格波 常用格波波矢|q|=1/λ表示格波波长以及格波传播方向
由N个原胞组成的一块半导体,共有6N个格波,分成六支。 其中频率低的三支称为声学波,三支声学波中包含一支纵声学波 和二支横声学波。 六支格波中频率高的三支称为光学波,三支光学波中也包括一支 纵光学波和二支横光学波。 波长在几十个原子间距以上的所谓长声学波对散射起主要作用, 而长纵声学波散射更重要。
1013cm-3 1015cm-3 1016cm-3 1017cm-3 1018cm-3 1019cm-3
-100
0
100 T(℃)
200
(Si中电子迁移率)
⎧ μs ∝ T −3 2 ⎪ 1 μ = 1 μ s + 1 μi ⇒ ⎨ 32 −1 ⎪ μi ∝ T N i ⎩
μs μi CDN i-1 = μ= μ s + μ i CT -3 2 + D T 3 2 N i-1
纵声学波及其所引起的附加势场
光学波对载流子的散射几率Po为
Po ∝ (hν l )
3 2 2
(k0T )
1
⎡ ⎛ hν l ⎢exp ⎜ ⎝ k0T ⎣
⎞ ⎤ ⎟ − 1⎥ ⎠ ⎦
−1
1 hν l f( ) k0T
f 式中ν l 为纵光学波频率,( hνl / k0T ) 是随 ( hν l / k0T ) 变化的函数,
4.3迁移率与杂质浓度和温度的关系
4.3.1平均自由时间与散射概率的关系
由于存在散射作用,外电场E作用下定向漂移的载流子 只在连续两次散射之间才被加速,这期间所经历的时间 称为自由时间 其长短不一,它的平均值τ称为平均自由时间 τ和散射几率P都与载流子的散射有关, τ和P之间存 在着互为倒数的关系。
~ t + Δt
被散射的电子数
N 0 Pe − Pt dt
平均自由时间
1 1 − Pt τ= ∫ N 0 Pe tdt = P N0 0
∞
4.3.2电导率、迁移率与平均自由时间的关系
t=0时刻遭到散射,经过t后再次被散射 q vx = vx 0 − * E t mn
两边求平均,因为每次散射后v0完全没有规则,多次散射后 v0在x方向分量的平均值为零,t就是电子的平均自由时间τn
i
半导体中几种散射机构同时存在,总散射几率为几种散射机构 对应的散射几率之和
P = P1 + P2 + P3 + ⋅ ⋅ ⋅
平均自由时间τ和散射几率P之间互为倒数,所以
1
τ
= P = P1 + P2 + P3 + ⋅ ⋅ ⋅ =
1
τ1
+
1
τ2
+
1
τ3
+ ⋅⋅⋅
∗ 给上式两端同乘以 1 ( q mn ) 得到
其值为0.6~1。 Po与温度的关系主要取决于方括号项,低温下Po较 小,温度升高方括号项增大, Po增大。
3. 其它因素引起的散射 Ge、Si晶体因具有多能谷的导带结构,载流子可以从 一个能谷散射到另一个能谷,称为等同的能谷间散 射,高温时谷间散射较重要。 低温下的重掺杂半导体,大量杂质未电离而呈中性, 而低温下的晶格振动散射较弱,这时中性杂质散射不 可忽视。 强简并半导体中载流子浓度很高,载流子之间也会发 生散射。 如果晶体位错密度较高,位错散射也应考虑。
⎡ ⎛ hν l ⎞ ⎤ ⎟ τ o ∝ ⎢exp⎜ ⎜ k T ⎟ − 1⎥ ⎢ ⎝ 0 ⎠ ⎥ ⎣ ⎦
Si、Ge元素半导体中电离杂质散射和纵声学波散射起主 导作用,因此
1
μ
=
1
μi
+
1
μs
GaAs中电离杂质散射、声学波散射和光学波散射均起 主要作用,所以
1
μ μi μ s μo
=
1
+
1
+
1
若掺杂浓度一定, lnμ~ T 的关系为: ㏑μn
Pi ∝ N iT −3 2
上式表明: Ni越高,载流子受电离杂质散射的几率越大; 温度升高导致载流子的热运动速度增大,从而更容易掠过电离杂 质周围的库仑势场,遭电离杂质散射的几率反而越小。
说明: 对于经过杂质补偿的n型半导体,在杂质充分电离时,补偿后 的有效施主浓度为ND-NA ,导带电子浓度n0=ND-NA; 而电离杂质散射几率Pi中的Ni应为ND+NA,因为此时施主和受 主杂质全部电离,分别形成了正电中心和负电中心及其相应的 库仑势场,它们都对载流子的散射作出了贡献,这一点与杂质 补偿作用是不同的。
vx0 = 0
qE q vx = − * t = − * E τ n mn mn
根据迁移率的定义
μ =
vx E
得到电子迁移率
μn =
qτ n * mn
qτ p m* p
空穴迁移率
μp =
由于电子电导有效质量 小于空穴电导有效质 量, 所以电子迁移率大于空 穴迁移率。
各种不同类型材料的电导率 n型:
图4.1 平均漂移速度分析模型
这N个电子经过t时间后都将通过A面,因此按照电流强度的定义
− nqห้องสมุดไป่ตู้ υ d t Q − qN = = I= = − nqs υ d t t t
与电流方向垂直的单位面积上所通过的电流强度定义为电流密 度,用J表示,那么
J = I = − nq υ d s
对掺杂浓度一定的半导体,当外加电场恒定时,平均漂移速 度应不变,相应的电流密度也恒定; 电场增加,电流密度和平均漂移速度也相应增大。即平均漂 移速度与电场强度成正比例
4.4 .1 电阻率与杂质浓度的关系
轻掺杂时,如果认为室温下杂质全部电离,多子浓度等于 杂质浓度。而迁移率随杂质变化不大,可以认为是常数。 电阻率随杂质浓度成简单的反比关系,在对数坐标近似为 直线 杂质浓度增高时,曲线严重偏离直线。 原因(1)杂质不能完全电离 (2)迁移率随杂质浓度的增加而显著下降
第4章 半导体的导电性
本章重点
探讨载流子在外加电场作用下的漂移运动。 讨论半导体的迁移率、电导率、电阻率随温度 和杂质浓度的变化规律。
宏观电路中的电阻
4.1 载流子的漂移运动和迁移率
4.1.1欧姆定律
I= V R
l s
R=ρ
σ=
1
ρ
电流密度
I J= s
V E = l
J =σ E
欧姆定律的微分形式
图4.2 电子和空穴漂移电流密度
由于电子在半导体中作“自由”运动,而空穴运动实 际上是共价键上电子在共价键之间的运动。 所以两者在外电场作用下的平均漂移速度显然不 同,用μn和μp分别表示电子和空穴的迁移率。 在半导体中电子和空穴同时导电
J = J n + J p = (nqμn + pqμ p ) E
另一方面,载流子受电场力作用,沿电场方向(空穴)或 反电场方向(电子)定向运动。 二者作用的结果是载流子以一定的平均漂移速度做定向运 动。 电场对载流子的加速作用只存在于连续的两次散射之间。 而“自由”载流子只是在连续的两次散射之间才是“自由”的。 平均自由程:连续两次散射间自由运动的平均路程 平均自由时间:连续两次散射间的平均时间
4.2.2半导体的主要散射机构
半导体中载流子遭到散射的根本原因: 在于晶格周期性势场遭到破坏而存在有附加势场。 因此凡是能够导致晶格周期性势场遭到破坏的因素都会引 发载流子的散射。
1. 电离杂质散射
施主杂质在半导体中未电离时是中性的,电离后成为正电中 心,而受主杂质电离后接受电子成为负电中心,因此离化的杂质 原子周围就会形成库仑势场,载流子因运动靠近后其速度大小和 方向均会发生改变,也就是发生了散射,这种散射机构就称作电 离杂质散射。
4.1.2 漂移速度和迁移率
在外场|E|的作用下,半导体中载流子要逆(顺)电 场方向作定向运动,这种运动称为漂移运动。 定向运动速度称为漂移速度,它大小不一,取其 平均值称作平均漂移速度。
J = −nqvd
电子的平均漂移速度
图中截面积为s的均匀样品, 内部电场为|E| ,电子浓度为n。 在其中取相距为 υd ⋅ t 的A和B两 个截面,这两个截面间所围成 的体积中总电子数为 N = nsυd t,
纵声学波相邻原子振动相位一致,结果导致晶格原子分布疏密改 变,产生了原子稀疏处体积膨胀、原子紧密处体积压缩的体变。 原子间距的改变会导致禁带宽度产生起伏,使晶格周期性势场被破 坏,如图所示。 长纵声学波对导带电子的散射几率Ps与温度的关系为
Ps ∝ T 3 2
(a) 纵声学波
(b) 纵声学波引起的能带改变
32
μ∝
1
所以,随着温度的升高,迁移率μ下降.即T↑,μ↓.此时 晶格散射起主要作用.
NI ↑→电离杂质散射渐强→ μ随T 下降的趋势变缓 NI很大时(如1019cm-3),在低温的情况下, T↑,μ ↑(缓慢), 说明杂质电离项作用显著;在高温的情况下, T↑,μ↓,说明晶 格散射作用显著.
θ
电离杂质对电子和空穴的散射 电离杂质对载流子散射的问题,与α粒子被原子核散射的情形 很类似。 载流子的轨道是双曲线,电离杂质在双曲线的一个焦点上。
为描述散射作用强弱,引入散射几率P,它定义为单位时间内 一个载流子受到散射的次数。 如果离化的杂质浓度为Ni,电离杂质散射的散射几率Pi与Ni及 其温度的关系为
2. 晶格振动散射
一定温度下的晶体其格点原子(或离子)在各自平衡位置附近振 动。半导体中格点原子的振动同样要引起载流子的散射,称为 晶格振动散射。 格点原子的振动都是由若干个不同基本波动按照波的迭加原理 迭加而成。 基本波动被称作格波 常用格波波矢|q|=1/λ表示格波波长以及格波传播方向
由N个原胞组成的一块半导体,共有6N个格波,分成六支。 其中频率低的三支称为声学波,三支声学波中包含一支纵声学波 和二支横声学波。 六支格波中频率高的三支称为光学波,三支光学波中也包括一支 纵光学波和二支横光学波。 波长在几十个原子间距以上的所谓长声学波对散射起主要作用, 而长纵声学波散射更重要。
1013cm-3 1015cm-3 1016cm-3 1017cm-3 1018cm-3 1019cm-3
-100
0
100 T(℃)
200
(Si中电子迁移率)
⎧ μs ∝ T −3 2 ⎪ 1 μ = 1 μ s + 1 μi ⇒ ⎨ 32 −1 ⎪ μi ∝ T N i ⎩
μs μi CDN i-1 = μ= μ s + μ i CT -3 2 + D T 3 2 N i-1
纵声学波及其所引起的附加势场
光学波对载流子的散射几率Po为
Po ∝ (hν l )
3 2 2
(k0T )
1
⎡ ⎛ hν l ⎢exp ⎜ ⎝ k0T ⎣
⎞ ⎤ ⎟ − 1⎥ ⎠ ⎦
−1
1 hν l f( ) k0T
f 式中ν l 为纵光学波频率,( hνl / k0T ) 是随 ( hν l / k0T ) 变化的函数,
4.3迁移率与杂质浓度和温度的关系
4.3.1平均自由时间与散射概率的关系
由于存在散射作用,外电场E作用下定向漂移的载流子 只在连续两次散射之间才被加速,这期间所经历的时间 称为自由时间 其长短不一,它的平均值τ称为平均自由时间 τ和散射几率P都与载流子的散射有关, τ和P之间存 在着互为倒数的关系。
~ t + Δt
被散射的电子数
N 0 Pe − Pt dt
平均自由时间
1 1 − Pt τ= ∫ N 0 Pe tdt = P N0 0
∞
4.3.2电导率、迁移率与平均自由时间的关系
t=0时刻遭到散射,经过t后再次被散射 q vx = vx 0 − * E t mn
两边求平均,因为每次散射后v0完全没有规则,多次散射后 v0在x方向分量的平均值为零,t就是电子的平均自由时间τn
i
半导体中几种散射机构同时存在,总散射几率为几种散射机构 对应的散射几率之和
P = P1 + P2 + P3 + ⋅ ⋅ ⋅
平均自由时间τ和散射几率P之间互为倒数,所以
1
τ
= P = P1 + P2 + P3 + ⋅ ⋅ ⋅ =
1
τ1
+
1
τ2
+
1
τ3
+ ⋅⋅⋅
∗ 给上式两端同乘以 1 ( q mn ) 得到
其值为0.6~1。 Po与温度的关系主要取决于方括号项,低温下Po较 小,温度升高方括号项增大, Po增大。
3. 其它因素引起的散射 Ge、Si晶体因具有多能谷的导带结构,载流子可以从 一个能谷散射到另一个能谷,称为等同的能谷间散 射,高温时谷间散射较重要。 低温下的重掺杂半导体,大量杂质未电离而呈中性, 而低温下的晶格振动散射较弱,这时中性杂质散射不 可忽视。 强简并半导体中载流子浓度很高,载流子之间也会发 生散射。 如果晶体位错密度较高,位错散射也应考虑。
⎡ ⎛ hν l ⎞ ⎤ ⎟ τ o ∝ ⎢exp⎜ ⎜ k T ⎟ − 1⎥ ⎢ ⎝ 0 ⎠ ⎥ ⎣ ⎦
Si、Ge元素半导体中电离杂质散射和纵声学波散射起主 导作用,因此
1
μ
=
1
μi
+
1
μs
GaAs中电离杂质散射、声学波散射和光学波散射均起 主要作用,所以
1
μ μi μ s μo
=
1
+
1
+
1
若掺杂浓度一定, lnμ~ T 的关系为: ㏑μn
Pi ∝ N iT −3 2
上式表明: Ni越高,载流子受电离杂质散射的几率越大; 温度升高导致载流子的热运动速度增大,从而更容易掠过电离杂 质周围的库仑势场,遭电离杂质散射的几率反而越小。
说明: 对于经过杂质补偿的n型半导体,在杂质充分电离时,补偿后 的有效施主浓度为ND-NA ,导带电子浓度n0=ND-NA; 而电离杂质散射几率Pi中的Ni应为ND+NA,因为此时施主和受 主杂质全部电离,分别形成了正电中心和负电中心及其相应的 库仑势场,它们都对载流子的散射作出了贡献,这一点与杂质 补偿作用是不同的。
vx0 = 0
qE q vx = − * t = − * E τ n mn mn
根据迁移率的定义
μ =
vx E
得到电子迁移率
μn =
qτ n * mn
qτ p m* p
空穴迁移率
μp =
由于电子电导有效质量 小于空穴电导有效质 量, 所以电子迁移率大于空 穴迁移率。
各种不同类型材料的电导率 n型:
图4.1 平均漂移速度分析模型
这N个电子经过t时间后都将通过A面,因此按照电流强度的定义
− nqห้องสมุดไป่ตู้ υ d t Q − qN = = I= = − nqs υ d t t t
与电流方向垂直的单位面积上所通过的电流强度定义为电流密 度,用J表示,那么
J = I = − nq υ d s
对掺杂浓度一定的半导体,当外加电场恒定时,平均漂移速 度应不变,相应的电流密度也恒定; 电场增加,电流密度和平均漂移速度也相应增大。即平均漂 移速度与电场强度成正比例
4.4 .1 电阻率与杂质浓度的关系
轻掺杂时,如果认为室温下杂质全部电离,多子浓度等于 杂质浓度。而迁移率随杂质变化不大,可以认为是常数。 电阻率随杂质浓度成简单的反比关系,在对数坐标近似为 直线 杂质浓度增高时,曲线严重偏离直线。 原因(1)杂质不能完全电离 (2)迁移率随杂质浓度的增加而显著下降
第4章 半导体的导电性
本章重点
探讨载流子在外加电场作用下的漂移运动。 讨论半导体的迁移率、电导率、电阻率随温度 和杂质浓度的变化规律。
宏观电路中的电阻
4.1 载流子的漂移运动和迁移率
4.1.1欧姆定律
I= V R
l s
R=ρ
σ=
1
ρ
电流密度
I J= s
V E = l
J =σ E
欧姆定律的微分形式
图4.2 电子和空穴漂移电流密度
由于电子在半导体中作“自由”运动,而空穴运动实 际上是共价键上电子在共价键之间的运动。 所以两者在外电场作用下的平均漂移速度显然不 同,用μn和μp分别表示电子和空穴的迁移率。 在半导体中电子和空穴同时导电
J = J n + J p = (nqμn + pqμ p ) E
另一方面,载流子受电场力作用,沿电场方向(空穴)或 反电场方向(电子)定向运动。 二者作用的结果是载流子以一定的平均漂移速度做定向运 动。 电场对载流子的加速作用只存在于连续的两次散射之间。 而“自由”载流子只是在连续的两次散射之间才是“自由”的。 平均自由程:连续两次散射间自由运动的平均路程 平均自由时间:连续两次散射间的平均时间
4.2.2半导体的主要散射机构
半导体中载流子遭到散射的根本原因: 在于晶格周期性势场遭到破坏而存在有附加势场。 因此凡是能够导致晶格周期性势场遭到破坏的因素都会引 发载流子的散射。
1. 电离杂质散射
施主杂质在半导体中未电离时是中性的,电离后成为正电中 心,而受主杂质电离后接受电子成为负电中心,因此离化的杂质 原子周围就会形成库仑势场,载流子因运动靠近后其速度大小和 方向均会发生改变,也就是发生了散射,这种散射机构就称作电 离杂质散射。
4.1.2 漂移速度和迁移率
在外场|E|的作用下,半导体中载流子要逆(顺)电 场方向作定向运动,这种运动称为漂移运动。 定向运动速度称为漂移速度,它大小不一,取其 平均值称作平均漂移速度。
J = −nqvd
电子的平均漂移速度
图中截面积为s的均匀样品, 内部电场为|E| ,电子浓度为n。 在其中取相距为 υd ⋅ t 的A和B两 个截面,这两个截面间所围成 的体积中总电子数为 N = nsυd t,
纵声学波相邻原子振动相位一致,结果导致晶格原子分布疏密改 变,产生了原子稀疏处体积膨胀、原子紧密处体积压缩的体变。 原子间距的改变会导致禁带宽度产生起伏,使晶格周期性势场被破 坏,如图所示。 长纵声学波对导带电子的散射几率Ps与温度的关系为
Ps ∝ T 3 2
(a) 纵声学波
(b) 纵声学波引起的能带改变