理论力学平面力系综合问题
理论力学 平面任意力系例题

60
l
l
F
B
F
D
60
l
l D M
M
B
3l
G
F1
l MA
G FAy
x A FAx
17
A
q
例题
平面任意力系
2. 按图示坐标,列写平衡方程。
F
60
例 题 5
y l l D M
F F
x
0,
B
FAx F1 F sin 60 0
y
0,
FAy G F cos 60 0
M作用,梁的跨度为l,求固定端的约束力。
F
45
q
A l
M
B
14
例题
平面任意力系
q
A y
例 题 4
2. 列平衡方程
M
45
F
解: 1. 取梁为研究对象,受力分析如图
B
l
Fx 0,
Fy 0,
FAx F cos 45 0
FAy ql F sin 45 0
q FAx
力系对O点的主矩为
MO
O
主矢FR在第四象限内,与x轴的夹角为 –70.84o。M
O
M F
O
FRx
70.84
A
F1 3 m G1 1.5 m G2 3.9 m 2 355 kN m
FRy
FR
7
例题
平面任意力系
2. 求合力与基线OA的交点到O点的距离 x。 合力FR的大小和方向与主矢FR相同。 合力作用线位置由合力矩定理求得。
工程力学平面力系的平衡问题

——平面力系平衡方程
工程力学
• 应用举例
解:取汽车及起重机为研究
对象,受力分析如图。
FA
FB
列平衡方程如下:
F 0 M B F 0
FA FB P P1 P2 P3 0 P1 2 P(2.5 3 ) P2 2.5 FA (1.8 2 ) 0
FA
1 3.8
2P1
3.根据受力类型列写平衡方程。平面一般力系只有三 个独立平衡方程。为计算简捷,应选取适当的坐标系和 矩心,以使方程中未知量最少。
4.求解。校核和讨论计算结果。
11
工程力学
——平面力系平衡方程 • 应用举例
• 例1:一种车载式起重机,车重P1= 26 kN,起重机伸 臂重P2 = 4.5 kN,起重机的旋转与固定部分共重P3 = 31 kN。尺寸如图所示。设伸臂在起重机对称面内,且放在 图示位置,试求车子不致翻倒的最大起吊重量Pmax。
Fx 0 Fy 0
M C 0
FAx FCx 0
FAy FCy P 0
FAx
a
FAy
a
27
——刚体系统的平衡
求解方法二
FCy′ FCx′
工程力学
(1)选取研究对象:右刚架, 受力分析如图所示。
FBx
列平衡方程:
Fx 0 Fy 0
M C 0
FBx FCx Q 0
19
工程力学
——刚体系统的平衡
注意! 对于系统整体画受力图,图上展示的仅是外力;当取
系统中的某一部分为研究对象时,此时,该部分与系统 其他部分之间的作用力(本来是内力)也变成了作用在 该部分上的外力。因此,对不同的研究对象而言,外力、 内力是相对的。
20
理论力学重难点及相应题解

运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
理论力学习题集

理论力学习题集第一章静力学的基本概念及物体的受力分析1-1 画出指定物体的受力图,各接触面均为光滑面。
1-2 画出下列指定物体的受力图,各接触面均为光滑,未画重力的物体的重量均不计。
1-3 画出下列各物体以及整体受力图,除注明者外,各物体自重不计,所有接触处均为光滑。
(a) (b)(c) (d)(e) (f)第二章平面一般力系2-1 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在铰车D 上,如图所示。
转动铰车,物体便能升起,设滑轮的大小及滑轮转轴处的摩擦忽略不计,A、B、C三处均为铰链连接。
当物体处于平衡状态时,试求拉杆AB和支杆CB所受的力。
2-2 用一组绳悬挂重P=1kN的物体,求各绳的拉力。
2-3 某桥墩顶部受到两边桥梁传来的铅直力P1=1940kN,P2=800kN及制动力T=193kN,桥墩自重W=5280kN,风力Q=140kN。
各力作用线位置如图所示,求将这些力向基底截面中心O简化的结果,如能简化为一合力,试求出合力作用线的位置。
2-4 水平梁的支承和载荷如图所示,试求出图中A、B处的约束反力。
2-5 在图示结构计算简图中,已知q=15kN/m,求A、B、C处的约束力。
2-6 图示平面结构,自重不计,由AB、BD、DFE三杆铰接组成,已知:P=50kN,M=40kN·m,q=20kN/m,L=2m,试求固定端A的反力。
图2-6 图2-72-7 求图示多跨静定梁的支座反力。
2-8 图示结构中各杆自重不计,D、E处为铰链,B、C为链杆约束,A为固定端,已知:q G=1kN/m,q=1kN/m,M=2kN·m,L1=3m,L2=2m,试求A、B、C 处约束反力。
图2-8 图2-92-9 支架由两杆AO、CE和滑轮等组成,O、B处为铰链,A、E是固定铰支座,尺寸如图,已知:r=20cm,在滑轮上吊有重Q=1000N的物体,杆及轮重均不计,试求支座A和E以及AO杆上的O处约束反力。
理论力学课后习题及答案解析

理论力学课后习题及答案解析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]第一章习题4-1.求图示平面力系的合成结果,长度单位为m。
解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
习题4-3.求下列各图中平行分布力的合力和对于A 点之矩。
解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力RB和一个力偶M B,且:如图所示;将RB向下平移一段距离d,使满足:最后简化为一个力R,大小等于RB。
其几何意义是:R 的大小等于载荷分布的矩形面积,作用点通过矩形的形心。
(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力RA和一个力偶M A,且:如图所示;将RA向右平移一段距离d,使满足:最后简化为一个力R,大小等于RA。
其几何意义是:R 的大小等于载荷分布的三角形面积,作用点通过三角形的形心。
习题4-4.求下列各梁和刚架的支座反力,长度单位为m。
解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。
校核:结果正确。
习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。
解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。
习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。
理论力学5平面任意力系

P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA
理论力学第2章平面任意力系

空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
理论力学02平面力系的简化和平衡

第二章
平面力系的简化和平衡
2.1力的合成与分解: 1.平行四边形法则: 作用于物体上同一点的两个力可合成 一个合力,此合力也作用于该点,合力的 大小和方向由以原两力矢为邻边所构成的 平行四边形的对角线来表示。
④ R ≠0, MO ≠0,为最一般的情况。此种情况还可以继续简 化为一个合力 R 。
合力R 的大小等于原力系的主矢 合力R 的作用线到简化中心的距离
MO d R
结论:
平面任意力系的简化结果 :①合力偶MO ; ②合力 合力矩定理:由于主矩 而合力对O点的矩
R
M O mO ( Fi )
主矩:
M O M O ( F ) 3F1 1.5P 1 3.9P 2 2355kN m
(2)求合力及其作用线位置:
d x 3.514m 0 0 cos 90 70.84
(3)求合力作用线方程:
MO MO
' ' FR x FRy y FRx x FRy y FRx
二、汇交力系的合成 由几何法知合力等于各分力的矢量和,即
R F Fn F i 1 F 2 F 3
又 由于
Fi X ii Yi j Zi k Fxii Fyi j Fzi k
代入上式得 R
F i F
xi
yi
j Fzi k
根据合矢量投影定理得合力在坐标轴的投影
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学平面力系综合问题
1.桁架的内力分析:图示平面桁架,已知:P = 5000 N,试求支座反力和各杆的内力。
2.图示构架,已知M = 250 Nm、重力P = 10 KN、均布载荷q = 3 KN/m,a = 2 m。
构架尺寸如图。
试求各支座的约束反力。
3.图示组合结构,尺寸及荷载如图所示,F = 10 KN,q= 6 KN/m,M = 188 KN.m,梁及各杆重不计。
求固定端C的约束反力和个杆的内力。
4.图示组合结构,尺寸和载荷如图,试求支座A、B、G、H的约束反力和杆件DB、DE、DC的内力。
5、滑块A、C用两根不计重量的杆AB和BC连接,滑块A的重量为20kg,滑块C的重量为10kg。
滑块A、C与壁面的摩擦系数为0.25。
求平衡时力F的范围。
6. 图示结构,尺寸和受力如图。
试求铰链C、销钉E和支座A的受力。
7. 图示结构,试求支座A、B的约束反力和杆件OC、OD的内力。
8. 图示结构,试求支座A、D、E和杆件CD、CB的受力。
9. 均质圆柱的重量P1=400N,放在倾角为300的光滑斜面上,并用一绕过定滑轮A的绳索与重量P2=200N的重物B相连。
定滑轮A的位置可调整,求系统平衡时的a角。
10. 杆系的支座和载荷如图5-5所示,已知∠ABC=60O,∠BAC=30O AB=12r,EC=CD=2r,滑轮D和E的半径均为r,滑轮H的直径为r,物体重为P,如不计滑轮和杆的重量,求A和B处的约束反力。
11. 图示结构由三个构件AB、BD和DE构成,A端为固定端约束,B及D处用光滑圆柱铰链连接,
BD杆的中间支承C及E湍均可动铰链支座,已知集中力P=10KN,均布载荷的集度q=5KN/m,
力偶矩的大小m=30KN·m,梁的尺寸如图所示,单位为m,各构件自重不计,
试求A、C及E处的约束反力。
12. 构架ABC由三杆AB,AC和DH所组成。
如图所示。
DH上的销子E可在杆AC的槽内滑动。
求在水平杆DH的一端作用铅垂力F时,结构上各铰链A,B,C,D及销子E所受的力。
13. 已扇形摇椅的底腿半径1m,顶角为60°,重量100N。
重心C距顶点O的距离为0.6m。
今在O点作用一水平力F,如图所示。
当力F逐渐增大时,摇椅是先翻到还是先滑动?分别就摇椅与地面的摩擦因数为0.15和0.30两种情况考虑。
如果先滑动,此时OC与铅垂线成何角度?如先翻到,此时摩擦力多大?
第12题图第13题图。