核磁共振新技术
核磁共振MRCP成像原理及成像技术

核磁共振MRCP成像原理及成像技术1. 引言1.1 核磁共振MRCP成像原理及成像技术介绍核磁共振胆总管成像(MRCP)是一种非侵入性的影像学检查技术,用于评估胆总管、胰腺和周围结构的病变。
MRCP成像原理基于核磁共振技术,利用磁场和无损伤的无线电波来生成高分辨率的图像。
MRCP成像技术是通过获取人体组织内的氢原子对磁场的响应,进而形成影像。
核磁共振原理可以简单概括为在强磁场中对氢原子施加无线电波,使其发生共振,然后监测其回放的信号来获取结构信息。
在MRCP成像中,成像参数的设置对于获得高质量的影像至关重要。
对于不同的组织和病变,需要调整磁场强度、脉冲序列、分辨率等参数以实现最佳的成像效果。
成像过程包括对患者进行定位、选择适当的成像平面、对病灶进行扫描等步骤。
通过精确的操作和设备控制,可以获得清晰详细的MRCP图像,帮助医生做出准确诊断。
MRCP技术在胆道疾病、胰腺疾病、胆囊结石等疾病的诊断中具有重要应用价值。
通过MRCP成像,医生可以实现对患者的无创全面检查,提高诊断准确性和治疗效果。
2. 正文2.1 核磁共振原理核磁共振原理是核磁共振成像技术的基础,通过核磁共振现象来获取人体组织的影像信息。
核磁共振是利用核自旋磁矩在外加磁场和射频场的作用下产生共振吸收信号的物理现象。
在外加静态磁场的作用下,人体组织中的原子核自旋会发生进动运动,而外加射频脉冲的作用下,核自旋将吸收射频能量并发生共振。
根据核自旋的回弹过程,可以得到不同组织中核自旋的信号强度和位置信息,最终形成图像。
核磁共振原理的基本思想是利用人体组织中的氢原子核的信号来生成影像,因为人体组织中水分子中的氢原子核含量较高,因此核磁共振成像主要是对水分子中的氢原子核进行成像。
不同组织中的水分子分布不同,因此在核磁共振图像中显示出不同的信号强度和对比度,从而可以明显地区分不同组织类型。
核磁共振原理的优势在于其非侵入性、高分辨率和多重成像方式,可以在不影响人体健康的前提下获取高质量的影像信息,对于临床诊断和研究具有重要意义。
核磁共振成像技术的最新进展

核磁共振成像技术的最新进展在现代医学领域,核磁共振成像(Magnetic Resonance Imaging,MRI)技术无疑是一项至关重要的诊断工具。
它能够为医生提供人体内部结构的详细图像,帮助诊断各种疾病,从神经系统问题到心血管疾病,从肿瘤到肌肉骨骼损伤等。
近年来,核磁共振成像技术取得了显著的进展,这些进展不仅提高了图像质量和诊断准确性,还拓展了其应用范围。
一、硬件方面的改进磁场强度是核磁共振成像的关键因素之一。
更高的磁场强度可以提供更高的分辨率和更好的图像对比度。
目前,临床上已经广泛应用了30T 的磁共振设备,甚至一些研究机构已经开始探索 70T 及以上的超高场强设备。
然而,随着磁场强度的增加,也带来了一些挑战,如磁场不均匀性、射频能量沉积等问题。
为了解决这些问题,研究人员不断改进磁体设计和射频线圈技术。
梯度系统的性能也得到了显著提升。
更快的梯度切换率和更高的梯度强度能够实现更快速的成像,减少扫描时间,同时提高图像的空间分辨率。
这对于动态成像,如心脏成像和脑功能成像等,具有重要意义。
此外,探测器技术的进步也为核磁共振成像带来了新的机遇。
新型的探测器能够更灵敏地检测到磁共振信号,从而提高图像的信噪比,使图像更加清晰。
二、成像序列和技术的创新并行成像技术是近年来的一个重要突破。
它通过同时使用多个接收线圈来采集信号,可以大大缩短扫描时间,同时保持图像质量。
例如,敏感度编码(SENSE)和同时采集空间谐波(SMASH)等技术已经在临床上得到了广泛应用。
压缩感知技术的出现也为核磁共振成像带来了变革。
该技术利用图像的稀疏性,通过采集少量的数据来重建高质量的图像,从而显著减少扫描时间。
这对于那些难以长时间保持静止的患者,如儿童和重症患者,尤为重要。
扩散张量成像(DTI)和扩散峰度成像(DKI)等技术则为研究大脑白质纤维束和微观结构提供了更有力的工具。
它们可以帮助医生更好地诊断神经系统疾病,如多发性硬化症和脑肿瘤等。
核磁共振技术的进展及应用前景

核磁共振技术的进展及应用前景随着科技的不断迭代和升级,各种新型技术层出不穷。
而核磁共振技术(NMR)作为一种重要的科学研究工具,已经得到广泛应用,特别是在生命科学和医学领域。
本文将从了解NMR的基本原理开始,梳理其在科学研究和医学应用方面的一些进展,以及它未来的发展趋势。
一、NMR基本原理核磁共振技术是一种基于磁共振现象的分析方法,其理论基础主要建立在两个方面:核自旋和外磁场。
不同的原子核有不同的能量状态或自旋取向,而这两种状态之间的能量差可以通过较强的磁场加热来实现,使核从基态跃迁到激发态。
当外磁场作用于原子核时,会引起围绕原子核的电子的磁场产生反应,从而改变电子环能级,使原子核有不同的磁矩,这种状态称为核磁共振。
通过核磁共振技术可以对固体、液体和气体等样品进行分析。
在这个过程中,将样品放置在一个较强的磁场中,然后用一些无线电波去激发原子核,激发后的原子核会在不同的时间段内逐渐回复到基态,过程中会发出一些电磁波。
这些电磁波可以通过一系列的电子设备进行检测和处理,从而得出样品的性质和组成。
二、NMR在科学研究中的应用1、物理化学方面核磁共振技术在物理化学研究方面发挥着重要的作用。
在材料学领域中,通过核磁共振技术可以了解物质的结构、动力学和几何构型,更加深入的了解材料的性质和特点。
例如,核磁共振技术可以帮助科学家更好的研究分子内部结构,从而对新型材料的制备、催化反应和超导材料等方面进行更深入的研究。
2、生命科学方面在生命科学和医学领域,核磁共振技术是一种非常有用的实验方法。
例如,在生物医学领域中核磁共振技术可以用于研究新药物和其它生物分子间的相互作用;在组织学领域中也可以通过核磁共振技术来研究组织中的细胞组分,从而更好的理解生物物质的组成和结构。
三、NMR在医学领域的应用1、诊断核磁共振技术在医学领域中的应用主要是用于诊断和治疗。
在医学成像方面,核磁共振技术可以生成高清晰度的图像,进而了解病变对组织结构的影响情况,给医师提供更全面的诊断信息。
新型核磁共振技术

新型核磁共振技术核磁共振(Nuclear Magnetic Resonance,简称 NMR)是一种能够测量物质内部结构和属性的非常有效的方法。
最早的核磁共振技术主要应用于化学领域中,用来确定分子的结构。
但随着科技的发展,它早已超出了化学范畴,现在已广泛应用于医学、材料科学、地质学和生物技术等各个领域。
近些年来,随着核磁共振技术的不断发展,新型核磁共振技术不断涌现,它们的应用越来越广泛,让科学家们有了更多的研究手段,也给我们的生活带来了许多福利。
下面,本文将介绍一些新型核磁共振技术。
波谱相干算法波谱相干算法(Spectral coherence algorithm,简称 SCORING)是近年来新型核磁共振技术中一种十分重要的技术。
它是一种针对不均相核磁共振谱(heteronuclear NMR spectra)信号的处理算法,其目的是鉴别出化学位点,并且不受亚相和耦合影响。
对于许多药物来说,确定化学位点的难度非常大,这就是SCORING 得以应用的原因之一。
通过这种新型技术,科学家们可以更加精准地确定药物的结构和性质,从而为药物的研制提供更加可靠的依据。
四极谐振器四极谐振器(Quadrupolar Resonance,简称 QR)是一种新型的核磁共振技术,它可以非常有效地检测非晶态物质中的核磁共振信号。
对于许多重要的非晶态物质,如橡胶、聚合物等,以往的核磁共振技术难以直接检测这些物质中的核磁共振信号,因此它们的研究进展缓慢。
但具有四极谐振器的新型核磁共振技术却可以非常好地解决这个问题,达到了直接检测非晶态物质中的核磁共振信号的目的,从而使得非晶态物质的研究有了更多的突破。
高场核磁共振高场核磁共振技术,或称高场磁共振技术,是一种目前最高水平的核磁共振技术。
与传统的低场核磁共振技术不同,高场核磁共振技术使用强磁场作为激发源,可以大大提高检测灵敏度和分辨率。
高场核磁共振技术广泛应用于材料、化学、生物医学和工业等领域。
分析核磁共振波谱技术发展趋势

分析核磁共振波谱技术发展趋势核磁共振波谱技术(NMR)是一种通过使用核磁共振现象来研究物质分子结构、动力学和相互作用的技术。
自从核磁共振技术首次发现以来,它已经在化学、生物化学、医学和材料科学等领域取得了广泛的应用。
随着科学技术的进步和创新,核磁共振波谱技术也在不断发展和演变。
本文将对核磁共振波谱技术的发展趋势进行分析。
首先,随着技术的不断进步,核磁共振仪器的分辨率不断提高。
分辨率是评估核磁共振波谱仪器性能的重要指标,它决定了我们能够分辨出的信号数量和精确度。
通过改进仪器设计、优化信号采集和处理算法,可以显著提高核磁共振仪器的分辨率。
高分辨率的核磁共振波谱技术将有助于更准确地确定化合物结构和分析样品的成分。
其次,核磁共振波谱技术在生物医学领域的应用得到了迅速发展。
核磁共振成像(MRI)是医学诊断中常用的无创检测方法之一,它可以提供人体组织的高分辨率图像。
随着技术的进步,MRI不仅可以检测和诊断疾病,还可以用于研究人体器官的功能和代谢过程。
此外,核磁共振波谱技术还可以应用于药物研发和疾病研究,帮助科学家了解药物在人体内的代谢和相互作用机制。
第三,核磁共振波谱技术在无机化学和材料科学中的应用也在不断拓展。
核磁共振波谱技术可以用于研究材料的晶体结构、晶格动力学和电子结构。
通过核磁共振波谱技术,可以准确测量材料的宏观和微观性质,如磁性行为、自旋流体动态等。
此外,核磁共振波谱技术还可以用于检测和分析材料中的杂质和缺陷,提供分析材料结构的有力工具。
第四,现代核磁共振波谱技术在催化和化学反应动力学研究中的应用也越来越重要。
核磁共振波谱技术可以用于研究催化剂的活性和稳定性,以及催化反应中的中间体和过渡态。
通过核磁共振波谱技术,可以实时监测反应物和产物浓度的变化,分析反应路径和速率常数。
这些信息对于开发高效的催化剂和优化化学反应过程具有重要意义。
综上所述,核磁共振波谱技术在不同领域的应用前景广阔。
随着技术的不断进步和创新,核磁共振仪器的分辨率将不断提高,生物医学、材料科学和化学反应动力学等领域的研究将获得更精确和深入的结果。
核磁共振技术在医学中的新进展

核磁共振技术在医学中的新进展在现代医学的领域中,核磁共振(Nuclear Magnetic Resonance,简称 NMR)技术宛如一颗璀璨的明星,为疾病的诊断和治疗带来了前所未有的突破。
这项技术以其非侵入性、高分辨率和多参数成像的特点,成为了医学影像学中不可或缺的重要工具。
近年来,随着科技的不断进步,核磁共振技术在医学中的应用也取得了许多令人瞩目的新进展。
核磁共振技术的基本原理是利用原子核在强磁场中吸收和释放能量的特性来获取人体内部的信息。
人体内的氢原子含量丰富,而核磁共振主要就是对氢原子的信号进行检测和分析。
当人体被置于强磁场中时,氢原子核会发生共振现象,通过接收和处理这些共振信号,我们就能够构建出详细的人体内部结构和组织的图像。
在新进展方面,首先要提到的是高场强核磁共振技术的发展。
以往常见的核磁共振设备磁场强度多在 15T 到 30T 之间,而如今,70T 甚至更高场强的核磁共振设备已经逐渐投入临床应用。
更高的场强意味着能够获得更高的图像分辨率和更好的对比度,从而能够更清晰地显示微小的病变和组织结构。
例如,在神经系统疾病的诊断中,高场强核磁共振可以更精确地检测到脑部的细微病变,如早期的阿尔茨海默病、帕金森病等。
功能核磁共振成像(fMRI)技术的进步也是一大亮点。
fMRI 可以实时监测大脑在进行各种活动时的血液流动和代谢变化,从而反映出大脑的功能状态。
这使得我们能够深入了解大脑的认知、情感和感觉等功能,为神经精神疾病的诊断和治疗提供了重要的依据。
比如,通过 fMRI 研究,我们可以发现抑郁症患者在面对特定刺激时大脑活动模式的异常,从而为治疗方案的制定提供个性化的指导。
除了在神经系统领域,核磁共振技术在心血管系统的应用也有了新的突破。
心脏核磁共振成像(CMR)技术可以全面评估心脏的结构、功能和心肌灌注情况。
新的成像序列和技术使得 CMR 能够更准确地诊断心肌病、冠心病等心血管疾病,并且能够对心脏的功能进行定量分析,为治疗效果的评估提供了有力的手段。
新型核磁共振技术在医学影像中的应用

新型核磁共振技术在医学影像中的应用核磁共振技术是一种非侵入性的成像技术,在医学影像领域中得到越来越广泛的应用。
随着技术的不断创新与发展,新型核磁共振技术在医学影像中的应用已经展现出了巨大的潜力。
下文将从以下几个方面,介绍新型核磁共振技术在医学影像中的应用。
一、新型核磁共振技术的优势传统的核磁共振技术在成像方面有一定的局限性,例如:图像分辨率较低、扫描速度较慢等。
但是,新型核磁共振技术的出现,解决了这些问题。
例如,高场核磁共振技术采用高磁场强度进行成像,可以提高图像的分辨率和信噪比,获得更准确的结构信息。
另外,新型核磁共振技术还包括磁共振弥散张量成像、谱成像等,这些技术的出现使得医学影像的应用领域更加广泛,为医生提供了更多的参考依据。
二、新型核磁共振技术在神经影像学中的应用神经影像学是核磁共振技术的一个重要应用领域。
结合新型核磁共振技术的优势,我们可以更加准确地观察和诊断一些神经系统疾病,例如:脑损伤、帕金森综合症等。
其中,磁共振弥散张量成像技术可以通过对水分子进行测量,获取细胞间的扩散情况,用于诊断白质损伤、脑卒中等疾病。
同时,谱成像技术可以用于诊断帕金森综合症、阿尔茨海默病等疾病,它可以通过检测不同组织中的代谢产物来确定它们的存在,并提供更加准确的信息。
三、新型核磁共振技术在心脏影像学中的应用心脏影像学是核磁共振技术的另一个重要应用领域。
传统的核磁共振成像技术在心脏影像学方面存在局限性,例如:扫描时间过长、图像质量不佳等问题。
而采用新型核磁共振技术,这些问题可以得到解决。
例如,心脏磁共振造影技术可以通过对注射的对比剂进行追踪,对心脏的血流情况进行观察,用于诊断冠心病、心肌炎等疾病。
同时,磁共振弥散成像技术可以用于检测心肌的组织状态,如心肌梗塞后的组织变化等,为临床医生提供更加准确的诊断依据。
四、新型核磁共振技术在肿瘤影像学中的应用肿瘤影像学是核磁共振技术的重要应用领域之一。
新型核磁共振技术的应用,可以更加准确地诊断和治疗肿瘤疾病。
新型核磁共振光谱技术的应用及其发展趋势

新型核磁共振光谱技术的应用及其发展趋势核磁共振光谱技术(NMR)是一种重要的分析方法,能够对物质结构和组成进行无损分析,广泛应用于生物化学、材料科学、环境监测等领域。
近年来随着科学技术的不断发展,新型的核磁共振光谱技术不断涌现,为NMR技术的应用和发展带来了新的机遇和挑战。
一、常见的核磁共振光谱技术1、液体核磁共振技术液体核磁共振技术是最早被使用的核磁共振技术之一,适用于液态样本的分析和测定。
通过对物质中的分子进行核磁共振的激发和检测,可以获取样品的结构信息和分子组成,如化学位移、偶合常数等。
2、固体核磁共振技术固体核磁共振技术是近几十年发展起来的新型技术,适用于研究固体材料的结构和性质。
通过对凝固态样品进行高分辨的核磁共振测量,可以获取样品的结构、构象、晶体缺陷等信息,在新材料的研究和开发中得到了广泛应用。
3、核磁共振成像技术核磁共振成像技术(MRI)是一种非侵入性的影像技术,可以对人体内部的结构和组织进行全方位的显示和分析。
在医学诊断中,MRI技术被广泛应用于脑、骨、心脏等部位的检查和诊断,成为一种极为重要的医学影像技术。
二、新型核磁共振光谱技术的应用1、超高场核磁共振技术超高场核磁共振技术是近年来快速发展起来的一种新型核磁共振技术,可以在高于1.5T的磁场下进行核磁共振实验。
相较于常规的核磁共振技术,超高场核磁共振拥有更高的信噪比和分辨率,可以对细微的分子结构和相互作用进行更加精细的分析和探究,广泛应用于生物科学、化学、药学等领域。
2、核磁共振晶体学技术核磁共振晶体学技术是一种新兴的固态核磁共振技术,通过对晶体样品进行高分辨的核磁共振测定,可以获取晶体中各原子的位置和固体结构等信息,成为一种研究晶体材料的重要手段。
该技术的应用范围主要覆盖化学、材料科学、生物化学等领域。
3、超极化核磁共振技术超极化核磁共振技术是最新发展起来的一种新型核磁共振技术,通过对样品中的核自旋进行非平衡极化,可以大幅度提高核磁共振的信噪比和分辨率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顶部谱图 用常规5mm液体高分辨探头 91.1mg干树脂,扫描一次 中部谱图:用常规5rnm固体CP/MAS探头 ,树脂样品为20.2mg. 转速为3.8kHz,扫描8次 底部谱图:用Nano探头 ,树脂用量仅为5.4mg,魔角转速为2kHz, 扫描8次
• 目前,广泛用于监测固相合成反应;指导反应 条件的优化; 鉴定固载在单一树脂珠上化合物 的结构;以及分析树脂上固载化合物的构象等 等。高分辨魔角核磁共振是组合化学中有用的 分析工具,可以跟踪固相有机合成反应,快速 直接地提供连在树脂上的化合物的结构信息, 指导反应条件的优化,它能直接简便地定量反 应的产率,而这种分析方法恰恰在常规NMR中 很难实现。
高效液相色谱与核磁共振联用技术 (LC-NMR)
• 1、LC-NMR技术发展概况 ①NMR谱仪的灵敏度较低; ②系统无法应付较大的动力学范围; ③流动检测池和探头没有商品化以及
溶剂峰压制效果不理想。
2、LC-NMR联用技术的软硬件及原理
• 1)计算机软件支持 • 2)LC-NMR联用的相关硬件
a. NMR流动探头 b. HPLC系统 c. 峰敏技术 d. 在线/离线组份收集器
•
核磁共振是1946年由美国斯坦福大学布洛赫(F.Bloch)和哈
佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得
1952年诺贝尔物理学奖。50多年来,核磁共振已形成为一门有
完整理论的新学科。
12位因对核磁共振的杰出贡献而获得 诺贝尔奖科学家
•
1944年
•
1952年
•
1952年
•
• (2)不影响峰压制区域以外的信号强度 • (3)能同时压制多个溶剂峰 • (4)易于实现以避免损失测试信号 • (5)在梯度HPLC体系中能跟随溶剂信号位置
改变而改变 WET序列,已经可以成功地完成HPLC-
NMR中使用普通试剂而必需的峰压制
4、LC-NMR的操作模式及其应用
• 1)操作模式
a 连续流动 :在洗脱过程中,溶剂组成不断变化,给 峰压制造成一定困难, 另外样品停留时间短,灵敏度 低,一般只适用于1H和19F测试 。
b 停止流动:顾名思义即使溶液停留于检测池中进行 测试。当组分的保留时间已知,或者HPLC-NMR采用 灵敏的在线检测器时,可以采用这种方法。
c 分时止流:按一定的时间间隔暂停流动相, 来检测NMR谱。这种方法在被检组分没有UV 发色团时尤其适用。通过HPLC-NMR谱,也可 以估计色谱峰的纯度。
的变化,从而确定各条谱线之间的关系,
区分相互重叠的谱线。
二维核磁共振及多维核磁共振
二维核磁共振使NMR技术产生了一次革命性的变化,它将挤在一维谱中 的谱线在二维空间展开(二维谱),从而较清晰地提供了更多的信息。
二维核磁共振的脉冲序列
t1
t2
预备期 发展期 混合期 探测期
S(t1,t2) F(t2)S(t1,2) F(t1) S(1,2) 2
为5Hz(甚至50Hz),而1H微量探头因为1H核本身总
的谱宽窄,要求线宽<0.5Hz(CDCl3在丙酮-d6)中,
特殊设计的Nano NMR probe,其成功之处在于将体积
很小的样品(<40μL),能100%地保持在检测线圈内,
并确保填充因子高,和均匀的磁化率,以得到最高灵
敏度,构成探头的物料也必须使磁化率的不连续性达
(LC-NMR)
核磁双共振
•
双共振是同时用两种频率的射频场作用在两种核组成的系统上,第一射频场
B1使某种核共振,第二射频场B2使另外一种核共振,这样两个原子核同时发生共 振。
1脉冲 双核自旋系统
检测器
2 扰动
•
第二射频场为干扰场,通常用一个强
射频场干扰图谱中某条谱线,另一个射频
场观察其他谱线的强度、形状和精细结构
到最小,才能达到最小的线宽。
超微量探头的结构原理
• Nano NMR Probe内腔长28mm,魔角(54.7°), 转速在1.5~2.0kHz之间,为保持长期稳定性,带有2H 锁线圈,并有变温功能,探头种类有直接检测用的1H 和13C{1H}和间接检测用的1H{13C}探头,样品体积最 大为40μL,可取得线形好,灵敏度高和分辨率最佳的 谱图,若样品量很少,溶剂量可相应减少,保持样品 有一定浓度,溶剂杂质及伪峰不会增加,还可提高动 态范围,只要氘代试剂的量能保证场一频联锁,即使 样品溶液体积未充满整个样品管(40μl),也不会使 匀场变坏,或使谱线变宽,确保取得高质量的谱图。
藤黄酸大鼠胆汁代谢产物结构确证研究
• 藤黄酸是从中药藤黄中分离得到的化合物,其 抗癌作用与一般的化疗抗癌药物有所区别,实 验研究结果表明,藤黄酸对多种肿瘤显示较强 的抗肿瘤活性,并在有效计量范围内毒副作用 比较小,对肿瘤细胞的抑制有非常高的选择性, 能选择性的杀死癌细胞,而对正常动物造血系 统和免疫功能没有影响,这是目前肿瘤化疗药 物所不具备的。药代动力学研究已显示,藤黄 酸在肿瘤组织中有较高的分布和较长的持续时 间。
的超微量探头。
魔角旋转技术
在固体中自旋之间的耦合较强,共振谱较宽,掩盖了其他精细的谱 线结构,耦合能大小与核的相对位置在磁场中的取向有关,其因子是 (3cos2β-1),如果有一种方法使β=θ=54.440(魔角),则3cosβ-1=0, 相互作用减小,达到了窄化谱线的目的。魔角旋转技术就是通过样品的旋 转来达到减小相互作用的,当样品高速旋转时β与θ的差别就会平均掉。
Nano NMR Probe
•
90年代中,一种与常规高分辨液相探头设计完全
不同的超微量探头(目前称之为Nano NMR Probe,下
同)问世了,这种探头与常规固体高分辨探头也不尽
相同,后者为高功率,高速魔角旋转用于消除化学位
移各向异性和使偶极偶合平均化,对于磁化率的不连
续性是不考虑的。另外,常规MAS探头对线宽要求仅
d 收集分析:色谱洗脱峰被预先收集到一个样品 池中,然后进行离线NMR检测。
e 紫外激发:这种方法主要是利用软件技术, 在UV检测到组分峰时,经过计算将样品组分 准确地滞留于检测池中,并通过NMR进行采样。
• 2)应用范围 a 在药物代谢研究中应用 b 食品化学 c 高聚物分析 d 在天然产物化学中的作用 e 环境化学中的应用
核磁共振新技术及其应用
• 核磁共振概述 • 核磁共振新技术及应用
概述
•
核磁共振的方法与技术作为分析物质的手段 ,由于其可深
入物质内部而不破坏样品 ,并具有迅速、准确、分辨率高等优
点而得以迅速发展和广泛应用 ,已经从物理学渗透到化学、生
物、地质、医疗以及材料等学科 ,在科研和生产中发挥了巨大
作用 。
• 在多种合成方法中,“一珠一化合物”技术最大的优点是化学库 的空间可分离性,亦即化学库中所有的化合物同时并存且相互独 立,因而,这种树脂珠-化学库的方式可直接用于固相筛选法。
利用该技术在短时间内迅速合成并筛选的化合物可以达到几千 万这样的天文数字,大大加快了发现药物先导化合物的步伐。 但是在产物分析中,由于树脂引起磁场的不均匀,常规的NMR 技术受到了限制。较早的做法是将反应的中间体或最终产物从 树脂上切落下来,再利用常规方法进行分析和鉴定。这种方法 费时,费样,而且经常破坏化合物的结构,得出错误的信息。 九十年代初发展的高分辨魔角核磁共振技术(High resolution magic angle spinning (HR/MAS)NMR) 可以克服树脂引起的磁场 不均匀性 ,得到最高灵敏度和最小线宽的NMR谱图。该技术不 破坏样品,可灵敏、直接地提供偶联在树脂上化合物的结构信
Rt=19.557min)。
LC-NMR的分析条件
• 采用Varian公司的Prostar-230高效液相色谱仪,分析
柱为Inertsil ODS-3柱(150×4.6mm)。流动相为
D2O:CH3OH=85:15。流速为1ml/min,检测器为Varian Prostar-330二极管阵列检测器,紫外检测波长为 280nm。 • 将服药胆汁样品溶于200μl 甲醇和水的混合溶剂中。 在INOVA-500 LC-NMR上,用停止流动的方法分别采 集LC-1峰。谱宽7500Hz,1H谱采样时间为1.5s,驰豫时 间为1s,采样数据点16K,累加次数为256。
藤黄酸HPLC分析的色谱条件
色谱柱为Inertsil ODS柱,5μm(150×4.6mm);柱温30℃;流动相 为乙腈-水-醋酸 (85:15:1),流速1.0ml/min,280nm检测。
A 空白胆汁色谱图 B II 代谢物分析色谱图 C I相代谢物分析色谱图
D 藤黄酸色谱图
藤黄酸在大鼠胆汁中可检测到2个主要代谢产物,即代谢物1(MT1,Rt=17.996min)和代谢物2(MT2,
核磁共振原理
半数以上的原子核具有自旋,旋转时产生一小磁场。 当加一外磁场,这些原子核的能级将分裂,既塞曼效应。
在外磁场B0中塞曼分裂图:
共振条件: = 0 = 0
实现核磁共振的两种方法
a.扫场法: 改变0 b.扫频法: 改变
核磁共振新技术
• 核磁双共振 • 二维核磁共振 • NMR成像技术 • 极化转移技术 • 魔角旋转技术 • 高效液相色谱与核磁共振联用技术
在NMR测定中,为取得高质量的谱图,要求磁场均 匀,样品的填充因子高,磁化率均匀,前两个因素可以通 过硬件研制不断改善,而磁化率均匀与否则与样品性质、 数量及周围环境直接相关,这样,当样品量有限时,就必须 考虑磁化率的均匀性。
1982年,魔角旋转(MAS)开始用于高分辨工作, 此后,将MAS用于小体积微量样品引起了兴趣,实验表明 运用MAS可以消除固体及非均相溶液中磁化率不同而造成 的谱线加宽。样品应以相当或大于1.8kHz转速下旋转,可 使边带得到有效抑制,根据这些结果,成功地设计了新型