直线的倾斜角与斜率题型归纳与练习

合集下载

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。

当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。

(2)范围:直线l 倾斜角的范围是[0,π)。

2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。

(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。

3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。

5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。

查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。

复习(1)直线的倾斜角、斜率及直线方程(附答案)

复习(1)直线的倾斜角、斜率及直线方程(附答案)

复习(1)直线的倾斜角、斜率及直线方程一、知识要点:1、,直线的倾斜角范围是:2、直线的斜率公式是:3、直线方程的形式有: (1) (2) (3) (4)4、定比分点坐标公式是:5、三角形重心坐标公式是:二、典型例题[例1](1)已知M (4-,3),N (2,15)若直线l 的倾斜角是MN 的一半,求l 的斜率。

解:242315=+-=MN k ,设l 的倾斜角为αααα2t a n 1t a n 22t a n -==MN k ∴2122k k -=012=-+k k ∴ 251±-=k∵ 0>k ∴251+-=k(2)过P (1-,3-)的直线l 与y 轴的正半轴没有公共点,求l 的倾斜角的范围。

解:3tan =α ∴3πα=∴),2[]3,0[πππα⋃∈(3)若直线l 的斜率)(12R m m k ∈-=则直线l 的倾斜角α的取值范围是什么?解:∵ 112≤+-=m k ∴),2(]4,0[πππα⋃∈[例2] 在ABC ∆中,A (2,8),B (4-,0),C (5,0)求过B 且将ABC ∆面积分成2:1的直线方程。

解:设l 交AC 于P 点,则(1)21=;(2)PC AP 2=当时,P (x ,y )满足⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++==++=316211083211252y x(1)∴ l :)4(7316+=x y 即0642116=+-y x(2)当2=时,P (x ,y )满足⎪⎪⎩⎪⎪⎨⎧=++==++=382108421102y x ∴ l :)4(838+=x y 即043=+-y x[例3] 过点(5-,4-)作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5个平方单位,求直线l 的方程。

解:设直线l 的方程为)0,0(1≠≠=+b a b ya x∵ l 过点(5-,4-) ∴ 145=-+-b a 即ab a b =--45又直线l 与两坐标轴围成三角形面积为5,∴ 5||||21=⋅b a 则10±=ab∴ ⎩⎨⎧±==--1045ab ab a b ∴ ⎪⎩⎪⎨⎧=-=425b a 或⎩⎨⎧-==25b a∴ l 的方程为:02058=+-y x 或01052=--y x21=[例4] 求经过点A (3-,4)且在坐标轴上截距为相反数的直线l 的方程。

专题04 直线的倾斜角与斜率、直线方程问题(知识梳理+专题过关)(原卷版)

专题04 直线的倾斜角与斜率、直线方程问题(知识梳理+专题过关)(原卷版)

专题04直线的倾斜角与斜率、直线方程问题【知识梳理】1、倾斜角和斜率(1)直线的倾斜角的概念:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时,规定0a =°.(2)倾斜角α的取值范围: 0180a 埃<.当直线l 与x 轴垂直时, 90a =°.(3)直线的斜率:一条直线的倾斜角9(0)a a 拱的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k tan a=①当直线l 与x 轴平行或重合时,0a =°,00k tan =°=;②当直线l 与x 轴垂直时, 90a =°,k 不存在.由此可知,一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.(4)直线的斜率公式:给定两点()()11122212,,,,P x y P x y x x ¹,用两点的坐标来表示直线12P P 的斜率:21122112=y y y y k x x x x --=--2、两条直线的平行与垂直(1)两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即1212//l l k k Û=注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果12k k =,那么一定有12//l l (2)两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即1212=1l l k k Û×^-3、直线方程的不同形式间的关系直线方程的五种形式的比较如下表:名称方程的形式常数的几何意义适用范围点斜式()11y y k x x -=-11(,)x y 是直线上一定点,k 是斜率不垂直于x 轴斜截式y kx b =+k 是斜率,b 是直线在y 轴上的截距不垂直于x 轴两点式112121y y x x y y x x --=--11(,)x y ,22(,)x y 是直线上两定点不垂直于x 轴和y 轴截距式1x y a b+=a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不垂直于x 轴和y 轴,且不过原点考点2:直线与线段的相交问题考点3:两直线平行问题考点4:两直线垂直问题考点5:五种直线方程考点6:直线与坐标轴围成三角形问题考点7:直线过定点问题【典型例题】考点1:倾斜角与斜率1.(2021·福建宁德·高二期中)已知点()20A ,,(3B ,则直线AB 的倾斜角为()A .30︒B .60︒C .120︒D .150︒2.(2020·北京十五中高二期中)如图,直线1234,,,l l l l 的斜率分别为1234,,,k k k k ,则()A .4321k k k k <<<B .3421k k k k <<<C .4312k k k k <<<D .3412k k k k <<<3.(2022·全国·高二期中)已知直线斜率为k ,且1k -≤≤α的取值范围是().A .ππ3π0,,324⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .π3π0,,π34⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .ππ3π0,,624⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭4.(2021·湖北宜昌·高二期中)若倾斜角为3π的直线过(A ,()2,B a 两点,则实数=a ()AB C .D .5.(2021·广东·兴宁市叶塘中学高二期中)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m =()A .12B .12-C .2-D .26.(多选题)(2021·湖南·怀化五中高二期中)在下列四个命题中,错误的有()A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π]C .若一条直线的斜率为1,则此直线的倾斜角为45度D .若一条直线的倾斜角为α,则此直线的斜率为tanα7.(多选题)(2021·江苏南通·高二期中)若经过()1,1A a a -+和()3,B a 的直线的倾斜角为钝角,则实数a 的值不可能为()A .2-B .0C .1D .28.(2022·上海·华东师范大学附属东昌中学高二期中)已知直线l 0y -=,则直线l 的倾斜角为_________.9.(2022·上海市大同中学高二期中)已知直线l 经过原点,且与直线y =x +1的夹角为45°,则直线l 的方程为______.10.(2022·上海市控江中学高二期中)设a ∈R ,若直线l 经过点(,2)A a 、(1,3)B a +,则直线l 的斜率是___________.11.(2021·新疆·八一中学高二期中)已知点A (2,-1),B (3,m ),若1m ⎡⎤∈-⎢⎥⎣⎦,则直线AB 的倾斜角的取值范围为__________.考点2:直线与线段的相交问题12.(2021·福建三明·高二期中)已知A (3,-1),B (1,2),P (x ,y )是线段AB 上的动点,则yx的取值范围是_______.13.(2021·广东·汕头市潮南区陈店实验学校高二期中)已知两点()1,2A -,()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为()A .π3π,44⎡⎤⎢⎥⎣⎦B .ππ30,,42π4⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦14.(2021·广东·华中师范大学海丰附属学校高二期中)设点()2,3A -,()3,2B ,若直线ax +y +2=0与线段AB 有交点,则a 的取值范围是()A .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .45,32⎛⎫- ⎪⎝⎭C .54,23⎡⎤-⎢⎥⎣⎦D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭15.(2021·山东济宁·高二期中)设点()4,3A -,()2,2B --,直线l 过点()1,1P 且与线段AB 相交,则l 的斜率k 的取值范围是()A .1k ³或4k ≤-B .1k ³或43k ≤-C .41k -≤≤D .413k -≤≤-16.(2021·天津市嘉诚中学高二期中)已知两点(2,3)M -,(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .344k ≤≤D .344k -≤≤17.(2021·广西·防城港市防城中学高二期中)经过点()0,1P -作直线l ,若直线l 与连接()1,2A -,()2,1B 的线段总有公共点,则直线l 的斜率k 的取值范围为()A .[]1,1-B .(][),11,-∞-⋃+∞C .[)1,1-D .()[),11,∞∞--⋃+18.(2021·北京·景山学校高二期中)已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A .3243a -≤≤B .34a ≤-或23a ≥C .4332a -≤≤D .43a ≤-或32a ≥19.(2021·陕西安康·高二期中(理))已知点2)A ,(4,3)B -,直线l 过点(0,1)P 且与线段AB 相交,则直线l 的倾斜角的取值范围是()A .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭B .π3π,64⎡⎤⎢⎥⎣⎦C .π5π0,,π36⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭D .π5π,36⎡⎤⎢⎣⎦20.(2021·广东·广州六中高二期中)已知点(1,1)A -,(3,1)B ,直线l 过点(1,3)C ,且,A B 两点在直线l 的同侧,则直线l 斜率的取值范围是()A .(1,1)-B .(,1)(1,)-∞-+∞C .(,1)(0,1)-∞-D .(1,0)(1,)-È+¥考点3:两直线平行问题21.(2022·四川·泸县五中高二期中(文))已知直线1:210l x my ++=与2:310l x y --=平行,则 m 的值为__________.22.(2020·四川巴中·高二期中(文))若直线1:10l x ay +-=与直线()2:2330l a x y -++=平行,则实数a 的值为______.23.(2022·上海市宝山中学高二期中)“直线1l 与2l 平行”是“直线1l 与2l 的斜率相等”的()条件A .充分非必要B .必要非充分C .充要D .既非充分又非必要24.(2021·浙江台州·高二期中)直线()1:110l a x y -++=,()2:4210l x a y ++-=,则“2a =”是“12l l //”的()条件A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件25.(2021·河北·石家庄市第二十二中学高二期中)下列说法正确的是()A .平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两条直线的斜率之积为1-D .只有斜率相等的两条直线才一定平行26.(2021·福建·浦城县教师进修学校高二期中)已知A (-1,2),B (1,3),C (0,-2),点D 使AD ⊥BC ,AB ∥CD ,则点D 的坐标为()A .94(,)77-B .5413(,)77C .3813(,)33D .385(,)77考点4:两直线垂直问题27.(2021·吉林油田高级中学高二期中)下列方程所表示的直线中,一定相互垂直的一对是()A .210ax y +-=与220x ay ++=B .6430x y --=与10150x y c ++=C .2370x y +-=与4650x y -+=D .340x y b -+=与340x y +=28.(2021·贵州·黔西南州金成实验学校高二期中(理))已知直线1l :10mx y -+=,2l :()210mx m y ++-=,若12l l ⊥,则m =_________.29.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______.30.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.31.(2021·广东·珠海市第二中学高二期中)已知直线150l y --=,若直线21l l ⊥,则直线2l 的倾斜角大小为_____________.32.(多选题)(2021·河北·石家庄市第六中学高二期中)已知直线1l 的倾斜角为30°,2l 经过点M ,(2,0)N ,则1l 与2l 的位置关系为()A .平行B .垂直C .相交D .不确定考点5:五种直线方程33.(2018·江西·南昌市第八中学高二期中(理))直线l 过点()1,2-,且在两坐标轴上截距相等,则直线l 的一般式方程为___________.34.(2021·广东·新会陈经纶中学高二期中)过点(1,2)P 且与直线20x y --=平行的直线方程为___________________.35.(2021·浙江省杭州学军中学高二期中)经过点(3,2)A -,且在x 轴上的截距等于y 轴上截距的2倍的直线方程为___________.36.(2021·湖南·怀化五中高二期中)求符合下列条件的直线l 的方程:(1)过点A (﹣1,﹣3),且斜率为14-;(2)A (1,3),B (2,1))求直线AB 的方程;(3)经过点P (3,2)且在两坐标轴上的截距相等.37.(2021·福建·福州三中高二期中)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0(1)求直线AC 的方程,(2)求直线BC 的方程38.(2021·河北·唐山市第十一中学高二期中)求满足下列条件的直线方程:(1)过点()4,2P -,倾斜角为45°;(2)过两点()()1,3,2,5A B .39.(2021·北京·北师大二附中未来科技城学校高二期中)经过点()1,2,且倾斜角为45°的直线方程是()A .3y x =-B .21y x -=-C .(3)y x =--D .(3)y x =-+40.(2022·全国·高二期中)已知直线l 过()2,1A -,并与两坐标轴截得等腰三角形,那么直线l 的方程是().A .10x y --=或30x y +-=B .10x y --=或30x y -+=C .10x y ++=或30x y -+=D .10x y ++=或30x y +-=41.(2022·江苏南通·高二期中)已知直线l 经过点()2,3-,且与直线250x y --=垂直,则直线l 的方程为()A .240x y ++=B .240x y +-=C .280x y --=D .280x y -+=42.(2021·江苏苏州·高二期中)已知三角形的顶点()4,1A ,()6,3B -,()3,0C .(1)求AC 边上的高BH 所在的直线方程;(2)求AB 边上的中线CD 所在的直线方程.考点6:直线与坐标轴围成三角形问题43.(2020·上海·格致中学高二期中)过点()3,1的直线分别与x 轴、y 轴的正半轴交于A 、B 两点,则AOB (O 为坐标原点)面积取得最小值时直线方程为____________.44.(2021·江苏扬州·高二期中)已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为___________.45.(2021·湖北荆州·高二期中)(1)求过点()4,3-且在两坐标轴上截距相等的直线l 的方程;(2)设直线l 的方程为()()120a x y a a ++--=∈R ,若1a >-,直线l 与x ,y 轴分别交于M ,N 两点,O 为坐标原点,求OMN 面积取最小值时,直线l 的方程.46.(2021·福建福州·高二期中)已知直线l 过点()3,2M .(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若l 与x 轴正半轴的交点为A ,与y 轴正半轴的交点为B ,求AOB (O 为坐标原点)面积的最小值.47.(2021·河北省盐山中学高二期中)已知直线l 过点()1,2P -.(1)若直线l 在两坐标轴上截距和为零,求l 方程;(2)设直线l 的斜率0k >,直线l 与两坐标轴交点别为AB 、,求AOB 面积最小值.48.(2020·安徽·合肥市庐阳高级中学高二期中(文))直线l 经过点()1,2A ,(1)直线l 与两个坐标轴围成的三角形的面积是4的直线方程.(2)直线l 与两个坐标轴的正半轴围成的三角形面积最小时的直线方程.考点7:直线过定点问题49.(2021·广东·揭阳华侨高中高二期中)直线10mx y m +--=恒过定点__________.50.(2021·四川·泸州老窖天府中学高二期中(理))直线(1)y k x =-过定点_________________.51.(2021·福建泉州·高二期中)已知点()10P -,在直线l ()20ax y a a R +-+=∈:上的射影为M ,点N (0,3),则线段MN 长度的最小值为______________52.(2021·湖南·益阳平高学校高二期中)设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .653.(2021·四川·遂宁中学高二期中(理))过定点M 的直线20ax y +-=与过定点N 的直线420x ay a -+-=交于点P ,则·PM PN 的最大值为()A .1B .3C .4D .2。

《直线的倾斜角与斜率》专题练习

《直线的倾斜角与斜率》专题练习

《直线的倾斜角与斜率》导学案一、知识梳理知识点一:直线的倾斜角 (1)倾斜角的定义①当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.②当直线l 与x 轴平行或重合时,规定它的倾斜角为0°;当直线l 与x 轴垂直时,规定它的倾斜角为90°;(2)直线的倾斜角α的取值范围为)180,0[(3)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可. 知识点二:直线的斜率(1)斜率的定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即αtan =k )90(≠a .知识点三:直线的倾斜角与斜率的对应关系直线过两点),(111y x P ,),(222y x P ,则其斜率k =1212x x y y --)(21x x ≠二、题型讲解类型一:直线的倾斜角1、下列图中α能表示直线l 的倾斜角的是 ①2、已知直线l 向上方向与y 轴正向所成的角为30°,则直线l 的倾斜角为60°或120°3、给出下列命题:①任意一条直线有唯一的倾斜角; ②一条直线的倾斜角可以为-30°; ③倾斜角为0°的直线只有一条,即x 轴; ④所有的直线都有斜率; ⑤若直线的倾斜角为α,则sin α∈(0,1); ⑥若α是直线l 的倾斜角,且sin α=22,则α=45°. 其中正确的命题是 ① 4、有下列命题:①若直线的斜率存在,则必有倾斜角与之对应; ②若直线的倾斜角存在,则必有斜率与之对应; ③坐标平面上所有的直线都有倾斜角; ④坐标平面上所有的直线都有斜率.其中错误的是②④5、已知l 1⊥l 2,直线l 1的倾斜角为60°,则直线l 2的倾斜角为150° 类型二:直线的斜率(含两点确定的斜率公式) 1、没有斜率的直线一定是 ( B )A.过原点的直线B.垂直于x 轴的直线C.垂直于y 轴的直线D.垂直于坐标轴的直线 2、已知直线l 的倾斜角为α,若cosα=-54,则直线l 的斜率为43- 3、直线x =的倾斜角33为 904、过原点且斜率为33的直线l 绕原点逆时针方向旋转30°到达l ′位置,则直线l ′5、若直线经过点(1,2)、(4,2+3),则此直线的倾斜角是30°6、若直线的倾斜角为60°7、若过两点A (4,y )、B (2,-3)的直线的倾斜角为45°,则y 等于-18、经过点P (2,m )和Q (2m,5)的直线的斜率等于12,则m 的值是39、直线l 的倾斜角是斜率为33的直线的倾斜角的2倍,则l 10、若经过A (m,3),B (1,2)两点的直线的倾斜角为45°,则m 等于211、已知点A (a,2),B (3,b +1),且直线AB 的倾斜角为90°,则a ,b 的值为( D ) A .a =3,b =1 B .a =2,b =2 C .a =2,b =3 D .a =3,b ∈R 且b ≠1 12、已知点A 的坐标为(3,4),在坐标轴上有一点B ,若k AB =2,则B 点的坐标为__(1,0)或(0,-2)_13、设P 为x 轴上的一点,A (-3,8)、B (2,14),若P A 的斜率是PB 的斜率的两倍,则点P的坐标为__(-5,0)__14、(1)当且仅当m 为何值时,经过两点A (-m,6)、B (1,3m )的直线的斜率为12 ?(2)当且仅当m 为何值时,经过两点A (m,2)、B (-m,2m -1)的直线的倾斜角是45° ? 答案: (1) m =-2. (2)m =34.类型三:直线的倾斜角与斜率的范围关系问题1、如下图,已知直线l 1、l2、l 3的斜率分别为k 1、k 2、k 3,则 ( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 22、如图所示,直线l 1、l 2、l3、l 4的斜率分别为k 1、k 2、k 3、k 4,从小到大的关系是k 1<k 3<k 4<k 23、根据以下斜率范围求倾斜角范围(1)1≥k 答案:)2,4[ππ; (2)3-≤k 答案:]32,2ππ( (3)1-≥k 答案:)2,0[),43[πππ⋃ ; (4)3<k 答案:)(3,0[),2πππ⋃ (5)13<≤-k 答案:)4,0[),32[πππ⋃ (6)1≥k 或3-≤k 答案: ]32,2)2,4[ππππ(⋃4、根据以下倾斜角范围求斜率范围 (1)30<θ 答案:)33,0[ ; (2) 135>θ 答案:)0,1(- (3) 60>θ 答案: ),3()0,(+∞⋃-∞; (4) 120<θ 答案: ),0[)3,(+∞⋃--∞(5)12045≤≤θ 答案: ),1[]3,(+∞⋃--∞5、经过两点A (2,1)、B (1,m 2)的直线l 的倾斜角为锐角,则m 的取值范围是-1<m <16、若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是__(-2,1)__. 类型四:三点共线1、 若三点A (2,3),B (3,2),C (12,m )共线,则实数m 的值为 292、如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,则m 的值为-63、若A (-2,3)、B (3,-2)、C (12,m )三点共线,则m 的值为124、三点(2,-3)、(4,3)及(5,k2)在同一条直线上,则k 的值等于__12__5、斜率为2的直线过(3,5)、(a,7)、(-1,b )三点,则a +b 等于1 类型五:数形结合求倾斜角或斜率取值范围1、已知点A (1,3)、B (-2,-1).若过点P (2,1)的直线l 与线段AB 相交,则直线l 的斜率k 的取值范围是-2≤k ≤122、已知点A (2,-3)、B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率的取值范围是(-∞,-4]∪[34,+∞)3、已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1).若D 为△ABC 的边AB 上一动点,则直线CD 的斜率k 的取值范围为[3,3] 4、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,求直线l 的斜率和倾斜角的范围.答案: k ∈(-∞,-3]∪[1,+∞);45°≤α≤120°.5、已知点A (3,3),B (-4,2),C (0,-2).若点D 在线段BC 上(包括端点)移动,求直线AD 的斜率的变化范围.答案:直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.升级训练1、设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为 ( D )A .α+45°B .α-135°C .135°-αD .当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°2、已知直线l 的倾斜角为α,并且0°≤α≤120°,直线l 的斜率k 的取值范围是3、已知直线的倾斜角α满足παπ433<≤,则直线的斜率k 的取值范围是 4、当直线的倾斜角α满足1200<≤α,且90≠α时,它的斜率k 满足 5、直线xsin α+y +2=0的倾斜角的取值范围是],43[]4,0[πππ⋃ 6、下列各组中,三点能构成三角形的三个顶点的为( C ) A .(1,3)、(5,7)、(10,12) B .(-1,4)、(2,1)、(-2,5) C .(0,2)、(2,5)、(3,7)D .(1,-1)、(3,3)、(5,7)7、已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点. (1)求直线l 的斜率k 的取值范围;(2)求直线l 的倾斜角α的取值范围.答案: (1) k 的取值范围是k ≤-1,或k ≥1;(2)α的取值范围是45°≤α≤135°. 8、已知实数x 、y 满足y =-2x +8,且2≤x ≤3,求yx的最大值和最小值.答案:所求的y x 的最大值为2,最小值为23.9(难).已知点A (1,3),B (-2,-1),若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是[-2,12]。

高三复习直线的倾斜角与斜率知识点总结及基础测试

高三复习直线的倾斜角与斜率知识点总结及基础测试

第一节 直线的倾斜角与斜率基础测试题 知识梳理1、直线的倾斜角与斜率1212tan x x y y k --==α 2、两条直线的平行与垂直判定对于直线:222111:,:b x k y l b x k y l +=+=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ; ⑵1l 和2l 相交12k k ⇔≠;⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ; ⑷12121-=⇔⊥k k l l .对于直线:0:,0:22221111=++=++C y B x A l C y B x A l 有:⑴⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ; ⑵1l 和2l 相交1221B A B A ≠⇔;⑶1l 和2l 重合⎩⎨⎧==⇔12211221C B C B B A B A ; ⑷0212121=+⇔⊥B B A A l l . 第一部分 基础自测1、直线3310x +-=的倾斜角大小为()A. 30B. 60C. 120D. 1502、已知过点A ()2,m -和B (),4m 的直线与直线210x y +-=平行,则m的值为()A. -8B. 0C. 2D. 103、“1a = ”是“直线0x y += 和直线0x ay -=互相垂直”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4、若三点A (2,2),B (,0)a ,C (0,4)共线,则a 的值等于_________5、已知1l 的倾斜角为45 ,2l 经过点P (2,1)--,Q (3,)m ,若1l ⊥2l 则实数m=________. 第二部分 课堂考点讲解1、求直线,44tan 10a x y ππα⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭+⋅+=的倾斜角θ的取值范围 2、直线,632cos 30a x a y ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭--=的倾斜角的变化范围是() A. ,63ππ⎡⎤⎢⎥⎣⎦ B. ,43ππ⎡⎤⎢⎥⎣⎦ C. ,42ππ⎡⎤⎢⎥⎣⎦ D. 2,43ππ⎡⎤⎢⎥⎣⎦ 3、已知两点()1,5,(3,2)B A ---,直线l 的倾斜角是直线AB 的倾斜角的一半,求l 的斜率。

2-1 直线的倾斜角与斜率(精练)(解析版)

2-1 直线的倾斜角与斜率(精练)(解析版)

2.1 直线的倾斜角与斜率(精练)【题组一 直线的倾斜角】1.(2021·浙江)直线0x y -=的倾斜角为( ) A .45︒ B .60︒C .90︒D .135︒【答案】A【解析】由题意直线斜率为1,而倾斜角大于或等于0︒且不大于180︒,所以倾斜角为45︒.故选:A .2.(2021·江西景德镇市)直线103x y +-=的倾斜角为( ) A .30 B .60︒ C .120︒D .150︒【答案】D10y +-=的斜率=k -tan [0,180)o o k θθ∴==∈,∴150θ︒=.故选:D3.(2021·全国高二课时练习)已知直线l 的倾斜角为10°,直线l 1//l ,直线l 2⊥l ,则l 1与l 2的倾斜角分别为( ) A .10°,10° B .80°,80° C .10°,100° D .100°,10°【答案】C【解析】∵l 1//l ,∴它们的倾斜角相等,即l 1的倾斜角为10°, ∵l 2⊥l ,若l 2的倾斜角为θ,则tan10tan 1θ︒⋅=-,∴tan cot10tan800θ=-︒=-︒<,即90180θ︒<<︒,∴100θ=︒.故选:C.4.(2021·全国高二课时练习)(多选)若直线l 的向上的方向与y 轴的正方向成30°角,则直线l 的倾斜角可能为( ) A .30° B .60°C .120°D .150°【答案】BC【解析】y 轴正方向对应的直线的倾斜角为90︒,因此所求直线的倾斜角为60︒或120︒. 故选:BC .5.(2021·全国高二课时练习)(多选)若经过A (1-a ,1+a )和B (3,a )的直线的倾斜角为钝角,则实数a 的值不可能为( ) A .3-B .2-C .1D .2【答案】AB 【解析】解析:k AB =11132a a a a+-=----<0,即2+a >0,所以a >2-,CD 满足.故选:AB .6.(2021·安徽滁州市·定远二中高二开学考试)直线()21230a x ay +--=的倾斜角的取值范围是( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .3,44ππ⎛⎫⎪⎝⎭C .30,,424πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ 【答案】A【解析】设直线()21230a x ay +--=的倾斜角为θ, 当0a =时,2πθ=;当0a ≠时,则2111tan (,1][1,)22a a a a θ+⎛⎫==+∈-∞-⋃+∞ ⎪⎝⎭. 因为0θπ≤<所以3,,4224ππππθ⎡⎫⎛⎤∈⎪ ⎢⎥⎣⎭⎝⎦综上可得:3,44ππθ⎡⎤∈⎢⎥⎣⎦.故选:A7.(2021·山东)若斜率(,[1k ∈-∞,)+∞,求倾斜角α的范围 . 【答案】2[,)(,)4223ππππ【解析】[0α∈,)π,则tan k α=,斜率(,[1k ∈-∞,)+∞,(,k ∈-∞时,2,23ππα⎛⎫∈⎪⎝⎭,[1,)∈+∞k 时,[,)42ππα∈, 2[,)(,)4223ππππα∴∈, 故答案为:2[,)(,)4223ππππ. 8.(2021·全国高二课时练习)a 为何值时,过点(2,3)A a ,(2,1)B -的直线的倾斜角是锐角?是钝角?是直角?【答案】当1a >时,直线的倾斜角为锐角;当1a <时,直线的倾斜角为钝角;当1a =时,直线的倾斜角为直角.【解析】当横坐标相等时,即22a =,即1a =时,直线AB 的斜率不存在,直线的倾斜角为直角; 当横坐标不相等时,即当1a ≠时,132221AB k a a --==--,若直线的倾斜角α是锐角,则2tan 01AB k a α==>-,即10a ->,得1a >; 若直线的倾斜角α是钝角,则2tan 01AB k a α==<-,即10a -<,得1a <. 综上,当1a >时,直线的倾斜角为锐角;当1a <时,直线的倾斜角为钝角;当1a =时,直线的倾斜角为角. 【题组二 直线的斜率】1.(2021·江西吉安市)下列命题正确的是( ) ①直线倾斜角的范围是[)0,180︒︒; ②斜率相等的两条直线的倾斜角一定相等; ③任何一条直线都有斜率,但不一定有倾斜角; ④任何一条直线都有倾斜角和斜率. A .①② B .①④C .①②④D .①②③【答案】A【解析】对于①中,根据直线倾斜角的定义,可知直线倾斜角的范围是[)0,180︒︒,所以是正确的; 对于②中,根据直线的斜率与倾斜角的关系,可得tan k α=, 当12k k =时,可得tan tan αβ=,则αβ=,所以是正确的;对于③中,由任何一条直线一定有倾斜角,但不都有斜率,所以不正确; 对于④中,任何一条直线都有倾斜角,但不一定都有斜率,所以不正确. 故选: A.2.(2021·广西南宁市)过点()2,M m -,(),4N m 的直线的斜率等于1,则m 的值为( ) A .1 B .4C .1或3D .1或4【答案】A 【解析】由题得41,12mm m -=∴=+.故选:A 3.(2021·全国高一课时练习)已知两点()3,4A -,()3,2B ,直线l 经过点()2,1P -且与线段AB 相交,则l 的斜率k 的取值范围是______. 【答案】3k ≥或1k ≤- 【解析】如图所示:因为直线l 经过点()2,1P -且与线段AB 相交,所以直线l 的倾斜角介于直线PB 与直线PA 的倾斜角之间, 当直线l 的倾斜角小于90时,有PB k k ≥; 当直线l 的倾斜角大于90时,有PA k k ≤, 由直线的斜率公式可得,()()41211,33232PA PB k k ----==-==---,所以直线l 的斜率k 的取值范围为3k ≥或1k ≤-. 故答案为:3k ≥或1k ≤-4.(2021·全国=课时练习)若三点 ()3,1A ,()2,B b -,()8,11C 在同一直线上,则实数 b = _______. 【答案】9- 【解析】三点 ()3,1A ,()2,B b -,()8,11C 在同一直线上,∴AB AC k k =,即11118323b --=---,解得9b =-.故答案为9-. 5.(2021·全国高二课时练习)若A (a ,0),B (0,b ),C (2-,2-)三点共线,则11a b+=________. 【答案】12-【解析】由题意得2222b a +=+,ab +2(a +b )=0,1112a b +=-.故答案为:12-.6.(2021·陕西西安市)若θ是直线l 的倾斜角,且sin cos 5θθ+=,则l 的斜率为 【答案】-2【解析】因为sin cos 5θθ+=,① 所以(sin θ+cos θ)2=1+2sin θcos θ=15, 所以2sin θcos θ=405-<, 所以(sin θ-cos θ)2=95,由于[)0,θπ∈,所以sin θ>0,cos θ<0,所以sin θ-cos θ,②由①②解得sin 5cos θθ⎧=⎪⎪⎨⎪=⎪⎩,所以tan θ=2-,即l 的斜率为2-.7.(2021·全国高二课时练习)已知点A (1,0),B (2,C (m ,2m ),若直线AC 的倾斜角是直线AB 的倾斜角的2倍,则实数m 的值为________.【答案】3【解析】设直线AB 的倾斜角为α,则直线AC 的倾斜角为2α,又tan α=,0°≤α<180°,所以α=60°,2α=120°, 所以k AC =21mm -=tan120°=,得m=3.故答案为:38.(2021·全国高二课时练习)直线l 1的斜率为k 1l 2的倾斜角为l 1的12,则直线l 1与l 2的倾斜角之和为________. 【答案】90°【解析】因为l 1的斜率k 160°. 又l 1的倾斜角为l 1的12,所以l 2的倾斜角为30°, 所以l 1与l 2的倾斜角之和为60°+30°=90°.故答案为:90°.9.(2021·全国高二课时练习)求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角. (1)(1,1),(2,4);(2)(-3,5),(0,2); (3)(2,3),(2,5);(4)(3,-2),(6,-2).【答案】(1)3,锐角;(2)-1,钝角;(3)k 不存在,倾斜角是90°;(4)0,倾斜角为0°. 【解析】(1)413021k -==>-,所以倾斜角是锐角; (2)25100(3)k -==-<--,所以倾斜角是钝角;(3)由x 1=x 2=2知:k 不存在,倾斜角是90°; (4)2(2)063k ---==-,所以倾斜角为0°.【题组三 直线平行】1.(2021·浙江宁波市·高二期末)已知两条不重合直线1l ,2l ,则“12//l l ”是“1l ,2l 的斜率相等”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【解析】因为两条直线1l 与2l 不重合,当1l 与2l 都与x 轴垂直时,有12//l l ,但它们没有斜率, 所以有12//l l 不一定得到1l ,2l 的斜率相等;当1l ,2l 的斜率相等时,它们的倾斜角相等,所以它们平行, 即有1l ,2l 的斜率相等一定能够得到12//l l ,所以两条不重合直线1l ,2l ,则“12//l l ”是“1l ,2l 的斜率相等”的必要不充分条件. 故选:B.2.(2021·北京高三期末)若关于x ,y 的方程组4210210x y x ay ++=⎧⎨++=⎩,(R)a ∈无解,则=a ( )A .2 BC .1D .2【答案】C【解析】可得方程组无解,等价于直线4210x y ++=和直线210x ay ++=平行, 则42121a =≠,解得1a =.故选:C. 3.(2021·浙江)已知直线1:(25)20l ax a y +--=,直线2:(32)40l a x ay ---=,若12l l //,则实数a =______. 【答案】57【解析】∵12l l //,有()(25)(32)0a a a a ----=, ∴(2)(75)0a a --=,解得2a =或57a =, 当2a =时,1:220--=l x y ,2:4240l x y --=,即1l 、2l 为同一条直线;当57a =时,1525:2077l x y --=,215:4077l x y --=,即12l l //; ∴57a =,故答案为:574.(2021·江西九江市)若直线1l :420ax y +-=与2l :10x ay a +--=平行,则实数a 的值为_________. 【答案】2 【解析】由4211a a a =≠+,得2a =.故答案为:2. 5.(2021·陕西榆林市)已知直线1:320l x y +-=与2:630l x ay +-=平行,则a =__________. 【答案】2【解析】因为直线1:320l x y +-=与2:630l x ay +-=平行,所以23361a -=≠-,解得2a =. 此时1:320l x y +-=与2:6230l x y +-=显然平行.故答案为:2.6.(2021·黑龙江哈尔滨市·哈九中高三月考(文))已知直线1l :()210ax a y +++=,2l :20x ay ++=,a R ∈,若12//l l ,则a =___________.【答案】1-或2【解析】∵12//l l ,∴220a a --= ,解得:2a =或1a =- , 检验,当2a =时,1l :2410x y ++=,2l :220x y ++=满足题意; 当1a =-时,1l :10x y -++=,2l :20x y -+=满足题意 故答案为:2或1-7(2021·陕西渭南市)在平面直角坐标系中,若直线370x ay +-=与直线60x y ++=将平面划分成3个部分,则a =________. 【答案】3【解析】由题可得直线370x ay +-=与直线60x y ++=互相平行,37116a -∴=≠,解得3a =.故答案为:3. 【题组四 直线垂直】1.(2021·陕西宝鸡市)设直线1:10l kx y ++=,2:(1)210l k x y --+=,若12l l ⊥,则k =( )A .1-B .1-或2C .2D .0【答案】B【解析】由12l l ⊥,则()()1120k k -+⨯-=,即220--=k k ,解得2k =或1k =-故选:B2.(2021·陕西宝鸡市)已知过点(2,)A m -和点(,4)B m 的直线为1l ,2:210l x y +-=,3:10l x ny ++=.若12l l //,23l l ⊥,则m n +的值为A .10-B .2-C .0D .8【答案】A【解析】∵l 1∥l 2,∴k AB =42mm -+=-2,解得m =-8. 又∵l 2⊥l 3,∴1n-×(-2)=-1,解得n =-2,∴m +n =-10.故选A . 3.(2021·江西省万载中学)直线()230m x my ++-=与直线30x my --=垂直,则m 为___________. 【答案】1-或2【解析】因为直线()230m x my ++-=与直线30x my --=垂直, 所以()()210m m m +⨯+⨯-=,解得1m =-或2m =故答案为:1-或24.(2021·山西)已知直线20ax y a -+=和(21)0a x ay a -++=互相垂直,则a =__. 【答案】0或1【解析】当0a =时,两直线分别为0y =、0x =,满足垂直这个条件, 当0a ≠时,两直线的斜率分别为a 和12a a -,由斜率之积为1-有:121aa a-⋅=-,解得1a =. 综上,0a =或1a =. 故答案为:0或1.5.(2021·浙江)已知直线1:32l mx y m +=-,2:(2)1l x m y ++=. 若12l l //,则实数m =_________;若12l l ⊥,则实数m =_________. 【答案】3- 32-【解析】因为直线1:32l mx y m +=-,()2:21l x m y ++=, 所以当12l l //时,()2310m m +-⨯=,解得3m =-或1m =, 当1m =时,两直线重合,不合题意,故实数3m =-, 当12l l ⊥,则()320m m ++=,解得32m =-, 故答案为33,2--. 6.(2021·全国高二课时练习)已知两条直线l 1,l 2的斜率是方程3x 2+mx -3=0(m ∈R )的两个根,则l 1与l 2的位置关系是【答案】垂直【解析】解析由方程3x 2+mx -3=0,知∆=m 2-4×3×(-3)=m 2+36>0恒成立.故方程有两相异实根,即l 1与l 2的斜率k 1,k 2均存在.设两根为x 1,x 2,则k 1k 2=x 1x 2=-1,所以l 1⊥l 2. 故选:B7.(2021·铜川市第一中学)直线0x ay a ++=与直线()2310ax a y --+=互相垂直,则实数a 的值为_________. 【答案】2或0【解析】当0a =时,直线为0x =,13y =-,满足条件; 当32a =时,直线为33022x y ++=,23x =-,显然两直线不垂直,不满足;当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上0a =或2a =. 故答案为:2或0.8.(2021·全国高二课时练习)判断下列各对直线是否平行或垂直.(1)经过()2,3A ,()1,0B -两点的直线1l ,与经过点()1,0P 且斜率为1的直线2l ; (2)经过()3,1C ,()2,0D -两点的直线3l ,与经过点()1,4M -且斜率为5-的直线4l . 【答案】(1)12l l //;(2)12l l ⊥. 【解析】(1)因为()130121l k -==--,所以121l l k k ==,又因为1l 过点()1,0B -,所以1l 一定不过点()1,0P , 所以12l l //; (2)因为()1101325l k -==--,所以()121515l l k k ⋅=⋅-=-,所以12l l ⊥.【题组五 平行垂直在几何中的运用】1.(2020·全国高二课时练习)已知ABC ∆的顶点()2,1B ,()6,3C -,其垂心为()3,2H -,则其顶点A 的坐标为 A .()19,62-- B .()19,62-C .()19,62-D .()19,62【答案】A 【解析】H 为ABC ∆的垂心 AH BC ∴⊥,BH AC ⊥又311624BC k -==---,211325BH k -==---∴直线,AH AC 斜率存在且4AH k =,5AC k =设(),A x y ,则243356AH ACy k x y k x -⎧==⎪⎪+⎨-⎪==⎪+⎩,解得:1962x y =-⎧⎨=-⎩ ()19,62A ∴--本题正确选项:A2.(2021·全国高二课时练习)以A(-1,1), B(2,-1), C(1,4)为顶点的三角形是A .以A 点为直角顶点的直角三角形B .以B 点为直角顶点的直角三角形C .锐角三角形D .钝角三角形【答案】A【解析】因为A(-1,1), B(2,-1), C(1,4), 112413,213112AB AC k k ---∴==-==++, 1AB AC k k ∴⋅=-,AB AC A ∴⊥∠为直角,故选A.3.(2021·全国高二课时练习)设两直线()220m x y m +--+=,0x y +=与x 轴构成三角形,则m 的取值范围为______.【答案】{|2m m ≠±且}3m ≠-【解析】当直线()220m x y m +--+=,0x y +=及x 轴两两不平行,且不共点时,必围成三角形 当3m =-时,直线()220m x y m +--+=与直线0x y +=平行;当2m =-时,直线()220m x y m +--+=与x 轴平行;当2m =时,直线()220m x y m +--+=,0x y +=及x 轴都过原点;要使得两直线()220m x y m +--+=,0x y +=与x 轴构成三角形,则m 的取值范围为{|2m m ≠±且}3m ≠-故答案为:{|2m m ≠±且}3m ≠-4.(2021·全国高二课时练习)若不同两点P 、Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线的斜率为________.【答案】-1 【解析】313PQ b a k a b-+==∴-+ 线段PQ 的垂直平分线的斜率为-1. 5.(2020·全国高二课时练习)已知△ABC 的三个顶点坐标分别为A (2,4),B (1,2),C (-2,3),则BC 边上的高AD 所在直线的斜率为________.【答案】3【解析】直线BC 的斜率为:32123k -=----= , 即1BC AD BC AD k k ⊥∴⋅-.= ,则 3.AD k = 即答案为3.。

直线的倾斜角与斜率 知识点总结及典例

直线的倾斜角与斜率 知识点总结及典例

直线的倾斜角与斜率基础知识梳理1.倾斜角定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向直线l 向上方向之间所成的角叫做直线l 的倾斜角. 范围:)180,0[0.2.斜率(1)斜率计算:倾斜角为α,)90(tan 0≠=ααk ;经过两点))(,(),,(21222111x x y x P y x P ≠的直线的斜率为1212x x y y k --=. α=0° 0°<α<90° α=90° 90°<α<180°k =0 k >0 斜率不存在 k <0 一、选择题1.关于直线的倾斜角和斜率,下列哪些说法是正确的( )A .任一条直线都有倾斜角,也都有斜率B .直线的倾斜角越大,它的斜率就越大C .平行于x 轴的直线的倾斜角是0°D .两直线的倾斜角相等,它们的斜率也相等2.一条直线l 与x 轴相交,其向上的方向与y 轴正方向所成的角为α(0°<α<90°),则其倾斜角为( )A .αB .180°-αC .180°-α或90°-αD .90°+α或90°-α3.直线l 经过第二、四象限,则直线l 的倾斜角α的范围是( )A .0°≤α<90°B .90°≤α<180°C .90°<α<180°D .0°≤α<180°4.已知直线l 的倾斜角为150°,则直线l 的斜率为( )A .33B . 3C .-33D .-3 5.如图,直线l 的倾斜角为( )A .60°B .120°C .30°D .150°6.已知直线的斜率为-3,则它的倾斜角为( )A .60°B .120°C .60°或120°D .150°7.若直线l 经过点M (2,3),N (4,3),则直线l 的倾斜角为( )A .0°B .30°C .60°D .90°8.斜率为2的直线经过点(3,5),(a,7),(-1,b )三点,则a ,b 的值是( )A .a =4,b =0B .a =-4,b =-3C .a =4,b =-3D .a =-4,b =39.经过两点A (2,1),B (1,m )的直线的倾斜角为锐角,则m 的取值范围是( )A .m <1B .m >-1C .-1<m <1D .m >1或m <-110、直线x=1的倾斜角和斜率分别是( )A.45°,1B.135°,-1C.90°,不存在D.180°,不存在11.在平面直角坐标系中,正△ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为()A.-B.0 C D.二、填空题12.如果直线l1与l2关于x轴对称,且与x轴相交,它们的倾斜角分别为α1,α2,则α1与α2的关系是________.13.过点(0,1)与(2,3)的直线的斜率为_________,倾斜角为__________.14.若过点(a,-2)和(4,a)的直线斜率不存在,则a=__________.15.已知点A(-m,5),B(1,3m),且直线AB的倾斜角为135°,则实数m=__________.16.已知点A(1,2),点P在x轴上,且直线P A的倾斜角为135°,则点P的坐标为__________.17.已知点A(3,4),点B在坐标轴上,且直线BA的斜率为2,则点B的坐标为__________.18.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则11a b+的值等于________.三、解答题19.已知坐标平面内三点A(-1,1),B(1,1),C(2,3+1).求直线AB,BC,AC的斜率和倾斜角.20.(1)已知:A(2,2),B(4,0),C(0,4),求证:A,B,C三点共线;(2)若三点A(2,-3),B(4,3),C(5,m)在同一条直线上,求m的值.21.(1)经过两点A(-m,6),B(m+1,3m)的直线倾斜角的正切值为2,求m的值;(2)一束光线从点A(-2,3)射入,经过x轴上点P反射后,通过点B(5,7),求点P的坐标.。

倾斜角与斜率5种常见考法归类(58题)(学生版)2025学年高二数学高频考点与解题(人教A版选修一)

倾斜角与斜率5种常见考法归类(58题)(学生版)2025学年高二数学高频考点与解题(人教A版选修一)

专题2.1.1 倾斜角与斜率5种常见考法归类(58题)题型一 求直线的倾斜角题型二 求直线的斜率(一)由定义求斜率(二)由斜率公式求斜率(三)由方向向量求斜率(四)几何图形中的斜率问题题型三 斜率与倾斜角的关系(一)由倾斜角求斜率值(范围)(二)由斜率求倾斜角的值(范围)题型四斜率公式的应用(一)利用斜率求参数(二)利用直线斜率处理共线问题(三)比较大小(四)斜率公式的几何意义的应用题型五 直线与线段的相交关系求斜率的范围以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(1)当直线l 与x 轴平行或者重合时,我们规定它的倾斜角为0 ;所以倾斜角的取值范围为:0180α≤< ;特别地,当直线l 与x 轴垂直时,直线l 的倾斜角为90.(2)所有直线都有唯一确定的倾斜角,倾斜角表示的是直线的倾斜程度.2.对直线倾斜角的理解(1)倾斜角定义中含有三个条件①x 轴正向;②直线向上的方向;③小于180°的非负角.(2)从运动变化的观点来看,当直线与x 轴相交时,直线的倾斜角是由x 轴绕直线与x 轴交点按逆时针方向旋转到与直线重合时所得到的最小正角.(3)倾斜角是一个几何概念,它直观地描述且表现了直线对x 轴的倾斜程度.(4)平面直角坐标系中的每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.题型一 求直线的倾斜角解题策略:求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x 轴平行或重合时,倾斜角为0°,当直线与x 轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°.1.(2024··江西九江·高二校考阶段练习)直线的倾斜角α的取值范围是( )A .()0,πB .[0,π)C .(0,π]D .[0,]p 2.(2024··高二课时练习)对于下列命题:①若q 是直线l 的倾斜角,则0180q °≤<°;②若直线倾斜角为α,则它斜率tan k α=;③任一直线都有倾斜角,但不一定有斜率;④任一直线都有斜率,但不一定有倾斜角.其中正确命题的个数为( )A .1B .2C .3D .43.(23-24高二上·内蒙古呼伦贝尔·月考)下列图中α能表示直线l 的倾斜角的是( )A .B .C .D .4.(2023春·江苏泰州·高二靖江高级中学校考阶段练习)已知直线l 经过()1,4A -,()1,2B 两点,则直线l 的倾斜角为( )A .π6B .π4C .2π3D .3π45.(2024··上海黄浦·高二格致中学校考期中)若直线l 的一个方向向量为(-,则它的倾斜角为( )A .30°B .60°C .120°D .150°6.(23-24高二上·江苏·专题练习)已知直线l 的倾斜角为α,则与l 关于x 轴对称的直线的倾斜角为( )A .αB .90α°-C .180α°-D .90α°+7.(2024·江苏·高二假期作业)已知直线1l 的倾斜角115α=,直线1l 与2l 的交点为A ,直线1l 和2l 向上的方向所成的角为120 ,如图,则直线2l 的倾斜角为________.8.(2024·江苏·高二假期作业)如图,直线l 的倾斜角为( )A .60°B .120°C .30°D .150°9.(2024·江西吉安·高二江西省吉水中学校考期末)已知直线l 经过第二、四象限,则直线l 的倾斜角α的取值范围是( ).A .090α≤<B .0180α<<C .90180α≤<D .90180α<<10.【多选】(2024··高二课时练习)若直线l 与x 轴交于点A ,其倾斜角为α,直线l 绕点A 顺时针旋转45°后得直线1l ,则直线1l 的倾斜角可能为( )A .45α+°B .135α+°C .45α-°D .135α°-把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.注:(1)倾斜角α不是90 的直线都有斜率,倾斜角不同,直线的斜率也不同;(2)倾斜角90α= 时,直线的斜率不存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率重点一、倾斜角重点二、斜率(倾斜角为α)重点三、两条直线平行对于两条不重合...的直线l 1、l 2,其斜率分别为k 1、k 2,有l 1∥l 2⇔k 1=k 2. [归纳总结] (1)当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.(2)直线l 1、l 2的斜率分别为k 1、k 2,当k 1=k 2时,l 1∥l 2或l 1与l 2重合. (3)对于不重合的直线l 1、l 2,其倾斜角分别为α、β,有l 1∥l 2⇔α=β.重点四、两条直线垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1, 那么它们互相垂直.[归纳总结] 当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;较大的倾斜角总是等于较小倾斜角与直角的和. (1)平行:倾斜角相同,所过的点不同;(2)重合:倾斜角相同,所过的点相同; (3)相交:倾斜角不同;(4)垂直:倾斜角相差90°.【典题精练】考点1、直线的倾斜角例1.下列命题正确的是( ).A .若直线的倾斜角为α,则此直线的斜率为tan αB .若直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin 0α≥D .若直线的斜率为0,则此直线的倾斜角为0或π【解析】倾斜角为90︒的直线,其斜率不存在,故A 错误;若直线的斜率为tan α,只有当[)0,απ∈时,其倾斜角才为α,故B 错误;直线的斜率为0,其倾斜角为0而不是π,故D 错误.故选C . 所以本题答案为C.考点点睛: 1.求直线的倾斜角(1)根据题意画出图形,结合倾斜角的定义找出倾斜角,再通过解三角形或其它方法求之; (2)先求出直线的斜率k ,再由k =tan α,求倾斜角α.2.倾斜角α与直线斜率值的关系:把倾斜角α分为以下四类讨论:α=0°,0°<α<90°,α=90°,90°<α<180°.对应的斜率k 的值依次为0,正值,不存在,负值.考点2、已知两点坐标求倾斜角和斜率例2.过两点(4,A B 的直线的倾斜角为( ) A .30°B .60°C .120°D .150°【解析】直线AB 的斜率k ==,故直线AB 的倾斜角30α=,故选A 考点点睛:(1)对求斜率的两个公式注意其应用的条件,必要时应分类讨论;(2)当直线绕定点由与x 轴平行(或重合)位置按逆时针方向旋转到与y 轴平行(或重合)时,斜率由0逐渐增大到+∞;按顺时针方向时,斜率由0逐渐减小到-∞,这种方法即可定性分析倾斜角与斜率的关系,也可以定量求解斜率和倾斜角的取值范围.考点3、两直线平行关系的判断与应用例3.已知直线1:sin 0l x y θ+=与直线2:2sin 10l x y θ++=,试求θ的值,使12l l //. 【解析】12//l l ,112sin sin 0112sin 00θθθ⨯-⨯=⎧∴⎨⨯-⨯≠⎩,sin θ∴=,故θ=()4k k ππ±+∈Z考点4、两条直线垂直关系的判断与应用例4.已知()222,3A m m +-,()23,2B m m m --,()21,32C n n +-三点,若直线AB 的倾斜角为45︒,且直线AC AB ⊥,求点A ,B ,C 的坐标. 【解析】()()22232tan 45123ABm mk m m m --===+---, 解得1m =-(舍去),2m =-,∴点()6,1A ,()1,4B -.3211216AC n k n --==-+-,解得85n =,∴点2114,55C ⎛⎫⎪⎝⎭.考点点睛:两条直线垂直的判定条件:(1)如果两条直线的斜率都存在且它们的积为-1,则两条直线一定垂直;(2)两条直线中,如果一条直线的斜率不存在,同时另一条直线的斜率为0,那么这两条直线也垂直. 课后训练:1.若直线1:210l x y -+=与直线2:30l mx y +-=互相垂直,则实数m 的值为( ) A .2-B .12-C .12D .2【解析】因为直线1:210l x y -+=与直线2:30l mx y +-=互相垂直,所以20m -=,得2m =.故选:D . 2.直线30x y ++=的倾斜角为( )A .56π B .34π C .3π D .4【答案】B【解析】由题得直线的斜率为1-,故其倾斜角为34π.故选B 。

3.经过点(2,)M m -、(,4)N m 的直线的斜率等于1,则m 的值为A .1B .4C .1或3D .1或4【解析】即得选A4.若直线10ax y ++=与直线420x ay +-=平行,则实数a 的值为( ) A .2B .1C .0D .2-【解析】因为直线10ax y ++=与直线420x ay +-=平行,所以1142a a =≠-, 所以242a a ⎧=⎨≠-⎩,解得2a =,故选:A5.直线350x y +-=的倾斜角为( )A .30-︒B .60︒C .120︒D .150︒【解析】由题,因为350x y +-=,则353y x =-+, 设倾斜角为α,所以3tan α=-,所以150α=︒,故选:D 6.点、若直线过点,且与线段AB 相交,则直线的斜率的取值范围是( )A .B .C .D .【解析】数形结合如上图所示.可得,.要使直线过点,且与线段AB 相交,由图象知,.故选A .7.已知点(1,3)A ,(1,33)B -,则直线AB 的倾斜角为( ) A .60B .30C .120D .150【解析】因为直线AB 的斜率为3333-=-,所以倾斜角为120,选C.8.已知点23A (,)在直线11210x ay +:﹣=上,若21l l ∥,则直线2l 的斜率为( ) A .2B .﹣2C .12D .12-【解析】∵点A (2,3)在直线11:2x +ay ﹣1=0上,∴2×2+3a ﹣1=0, 解得a =﹣1,∴直线l 1:2x ﹣y ﹣1=0,∵l 2∥l 1,∴直线l 2的斜率k =2.故选:A . 9.直线与平行,则的值等于( )A .-1或3B .1或3C .-3D .-1 选D . 10.若三点A (3,1),B (-2,b ),C (8,11)在同一直线上,则实数b 等于 A .2 B .3 C .9 D .-9【解析】由得,b 的值为-9,故选D .11.如图直线123l l l ,,的倾斜角分别为123ααα,,,则有( )A .123ααα<<B .132ααα<<C .321ααα<<D .213ααα<<【解析】由图象可知132,,l l l 的倾斜角依次增大,故132ααα<<.故选B 12.图中的直线123,,l l l 的斜率分别是123,,k k k ,则有( )A .123k k k <<B .312k k k <<C .321k k k <<D .231k k k <<【解析】由图可知:10k >,20k <,30k <,且直线3l 的倾斜角大于直线2l 的倾斜角,所以32k k >,综上可知:231k k k <<,故选D .13.直线y kx =与直线21y x =+垂直,则k 等于______________. 【解析】直线y kx =与直线21y x =+垂直,21k ∴=-,解得12k =-.故答案为:12-. 14.若直线2240x my m +-+=与直线220mx y m +-+=平行,则实数m =__________.【解析】直线2240x my m +-+=与直线220mx y m +-+=平行,则有2222m m ⨯=∴=或2m =-,当2m =时,两直线重合,所以舍掉,2m =-符合题意;故答案为-2 15.直线sin 20x y α-+=的倾斜角的取值范围是______. 【解析】设直线的倾斜角为()0θθπ≤<,则tan sin θα=.1sin 1,1tan 1αθ-≤≤∴-≤≤,0,04πθπθ≤<∴≤≤或34πθπ≤<.即30,,44ππθπ⎡⎤⎡⎫∈⋃⎪⎢⎥⎢⎣⎦⎣⎭.故答案为:30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 16.已知点()2,1A --和点()2,0B ,过点()1,3P -点的直线l 与线段AB 相交,则直线l 斜率的取值范围是______. 【解析】由题,()()31412PAk --==---,30112PB k -==---,如图所示,所以4k ≥或1k ≤-,故答案为:(][),14,-∞-+∞17.当m 为何值时,过两点()3,1A m --,(),2B m m -的直线:(1)与过两点()3,2,()0,7-的直线垂直(2)与过两点()2,3-,()4,9-的直线平行.【解析】(1)72303--=-,13AB k ∴=-,即()2111333m m m m -+-==---,解得:0m =.(2)93242+=---,2AB k ∴=-,即()211233m m m m -+-==---,解得:5m =-. 18.已知直线l 平行于直线4370x y +-=,直线l 与两坐标轴围成的三角形的周长是15,求直线l 的方程. 【解析】解法一:∵直线l 与直线4370x y +-=平行,∴43l k =-.设直线l 的方程为47()33y x b b =-+≠,则直线l 与x 轴的交点为3,04A b ⎛⎫ ⎪⎝⎭,与y 轴的交点为(0,)B b ∴2235||||44AB b b b ⎛⎫=+= ⎪⎝⎭.∵直线l 与两坐标轴围成的三角形周长是15,∴35||1544b b b ++=.∴||5b =,∴5b =±. ∴直线l 的方程是453y x =-±,即43150x y +±=. 解法二:∵直线l 与直线4370x y +-=平行,∴设直线l 的方程为430(7)x y C C ++=≠-, 令0x =得3C y =-,令0y =得4C y =-, ∴直线l 与x 轴的交点为,04C A ⎛⎫- ⎪⎝⎭,与y 轴的交点为0,3C B ⎛⎫- ⎪⎝⎭,∴225||4312C C AB C ⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭.∵直线l 与两坐标轴围成的三角形周长是15,∴5153412C C C -+-+-=. ∴||15C =,∴15C =±.∴直线l 的方程是43150x y +±=. 19.已知两条直线l 1:ax +2y -1=0,l 2:3x +(a +1)y +1=0.(1)若l 1∥l 2,求实数a 的值; (2)若l 1⊥l 2,求实数a 的值.【解析】(1)由题可知,直线l 1:ax +2y -1=0,l 2:3x +(a +1)y +1=0.若l 1∥l 2,则解得a=2或a=-3(舍去)综上,则a=2;(2)由题意,若l 1⊥l 2,则,解得.20.已知两直线1l :80mx y n ++=和2l :210x my +-=. (1)若1l 与2l 交于点(),1P m -,求m ,n 的值; (2)若12l l //,试确定m ,n 需要满足的条件; (3)若12l l ⊥,试确定m ,n 需要满足的条件.【答案】(1)1m =,7n =;(2)4m =,2n ≠-或4m =-,2n ≠-;(3)0m =,n R ∈.【解析】(1)将点(),1P m -代入两直线方程得:280m n -+=和210m m --=,解得1m =,7n =. (2)由12l l //得:821m nm =≠-,∴42m n =⎧⎨≠-⎩或42m n =-⎧⎨≠-⎩, 所以当4m =,2n ≠-或4m =-,2n ≠-时,12l l //. (3)当0m =时,直线1l :8ny =-和2l :12x =,此时12l l ⊥, 当0m ≠时此时两直线的斜率之积等于14,显然1l 与2l 不垂直,所以当0m =,n R ∈时,直线1l 与2l 垂直.21.已知两直线1:260l ax y ++=和22:(1)10l x a y a +-+-=(1)若12l l ⊥,求实数a 的值;(2)试判断1l 与2l 是否平行. 【解析】(1)由已知条件得212(1)03a a a ⋅+⋅-=⇒=,故所求实数a 的值为23. (2)由12210A B A B -=,得(1)120a a --⨯=,即220a a --=,解得1a =-或2a =. 当1a =-时,1l 的方程为260x y --=,2l 的方程为20x y -=,显然两直线平行. 当2a =时,1l 的方程为30x y ++=,2l 的方程为30x y ++=,显然两直线重合.所以,当1a =-时,12l l //;当()(),11,a ∈-∞--+∞时两直线不平行.22.已知直线1:260l ax y ++=和直线22:(1)10l x a y a +-+-=.(Ⅰ)1l 与2l 能否平行?为什么?(Ⅱ)12l l ⊥时,求a 的值. 【解析】(Ⅰ)若1l 与2l 平行,则()12a a -=,解得2a = 或1a =-. 当2a =时,直线1:30l x y ++=和直线2:30l x y ++=.重合,当1a =-时,直线1:260l x y --=和直线2:20l x y -=.平行,所以当1a =-时1l 与2l 平行. (Ⅱ)若12l l ⊥则()210a a +-=,解得23a =.。

相关文档
最新文档