函数与方程复习讲义(完整资料).doc

合集下载

函数与方程知识点总结资料

函数与方程知识点总结资料

函数与方程知识点总结资料函数与方程是数学中的重要概念,是许多其他数学分支的基础。

本文将对函数与方程的知识点做一个总结,帮助读者更好地理解和掌握这些概念。

一、函数的基本概念1. 函数定义函数是一种特殊的关系,即将一个自变量映射到一个因变量上的过程。

函数的定义方式可以有多种,最常见的定义方式是:f(x)=y\qquad y=f(x)其中,x 是自变量,f 是函数名,y 是因变量。

2. 函数的图像函数的图像是指函数在直角坐标系中的表现形式,即以自变量x 为横坐标,对应的因变量 y 为纵坐标所构成的图形。

函数的图像可以用数学软件绘制,也可以手绘出来。

3. 函数的定义域和值域函数的定义域是自变量的取值范围,是使函数有意义的自变量的集合。

函数的值域是函数在定义域内的所有可能输出值的集合。

函数的定义域和值域可以用数学符号表示,例如:\text{定义域:}D(f)=\{x\mid x\text{ 是实数}\}\text{值域:}R(f)=\{y\mid y\text{ 是实数}\}4. 奇偶性、单调性和周期性函数的奇偶性指函数图像相对于 y 轴的对称性,分为偶函数和奇函数。

偶函数满足 f(-x)=f(x),奇函数满足 f(-x)=-f(x)。

函数的单调性指函数图像在定义域内是否单调递增或单调递减。

如果对于任意 x_1<x_2,都有 f(x_1)<f(x_2),则称函数 f 在定义域内是单调递增的;如果对于任意 x_1<x_2,都有f(x_1)>f(x_2),则称函数 f 在定义域内是单调递减的。

函数的周期性指函数在定义域内是否有重复的输出值。

如果存在一个正数 T,使得对于任意 x\in D(f),都有 f(x+T)=f(x),则称函数 f 是周期函数,T 称为函数的周期。

5. 复合函数和反函数复合函数是指将一个函数的输出作为另一个函数的输入,并得到新函数的过程。

反函数是指对于一个函数 f,存在一个函数g,使得 g(f(x))=x 在定义域内成立。

九年级数学方程与函数复习浙江版知识精讲

九年级数学方程与函数复习浙江版知识精讲

九年级数学方程与函数复习某某版【同步教育信息】一. 本周教学内容: 方程与函数复习[复习要求](1)二元二次方程组:解题基本思路:消元后转化为一元二次方程。

具体方法:代入法、加减法、应用韦达定理。

(2)简单高次方程:解题思路:降次后转化为解一元一次方程和一元二次方程。

具体方法:①因式分解法;②换元法。

(3)二次根式方程:解题思路:化去括号后转化为整式方程或分式方程; 具体方法:①把方程两边平方;②换元法。

(4)二次函数:一般形式:y ax bx c a =++20()≠ 顶点式:y a x m k a =++()()20≠ 交点式:y a x x x x a =--()()()120≠它的图像及性质,图像平移法则,由图象确定a 、b 、c 符号【典型例题】例1. 解方程x x x x 2261+=+- 解:设y x x =+-21,则原方程可化为:y y+=16 即y y 260+-=,解得y y =-=32或 当y =-3时x x 220++=无实根当y =2时x x 230+-=,解得x =-1132± 经检验知:x x 1211321132=--=-+,为原方程的解。

精析:若直接去分母,则出现关于x 的四次方程,不能将x x 2+视一个整体,则可大大简化求解过程。

∵若能注意到y x x x =+-=+-≥-221125454(),则可直接舍去y =-3。

∴分式方程必须验根。

例2. 已知关于x 的一元二次方程kx k x k 210++-=()①试判断根的情况,②如果α、β(α>β)是这方程的两个实根,且αββ36=-,求α、β的值。

解:①当k=0时,方程为一次方程,∴k ≠0∆=+--=++()()()k k k k k 1414222,无论k 为何值,∆>0。

∴当k ≠0时,原方程恒有两个实数根 (2)由韦达定理,由αββ36=-得αββ326=-∵,∴αβ226+=∴()()-+--=k k 12162,∴k k 12113==-, 当k=-1时,方程为,解得,当k =-13时,方程为x x 2210--=,解得αβ=+=-1212,。

2.9函数与方程-2020-2021学年新高考数学一轮复习讲义

2.9函数与方程-2020-2021学年新高考数学一轮复习讲义
⑵函数v=f(.x)在区间(a, b)内有零点(函数图象连续不断),贝'J/(t7)/(h)<0.(X )
⑶二次函数》=曲+加+如工0)在,一4ac<0时没有零点.(V )
(4)T(x)=W, g(x)=2\ //(x)=log2x,当xG(4,+8)时,恒有/心)<y(x)vg(x).(J)
题组二教材改编
§2.9
基础落实回扣基础知ቤተ መጻሕፍቲ ባይዱ训纷基础題目
1.函数的零点
(1)函数零点的定义
对于函数y=/(x)(xez)),把使f(x)=O的实数x叫做函数y=/(x)(xGZ))的零点.
(2)三个等价关系
方程f(x)=O有实数根o函数y=f(x)的图象与x轴有交点o函数y=/(x)有零点.
(3)函数零点的判定(零点存在性左理)
5.若函数f(x)=2ax2-x-l在((H)内恰有一个零点,则实数a的取值范囤是()
A.(一 1,1)B・[b+8)
C・(1, +8)D・(2, +8)
答案c
解析当a=0时,函数的零点是X=-1,不符合题意.
当aHO时,若」>0, /(0)/(1)<0,则a>l・
若J=0,即a=-i,函数的零点是x=-2,不符合题意,故选C.
思维升华判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数的零点区间问题,往
往要结合图象进行分析,一般是转化为两函数图象的交点,分析其横坐标的情况进行求解.
(^2_2'V0
例1(1)函数/(X)=L:二''C的零点个数是・
I2x—6 + ln x, x>0

函数与方程—讲义

函数与方程—讲义

函数与方程一.【目标要求】①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数.③会理解函数零点存在性定理,会判断函数零点的存在性.二.【基础知识】 1.函数零点的概念:对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

2.函数零点与方程根的关系:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有点⇔函数)(x f y =有零点3.函数零点的存在性定理:如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有 0)()(<b f a f ,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

注:若()0()0f x f x ><或恒成立,则没有零点。

三.【技巧平台】1.对函数零点的理解及补充(1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。

(2)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。

②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

(3)一般结论:函数)(x f y =的零点就是方程0)(=x f 的实数根。

从图像上看,函数)(x f y =的零点,就是它图像与x 轴交点的横坐标。

(4)更一般的结论:函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =与()y g x =的图像交点的横坐标。

(完整word版)高等数学辅导讲义.doc

(完整word版)高等数学辅导讲义.doc

第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。

2.求数列极限和函数极限。

3.讨论函数连续性,并判断间断点类型。

4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。

解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。

第8讲 函数与方程 讲义

第8讲 函数与方程 讲义

函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与有交点⇔函数y=f(x)有.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈(a,b),使得,这个___也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且的函数y=f(x),通过不断地把函数f(x)的零点所在的区间,使区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系【知识拓展】1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号. 2.三个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( )1.(教材改编)函数121()()2xf x x =-的零点个数为( ) A .0 B .1 C .2 D .32.下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln x D .y =x 2+13.(2016·吉林长春检测)函数f (x )=12ln x +x -1x -2的零点所在的区间是( )A .(1e,1)B .(1,2)C .(2,e)D .(e,3)4.函数f (x )=2x|log 0.5 x |-1的零点个数为________.5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.题型一 函数零点的确定命题点1 确定函数零点所在区间例1 (1)(2017·长沙调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)(2)(2016·济南模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是________.命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎨⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( )A .多于4B .4C .3D .2 答案 (1)2 (2)B思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) (2)函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .7 题型二 函数零点的应用例3 (1)函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)(2)已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同引申探究本例(2)中,若f(x)=a恰有四个互异的实数根,则a的取值范围是________________.思维升华已知函数零点情况求参数的步骤及方法(1)步骤:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围.(2)方法:常利用数形结合法.(1)(2016·枣庄模拟)已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,则a的取值范围为________.(2)(2015·湖南)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.题型三二次函数的零点问题例4已知f(x)=x2+(a2-1)x+(a-2)的一个零点比1大,一个零点比1小,求实数a的取值范围.思维升华解决与二次函数有关的零点问题:(1)利用一元二次方程的求根公式;(2)利用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.(2016·临沂一模)若函数f(x)=(m-2)x2+mx+(2m+1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m的取值范围是__________.4.利用转化思想求解函数零点问题典例(1)若函数f(x)=a x-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是________.(2)若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围为________.1.设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)2.(2016·潍坊模拟)已知函数f (x )=⎩⎨⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12 B .-2 C .0或12D .0 3.已知三个函数f (x )=2x+x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b4.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3 D .45.已知函数f (x )=⎩⎪⎨⎪⎧1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞) 6.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x -a (x ≠0)有且仅有3个零点,则实数a 的取值范围是________________.7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________.8.已知函数f (x )=⎩⎨⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.9.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x+log 2 015x ,则在R 上,函数f (x )零点的个数为________.*10.(2016·衡水期中)若a >1,设函数f (x )=a x+x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为________.11.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.12.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.*13.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.。

函数与方程复习公开课课件

函数与方程复习公开课课件

目录
课前热身
1.如图所示的函数图象与 x轴均有交点,其中不能用二分 法求图中交点横坐标的是( )
A.①② C.①④ 答案:B
B.①③ D.③④
目录
2.若函数 f(x)= ax+ b 有一个零点是 2,那么函数 g(x)=bx2 - ax 的零点是( A. 0, 2 1 C. 0,- 2 ) 1 B.0, 2 1 D. 2,- 2
1 > 1 时,由 f(x)= 1+ log2x= 0,解得 x= , 2 又因为 x> 1,所以此时方程无解. 综上函数 f(x)的零点只有 0,故选 D.
目录
知识点 2 二分法
例2
若函数 f(x)=x3+x2-2x-2 的一个正数零点附近
的函数值用二分法计算,其参考数值如下:
f(1)=-2 f(1.375) =-0.260
a>1 象有 4 个不同的交点, 则有 ,由此解得 a> 8, loga( 6+ 2)< 1
即 a 的取值范围是(8,+∞ ),故选 D.
【答案】
D
目录
【规律小结】
已知函数有零点(方程有根)求参数值常用的方
法和思路:
(1) 直接法:直接求解方程得到方程的根 , 再通过解不等式确 定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加 以解决; (3) 数形结合:先对解析式变形 , 在同一平面直角坐标系中 , 画出函数的图象,然后观察求解.
解析: 选 C.∵2a+b=0, ∴g(x)=-2ax2-ax=-ax(2x+1), 1 所以零点为 0 和- . 2
目录
2 3.函数 f(x)=2 - -a 的一个零点在区间(1,2)内,则实数 a x
x
的取值范围是( A. (1,3) C. (0,3)

函数与方程教学讲义

函数与方程教学讲义

函数与方程教学讲义‖知识梳理‖1.函数的零点函数零点的概念对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点方程的根与函数零点的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点函数零点的存在定理函数y=f(x)在区间[a,b]上的图象是连续不断的一条件曲线,若f(a)·f(b)<0,则y=f(x)在(a,b)内存在零点2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个3.二分法条件(1)函数y=f(x)在区间[a,b]上连续不断;(2)在区间端点的函数值满足f(a)·f(b)<0方法不断地把函数y=f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值1.若函数y=f(x)在闭区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,则函数y=f(x)一定有零点.特别是,当y=f(x)在[a,b]上单调时,它仅有一个零点.2.由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(3)只要函数有零点,我们就可以用二分法求出零点的近似值.(×) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.(√)(5)若连续函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.(√)‖自主测评‖1.下列函数图象与x 轴均有交点,其中不能用二分法求图中函数零点的是( )解析:选C 对于选项C ,由图可知零点附近左右两侧的函数值的符号是相同的,故不能用二分法求解.2.(教材改编题)函数f (x )=ln x +2x -6的零点在下列哪个区间内( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案:C3.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:x 1 2 3 4 5 6 y124.433-7424.5-36.7-123.6则函数y =f (x )A .2个 B .3个 C .4个D .5个解析:选B 依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.4.函数f (x )=x 12-⎝⎛⎭⎫12x 的零点有________个.解析:函数f (x )=x 12-⎝⎛⎭⎫12x 的零点个数是方程x 12-⎝⎛⎭⎫12x =0的解的个数,即方程x 12=⎝⎛⎭⎫12x 的解的个数,也就是函数y =x 12与y =⎝⎛⎭⎫12x 的图象的交点个数.在同一坐标系中作出两个函数的图象,可得交点个数为1,即函数f (x )有1个零点.答案:15.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________. 解析:由题意知2a +b =0,即b =-2a . 令g (x )=bx 2-ax =0,得x =0或x =a b =-12.答案:0,-12…………考点一 函数零点所在区间的判断………………|自主练透型|……………|典题练全|1.函数f (x )=ln x -2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解析:选B 因为f ′(x )=1x +2x 2>0(x >0),所以f (x )在(0,+∞)上单调递增,又f (3)=ln 3-23>0,f (2)=ln 2-1<0,所以f (2)·f (3)<0,所以f (x )唯一的零点在区间(2,3)内.故选B. 2.若x 0是方程⎝⎛⎭⎫12x=x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12D.⎝⎛⎭⎫0,13 解析:选C 令g (x )=⎝⎛⎭⎫12x,f (x )=x 13, 则g (0)=1>f (0)=0,g ⎝⎛⎭⎫12=⎝⎛⎭⎫1212<f ⎝⎛⎭⎫12=⎝⎛⎭⎫1213, g ⎝⎛⎭⎫13=⎝⎛⎭⎫1213>f ⎝⎛⎭⎫13=⎝⎛⎭⎫1313, 所以由图象关系可得13<x 0<12.3.(2018届河北武邑中学调研)函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.解析:因为f (x )在(0,+∞)上单调递增,且f (2)=-1+ln 2<0,f (3)=2+ln 3>0,所以函数f (x )的零点位于区间(2,3)内,故n =2. 答案:2『名师点津』………………………………………………|品名师指点迷津|判断函数零点所在区间的3种方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,然后再看求得的根是否落在给定区间上.(2)定理法:利用函数零点的存在性定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)图象法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.…………考点二 判断函数零点的个数………………|重点保分型|……………|研透典例|【典例】 (1)(一题多解)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0(2)(2018届福建泉州检测)设函数y =f (x )满足f (x +2)=f (x ),且当x ∈[-1,1]时,f (x )=|x |,则函数g (x )=f (x )-sin x 在区间[-π,π]上的零点的个数为( ) A .2 B .3 C .4D .5[解析] (1)解法一:由f (x )=0得⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x=-2或x=e.因此函数f(x)共有2个零点.解法二:函数f(x)的图象如图所示,由图象知函数f(x)共有2个零点.(2)要求函数g(x)=f(x)-sin x的零点个数,即求方程f(x)-sin x=0的根的个数,可转化为函数y=f(x)与函数y=sin x的图象的交点个数.在同一坐标系内作出y=f(x)与y=sin x两个函数的图象如图所示,可知在区间[-π,π]上,两函数图象有3 个交点.故选B.[答案](1)B(2)B『名师点津』………………………………………………|品名师指点迷津|判断函数零点个数的3种方法(1)方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.|变式训练|1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0 B.1C.2 D.3解析:选C由题意可知f(x)的定义域为(0,+∞),在同一直角坐标系中画出函数y1=|x-2|(x>0),y2=ln x(x>0)的图象,如图所示.由图可知函数f(x)在定义域内的零点个数为2.2.若定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是()A.多于4 B.4C.3 D.2解析:选B由题意知,f(x)是周期为2的偶函数.在同一坐标系内作出函数y=f(x)及y=log3|x|的图象,如图,观察图象可以发现它们有4个交点,即函数y=f(x)-log3|x|有4个零点.………………考点三函数零点的应用………………|多维探究型|……………|多角探明|角度一求函数多个零点(或方程根)的和【例1】(2019届石家庄质量检测)已知M是函数f(x)=|2x-3|-8sinπx(x∈R)的所有零点之和,则M的值为()A.3 B.6C.9 D.12[解析]将函数f(x)=|2x-3|-8sinπx的零点转化为函数h(x)=|2x-3|与g(x)=8sinπx图象交点的横坐标.在同一平面直角坐标系中,画出函数h(x)与g(x)的图象,如图,因为函数h(x)与g(x)的图象都关于直线x=3对称,两个函数的图象共有8个交点,所以函数f(x)的所有零2=12,故选D.点之和M=8×32[答案] D角度二 根据函数零点的个数求参数【例2】 (2019届郑州模拟)已知函数f (x )=⎩⎪⎨⎪⎧e x -a ,x ≤0,2x -a ,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则实数a 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1)D .(-∞,1][解析] 画出函数f (x )的大致图象如图所示.因为函数f (x )在R 上有两个零点,所以f (x )在(-∞,0]和(0,+∞)上各有一个零点.当x ≤0时,f (x )有一个零点,需0<a ≤1;当x >0时,f (x )有一个零点,需-a <0,即a >0.综上,0<a ≤1,故选A.[答案] A角度三 根据函数有无零点求参数【例3】 (1)函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 (2)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( ) A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)[解析] (1)由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有解,即a =x +1x 在⎝⎛⎭⎫12,3上有解,设t =x +1x,x ∈⎝⎛⎭⎫12,3,则t 的取值范围是⎣⎡⎭⎫2,103.∴实数a 的取值范围是⎣⎡⎭⎫2,103. (2)函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x =⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的大致图象(图略). 观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点.[答案] (1)D (2)D角度四 根据函数零点的范围求参数【例4】 若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________.[解析]依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.[答案] ⎝⎛⎭⎫14,12『名师点津』………………………………………………|品名师指点迷津|已知函数的零点或方程根的情况求参数问题常用的3种方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.|变式训练|1.(2018届长春监测)已知定义在R 上的奇函数f (x )满足f (x +π)=f (-x ),当x ∈⎣⎡⎦⎤0,π2时,f (x )=x ,则函数g (x )=(x -π)f (x )-1在区间⎣⎡⎦⎤-3π2,3π上所有的零点之和为( ) A .π B .2π C .3πD .4π解析:选D 由题知f (x )为奇函数,则f (x +2π)=f (x +π+π)=f (-x -π)=-f (x +π)=-f (-x )=f (x ),所以f (x )的周期为2π,易知其图象关于点(π,0)对称,g (x )在区间⎣⎡⎦⎤-3π2,3π上所有的零点可转化为函数f (x )和y =1x -π的图象在⎣⎡⎦⎤-3π2,3π上的交点的横坐标之和,由y =1x -π的图象关于点(π,0)对称,知函数g (x )在⎣⎡⎦⎤-3π2,3π上的零点也关于点(π,0)对称,作出函数f (x )与y =1x -π的大致图象,如图,结合图象可知,两函数图象在⎣⎡⎦⎤-3π2,3π上共有4个交点,所以g (x )的所有零点之和为4π.故选D.2.(2018年全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A .[-1,0) B .[0,+∞) C .[-1,+∞)D .[1,+∞)解析:选C 令h (x )=-x -a , 则g (x )=f (x )-h (x ).在同一坐标系中画出y =f (x ),y =h (x )的图象的示意图,如图所示.若g (x )存在2个零点,则y =f (x )的图象与y =h (x )的图象有2个交点,平移y =h (x )的图象,可知当直线y =-x -a 过点(0,1)时,有2个交点, 此时1=-0-a ,a =-1.当y =-x -a 在y =-x +1上方,即a <-1时,仅有1个交点,不符合题意. 当y =-x -a 在y =-x +1下方,即a >-1时,有2个交点,符合题意. 综上,a 的取值范围为[-1,+∞). 故选C.核心素养系列 逻辑推理——利用转化思想求解函数零点问题【典例】 (1)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x <1,log 12x ,x ≥1,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是________.(2)若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围为________. [解析] (1)关于x 的方程f (x )=k 有三个不同的实根,等价于函数y 1=f (x )与函数y 2=k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0).(2)由方程,解得a =-22x +12x +1,设t =2x (t >0).则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤(t +1)+2t +1,其中t +1>1, 由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号, 故a ≤2-2 2.[答案] (1)(-1,0) (2)(-∞,2-22][点评] (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围. (2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】.函数与方程复习讲义一.【目标要求】①结合二次函数的图象,了解函数的零点与方程根的联系, ②判断一元二次方程根的存在性及根的个数.③会理解函数零点存在性定理,会判断函数零点的存在性. 二.【基础知识】 1.函数零点的概念:对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。

2.函数零点与方程根的关系:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有点⇔函数)(x f y =有零点3.函数零点的存在性定理:如果函数)(x f y =在区间[],a b 上的图像是一条连续不断的曲线,并且有 0)()(<b f a f ,那么,函数)(x f y =在区间(),a b 内有零点,即存在),(0b a x ∈,使得0)(0=x f ,这个0x 也就是方程0)(=x f 的根。

注:若()0()0f x f x ><或恒成立,则没有零点。

三.【技巧平台】1.对函数零点的理解及补充 (1)若)(x f y =在x a =处其函数值为0,即()0f a =,则称a 为函数()f x 的零点。

(2)变号零点与不变号零点①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。

②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。

③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

(3)一般结论:函数)(x f y =的零点就是方程0)(=x f 的实数根。

从图像上看,函数)(x f y =的零点,就是它图像与x 轴交点的横坐标。

(4)更一般的结论:函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =与()y g x =的图像交点的横坐标。

2.函数)(x f y =零点个数(或方程0)(=x f 实数根的个数)确定方法 1) 代数法:函数)(x f y =的零点()0f x ⇔=的根 2) 几何法:有些不容易直接求出的函数)(x f y =的零点或方程0)(=x f 的根,可利用)(x f y = 的图像和性质找出零点。

画 3) 注意二次函数的零点个数问题0∆>⇔)(x f y =有2个零点()0f x ⇔=有两个不等实根 0∆=⇔)(x f y =有1个零点()0f x ⇔=有两个相等实根 0∆<⇔)(x f y =无零点()0f x ⇔=无实根 对于二次函数在区间[],a b 上的零点个数,要结合图像进行确定 4) 对于函数()()()F x f x g x =-的零点个数问题,可画出两个函数图像,看其交点个数有几个,则这些交点横坐标有几个不同的值就有几个零点。

5) 方程的根或函数零点的存在性问题,要以根据区间端点处的函数值乘积的正负来确定,但要确定零点的个数还需进一步研究函数在区间上的单调性,在给定的区间上,如果函数是单调的,它至多有一个零点,如果不是单调的,可继续细分出小的单调区间,再结合这些小的区间的端点处的函数值的正负,作出正确的判断。

6) 要特别注意数形结合解出方程解的个数的问题。

3.一元二次函数的零点、一元二次方程的根、一元二次不等式的解集之间的关系。

为学习的方便,在解一元二次不等式和一元二次方程时,把二次项系数a 化为正数, (1)20(0)ax bx c a ++>≠恒成立00a >⎧⇔⎨∆<⎩,20(0)ax bx c a ++<≠恒成立0a <⎧⇔⎨∆<⎩(2)20ax bx c ++>的解集为R 000a a b c >==⎧⎧⇔⎨⎨∆<>⎩⎩或20ax bx c ++<的解集为R 0000a abc >==⎧⎧⇔⎨⎨∆<<⎩⎩或 (3)对于二次函数在区间[],a b 上的最值问题,参照第1.5(1)和1.5(2)节4.用二分法求方程的近似解㈠给定精确度ε,用二分法求方程的近似解的基本步骤如下: 1.精确区间[],a b D ⊆,使()(0)f a f b ⋅<.令00,a a b b ==.2.取区间[]00,a b 的中点0001()2x a b =+,计算000(),(),()f x f a f b 一般步骤 (1)如果0()0f x =,则0x 就是()f x 的零点, 计算终止;(2) 如果00()()0f a f x <,则零点位于区间[]00,a x ,令1010,a a b x ==; (3) 如果00()()0f a f x >,则零点位于区间[]00,x b 令1010,a x b b ==。

3. 取区间[]11,a b 的中点1111()2x a b =+,计算1()f x(1)如果1()0f x =,则0x 就是()f x 的零点, 计算终止;(2) 如果11()()0f a f x <,则零点位于区间[]00,a x ,令2121,a a b x ==; (3) 如果11()()0f a f x >,则零点位于区间[]00,x b 令1121,a x b b ==。

……4.判断是不是达到精确度ε,即如果ab ε-<,则得到零点近似值a 或(b); 否则就重复步骤2-4函数与方程复习题 1.(2015安徽2)下列函数中,既是偶函数又存在零点的是( ) (A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+ 【答案】A2.( 2015天津8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞ ⎪⎝⎭(B )7,4⎛⎫-∞ ⎪⎝⎭(C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭【答案】D 【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b=与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.【考点定位】求函数解析、函数与方程思、数形结合. 3.(2015湖南15)已知32,(),x x a f x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【答案】),1()0,(+∞-∞ .【解析】试题分析:分析题意可知,问题等价于方程)(3a x b x ≤=与方程)(2a x b x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,∴23a b a <<,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a x b x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ,综上,实数a 的取值范围是),1()0,(+∞-∞ .4.(2015北京14)设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .【答案】(1)1,(2)112a ≤<或2a≥.【解析】①1a =时,()()()211412 1.≥⎧-<⎪=⎨--⎪⎩x x f x x x x ‚‚‚,函数()f x 在(,1)-∞上为增函数,函数值大于1,在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为1; (2)①若函数()2x g x a =-在1x <时与x 轴有一个交点,则0a >,并且当1x=时,(1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以21且1a a ≥<⇒112a ≤<; ②若函数()2x g x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当(1)20h a =-≥时,2a ≥,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a≥.5.(2015江苏13)已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为【答案】4【解析】由题意得:求函数()y f x =与1()y g x =-交点个数以及函数()y f x =与1()y g x =--交点个数之和,因为221,011()7,21,12x y g x x x x x <≤⎧⎪=-=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =-有两个交点,又221,011()5,23,12x y g x x x x x -<≤⎧⎪=--=-≥⎨⎪-<<⎩,所以函数()y f x =与1()y g x =--有两个交点,因此共有4个交点6.(2014山东08)已知函数()12+-=x x f ,()kx x g =.若方程()()x g x f =有两个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D )),(∞+2【答案】B 【解析】画出()f x 的图象最低点是()2,1,()g x kx =过原点和()2,1时斜率最小为12,斜率最大时()g x 的斜率与()1f x x =-的斜率一致。

相关文档
最新文档