理论力学 平面任意力系例题
理论力学2.2、平面任意力系的合成与平衡

m F1 OA F2 OB F1 ( OA OB ) F1 AB
3
力 线 作用在刚体上的力可以离开其作用线而平 平 行移动到刚体上任意位置处,但必须对刚体 移 附加一个力偶,附加力偶的力偶矩等于原力 定 对平移后所得新力作用点的力矩。 理
求细绳的拉力和A、B两处的支持力。
解、研究对象:AB,受力 如图所示,则有:
Fix Fiy mD
0 0
(Fi )
0
FB FD G FA c
FA
os
sin 0
FB
BD
G
AB 2
0 sin
FA
AD
0
FA 115.5(N) FB 72.2(N ) FD 129.9(N) 12
例2.2-6、匀质细杆AB长度为L,重量为mg,静 止在半径为r的光滑半圆槽内(图2.2-17),
L=3r;求AB杆与水平线之间的夹角
解、研究对象:AB杆,受力如 图所示,则有:
Fix 0 Fiy 0 mO (Fi ) 0
FB FB
cos(2 ) FD sin sin(2 ) FD cos
d mO 2402 3.39(m) FR 709 .5
xE
d
sin
3.39 sin 70.8
3.59(m)
y yE tan 70.8 (x xE ) y 2.87x 10.31 0
10
课堂练习题(图示):
平面任意力系的平衡条件和平衡方程

理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-8 b
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)按图示坐标列平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)解方程 解方程,求得
负号说明图中所设方向与实际情况相反,即 MA 为顺时针转向。
理论力学 3-2平面任意力系的平衡条件和平衡方程
二、关于平面任意力系 的例题
理论力学 3-2平面任意力系的平衡条件和平衡方程
例3-2 起重机 P1 = 10 kN,可绕铅直轴AB转动;
起重机的挂钩上挂一重为 P2 = 40 kN 的重物, 如图 3-6 所示。
起重机的重心C到转动轴的距离为1.5 m, 其他尺寸如图所示。
求在止推轴承 A 和轴承 B 处的约束力。
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。
c.如果再加上
,那么力系如
有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q,
重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支
座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程 取坐标系如图3-7所示,列出平衡方程:
理论力学 3-2平面任意力系的平衡条件和平衡方程
平面任意力系习题答案

平面任意力系习题答案平面任意力系是指作用在物体上的力不满足平面力偶系或平面共面力系的条件,即力的作用线不在同一平面上,也不互相平行。
解决这类问题通常需要应用静力学的基本原理,如力的平衡条件、力矩平衡等。
习题1:已知一平面任意力系作用在刚体上,力F1=50N,方向为水平向右;力F2=30N,方向为竖直向上;力F3=40N,方向为与水平面成30度角斜向上。
求力系的合力。
答案:首先,将力F3分解为水平分量和竖直分量:- 水平分量:F3x = F3 * cos(30°) = 40 * (√3/2) = 20√3 N- 竖直分量:F3y = F3 * sin(30°) = 40 * (1/2) = 20 N然后,计算合力的水平分量和竖直分量:- 水平合力:Fx = F1 + F3x = 50 + 20√3 N- 竖直合力:Fy = F2 + F3y = 30 + 20 N最后,计算合力的大小和方向:- 合力大小:F = √(Fx^2 + Fy^2) = √((50 + 20√3)^2 + (30 + 20)^2) N- 方向:与水平面夹角θ满足tan(θ) = Fy / Fx习题2:一个平面任意力系作用在刚体上,已知力F1=60N,作用点A;力F2=40N,作用点B;力F3=50N,作用点C。
A、B、C三点不共线。
求力系的合力矩。
答案:首先,计算各力对任意一点(如A点)的力矩:- 力矩M1 = 0(因为力F1作用在A点,力矩为0)- 力矩M2 = F2 * (B到A的距离)- 力矩M3 = F3 * (C到A的距离)然后,计算合力矩:- 合力矩M = M1 + M2 + M3由于题目没有给出具体的距离,我们无法计算出具体的数值。
但是,上述步骤提供了计算合力矩的方法。
习题3:已知一平面任意力系作用在刚体上,力F1和F2的合力为100N,方向与F1相反,求F1和F2的大小。
答案:设F1的大小为xN,F2的大小为yN。
理论力学-平面力系

第二章平面力系一、是非题1.一个力在任意轴上投影的大小一定小于或等于该力的模,而沿该轴的分力的大小则可能大于该力的模。
()2.力矩与力偶矩的单位相同,常用的单位为牛·米,千牛·米等。
()3.只要两个力大小相等、方向相反,该两力就组成一力偶。
()4.同一个平面内的两个力偶,只要它们的力偶矩相等,这两个力偶就一定等效。
()5.只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。
()6.作用在刚体上的一个力,可以从原来的作用位置平行移动到该刚体内任意指定点,但必须附加一个力偶,附加力偶的矩等于原力对指定点的矩。
()7.某一平面力系,如其力多边形不封闭,则该力系一定有合力,合力作用线与简化中心的位置无关。
()8.平面任意力系,只要主矢R≠0,最后必可简化为一合力。
()9.平面力系向某点简化之主矢为零,主矩不为零。
则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。
()10.若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。
()11.当平面力系的主矢为零时,其主矩一定与简化中心的位置无关。
()12.在平面任意力系中,若其力多边形自行闭合,则力系平衡。
()二、选择题1.将大小为100N的力F沿x、y方向分解,若F在x轴上的投影为86.6N,而沿x方向的分力的大小为115.47N,则F在y轴上的投影为。
①0;②50N;③70.7N;④86.6N;⑤100N。
2.已知力F的大小为F=100N,若将F沿图示x、y方向分解,则x向分力的大小为N,y向分力的大小为N。
①86.6;②70.0;③136.6;④25.9;⑤96.6;3.已知杆AB长2m,C是其中点。
分别受图示四个力系作用,则和是等效力系。
①图(a)所示的力系;②图(b)所示的力系;③图(c)所示的力系;④图(d)所示的力系。
4.某平面任意力系向O点简化,得到如图所示的一个力R 和一个力偶矩为Mo的力偶,则该力系的最后合成结果为。
理论力学考试重点题型

写要规范认真、铅笔及绘图工具绘图,答题的思路和步骤、
主要公式是得分重点,不要追求结果,以免耽误时间。
《材料力学》考试复习重点内容:轴向拉压变形-----轴力图、 扭矩计算、切应力强度校核、刚度校核。弯曲变形-------铸铁简支 梁内力图绘制、正应力强度校核。组合变形------偏心拉伸问题-----最大正应力计算。综合题-------简支梁与压杆稳定性问题的综合-----计算许可载荷、注意稳定性问题的直线公式应用。综合题-----
分析:滑动、纯滚 分析:圆盘可能出 分析: 12 、圆柱受挤压, 分析: 、圆柱受挤压, 动、滚动?顺时针? 现的运动情况。 向右滑动趋势, B、E两 作顺时针纯滚动趋势, 逆时针? 点同时达到临界。 假设绕 点纯滚动时, 分析:E 3、圆柱受挤压, B 点达到临界, E点没 作顺时针纯滚动趋势, 分析: 4、圆柱虽受挤压, 有达到临界。 假设绕 B 点纯滚动时, 但同时在 M 作用下,可能 E点达到临界,B点没有 作逆时针纯滚动趋势,此 达到临界。 时M值较大。
滚轮B的半径为 r 0.5m ,在水平地面上作纯滚动。连杆AB 长为1m 。图示瞬时OA在铅垂位置, OB为水平线,求⑴该瞬 时滚轮B的角加速度。⑵C点的加速度。 解:(1)取AB为研究对象, 进行速度分析,由 vA与vB方向可知: AB做瞬时平移, AB 0
因: 2 n 3.14rad / s 60
例7-8
刨床的急回机构如图所示。曲柄OA的一端A与滑块用铰
链连接。当曲柄OA以匀角速度ω绕固定轴O转动时,滑块在摇杆
O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲柄长为OA=r,两 轴间距离OO1=l。 求:摇杆O1B在如图所示位
理论力学5平面任意力系

P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA
理论力学—平面力系(习题课)

l 2
P
l 3
FEy
l 2
0
FEx P 方向向左
D
C FCx
FEx
E
FEy
FB B
类似地, 以DC为研究对象, 求FDy, 再以ACD为研究对象求解。
方法2: 分别以ACD和AC为研究对象。
MD(F) 0 :
FAxl
FEx
l 2
FEy
l 2
P
2l 3
0
MC (F) 0 :
F2 F3 45° x
C
F1 FD
q(2a b)2
F3
2a
F2
q(2a 2a
b)2
q
AE
F
B
a
23
D1
C
b
a
a
习题课2: 两根铅直杆AB、CD与水平杆BC铰接,
B、C、D均为光滑铰链, A为固定端, 各杆的长
度均为l=2 m, 受力情况如图所示。已知水平力
F=6 kN, M=4 kN·m, q=3 kN/m。求固定端A及
MA
FAx
FAy P F FE cos 45 0
FAy 2F
M A(F) 0 :
MA q6a3a P(4.5a r) FE 6 2a F 6a 0
M A 5aF 18qa2
习题课6 : 三无重杆AC、BD、CD如
P 2l/3
图铰接, B处为光滑接触, ABCD为正方形, 在CD杆距C三分之一处作用一垂直力P, D
1)取CD、DE带滑轮分析:
MC (F) 0 :
理论力学作业参考答案

平面任意力系(一)一、填空题1、平面任意力系的主矢RF '与简化中心的位置 无 关,主矩o M 一般与简化中心的位置 有 关,而在__主矢为零___的特殊情况下,主矩与简化中心的位置 无 __ 关.2、当平面力系的主矢等于零,主矩不等于零时,此力系合成为_一个合力偶.3、如右图所示平面任意力系中,F F F F 1234===,此力系向A 点简化的结果是 0R F '≠,0A M ≠ ,此力系向B 点简化的结果是0RF '≠,0A M = . 4、如图所示x 轴与y 轴夹角为α,设一力系在oxy 平面内对y 轴和x轴上的A ,B 点有∑A m 0)(=F ,∑B m 0)(=F ,且∑=0y F ,但∑≠0x F ,l OA =,则B 点在x 轴上的位置OB =___/cos l θ ____.(题4图) (题5图)5、折杆ABC 与CD 直杆在C 处铰接,CD 杆上受一力偶m N 2⋅=M 作用,m 1=l ,不计各杆自重,则A 处的约束反力为___2N___. 二、判断题(√ ) 1.若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系.(√ ) 2.在平面力系中,合力一定等于主矢.(× ) 3.在平面力系中,只要主矩不为零,力系一定能够进一步简化.1F 2F 3F 4F AB(√ ) 4.当平面任意力系向某点简化结果为力偶时,如果再向另一点简化,则其结果是一样的.(×) 5.平面任意力系的平衡方程形式,除一矩式,二矩式,三矩式外,还可用三个投影式表示.(× ) 6.平面任意力系平衡的充要条件为力系的合力等于零.(× ) 7.设一平面任意力系向某一点简化得一合力,如另选适当的点为简化中心,则力系可简化为一力偶.(√ ) 8.作用于刚体的平面任意力系主矢是个自由矢量,而该力系的合力(若有合力)是滑动矢量,但这两个矢量等值,同向.( × ) 9.图示二结构受力等效.三、选择题1、关于平面力系与其平衡方程式,下列的表述正确的是_____D_ ___A.任何平面任意力系都具有三个独立的平衡方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
60
l
l
F
B
F
D
60
l
l D M
M
B
3l
G
F1
l MA
G FAy
x A FAx
17
A
q
例题
平面任意力系
2. 按图示坐标,列写平衡方程。
F
60
例 题 5
y l l D M
F F
x
0,
B
FAx F1 F sin 60 0
y
0,
FAy G F cos 60 0
M作用,梁的跨度为l,求固定端的约束力。
F
45
q
A l
M
B
14
例题
平面任意力系
q
A y
例 题 4
2. 列平衡方程
M
45
F
解: 1. 取梁为研究对象,受力分析如图
B
l
Fx 0,
Fy 0,
FAx F cos 45 0
FAy ql F sin 45 0
q FAx
力系对O点的主矩为
MO
O
主矢FR在第四象限内,与x轴的夹角为 –70.84o。M
O
M F
O
FRx
70.84
A
F1 3 m G1 1.5 m G2 3.9 m 2 355 kN m
FRy
FR
7
例题
平面任意力系
2. 求合力与基线OA的交点到O点的距离 x。 合力FR的大小和方向与主矢FR相同。 合力作用线位置由合力矩定理求得。
0.768 kN
所以,主矢的大小
FR
FRx FRy 0.794 kN
2 2
2
例题
平面任意力系
主矢的方向:
cosFR , i
cosFR , j
y
例 题 1
FR , i 52.1
FRx FR
FRy FR
B
0.614
0
A
FA
2m 2m
B
FB
G3 min 75 kN
21
例题
平面任意力系
例 题 6
空载时,G2 = 0,不绕A点翻 倒,临界情况下FB = 0,可得
M F 0
A
G3 max 6 2 G1 2 0
G3
6m
G1
G3 max 350 kN
12 m
G2
A
FA
3.9m
90
F2
主矢的投影
x
B O
5.7m
G2 A
FRx Fx F1 F2 cos 232.9 kN FRy Fy
MO
O
FRx
A
FRy G1 G2 F2 sin 670.1 kN
FR
力系主矢FR
的大小
FR
(Fx ) (Fy ) 709.4 kN
FRy
FR
FRy
FR
例题
平面任意力系
y C
例 题 2
3.求合力作用线方程。
设合力作用线上任一点的坐标为(x,y),
将合力作用于此点,则
M O M O FR xFRy yFRx x Fy y Fx
可得合力作用线方程
O
x
FRx
70.84
A
x
2 355 kN m 670.1 kN x 232.9 kN y
例题
平面任意力系
例 题 1
在长方形平板的O , A , B , C点上分别作用着有四个力:
F1=1 kN,F2=2 kN,F3=F4=3 kN(如图),试求以上四个
力构成的力系对O点的简化结果,以及该力系的最后合成结 果。
y
F2 A
60°
B
F3
2m
F1 C O
3m
F4
30° x
1
例题
平面任意力系 解: 求向O点简化结果
y
FB
F
F
x
0,
FAx FB cos 0
y
FAy FAx
A D
C
α
E
B
x
0,
a
FAy F1 G F2 FB sin 0
F1
G l
F2 b
M F 0,
A
F1 a G
l 2
F2 l b FB cos c FB sin l 0
G2
A
FA
2m 2m
F
y
0
B
FB
G3 G1 G2 FA FB 0
FB 870 kN
解方程得
FA 210 kN
23
例题
平面任意力系
例 题 7
一种车载式起重机,车重G1= 26 kN,起重机伸臂重 G2 = 4.5 kN,起重机的旋转与固定部分共重G3 = 31 kN。 尺寸如图所示。设伸臂在起重机对称面内,且放在图示 位置,试求车子不致翻倒的最大起吊重量Gmax。
C C
例 题 2
所以由合力矩定理得
M O M O FR M O FRx M O FRy
其中 故
MO
O
M O FRx 0
M O M O FRy FRy x
x MO FRy
8
FRx
70.84
FRx
A O x
70.84
A
解得
3.514m
FCx FCy
F
x
0,
FAx FBx FE 0
M F 0,
A
G
FAy FAx FE FBx FBy
联立求解可得
FBx 1.5G,
2r FBx 2r FBy rFE 0
FBy 2G
G(2.5 3 ) G2 2.5 G1 2 FA (1.8 2 ) 0
25
例题
平面任意力系
3.联立求解。
FA 1 3.8
例 题 7
2G1 2.5G2 5.5G
A
G1
1.8 m 2.0 m
G3
G2
G
3.0 m
B
2.5 m
4.不翻倒的条件是:FA≥0,
所以由上式可得 G≤
1 5.5
FA
FB
2G1 2.5G2 7.5 kN
Gmax= 7.5 kN
26
故最大起吊重量为
例题
平面任意力系
例 题 8
A,B,C,D处均为光滑铰链,物块重为G,通过 绳子绕过滑轮水平地连接于杆AB的E点,各构件自重不 计,试求B处的约束力。
27
例题
平面任意力系
670.1 kN x 232.9 kN y 2 355 kN m 0
FRy
FR
即
670.1 x 232.9 y 2 355 0
9
例题
平面任意力系
伸臂式起重机如图所示, 匀质伸臂AB 重G =2 200 N,吊 车D,E连同吊起重物各重F1= F2=4 000 N。有关尺寸为:l = 4.3 m,a = 1.5 m,b = 0.9 m,c = 0.15 m,α=25°。试求铰链A 对臂AB的水平和铅直约束力, a l
A
M
45
F
x
M A F 0, M A ql l F cos 45 l M 0
MA
l
B
FAy
FAx
2 F cos 45 0.707 F
3. 解方程
FAy ql 0.707 F
MA 1 2 ql 0.707 Fl M
2
15
例题
y
例 题 1
F2 A
60°
B
F3
1.求主矢 FR 。 建立如图坐标系Oxy。
FRx Fx
2m
F1 C O
3m
F2 cos 60 F3 F4 cos 30
F4
30° x
0.598 kN
FRy Fy
F1 F2 sin 60 F4 sin 30
10
例 题 3
F
c A F1
C
α F2 b
B
以及拉索BF 的拉力。
例题
平面任意力系 解:
1.取伸臂AB为研究对象。 2.受力分析如图。 c y A FB α
E
例 题 3
F
C F1
α F2 b
B
FAy FAx
A D
C
B
x
a l
F1
G
F2
11
例题
平面任意力系
3.选如图坐标系,列平衡方程。
例 题 3
G3
A
1.8 m
G2 G
G1
2.0 m
B
2.5 m 3.0 m 24
FA
FB
例题
平面任意力系 解:
1.取汽车及起重机为研究
例 题 7
对象,受力分析如图。
G3 G2 G
2.5 m 3.0 m
2.列平衡方程。
A
1.8 m
G1