【材料报告】1.4980高温合金材料分析

合集下载

refractaloy26标准

refractaloy26标准

很高兴能够为您写作关于refractaloy26标准的文章。

refractaloy26是一种高温合金,被广泛应用于航空航天、航空发动机、汽车引擎等领域。

refractaloy26标准则是对其化学成分和性能的规定,对于了解和应用这种合金至关重要。

接下来,我将按照您的要求,深度和广度兼具地撰写一篇具有价值的文章。

第一部分:refractaloy26标准的基本介绍1.1 refractaloy26合金的化学成分refractaloy26是一种镍基高温合金,主要成分包括镍、铬、钼、钴等金属元素。

其中,镍的含量超过50%,这使得refractaloy26具有优异的高温强度和抗氧化性能。

1.2 refractaloy26标准的制定意义refractaloy26标准对合金的化学成分、热处理工艺、机械性能等进行了规定,这有助于保证合金的质量稳定性、使用安全性,并且能够指导相关行业的生产和应用。

在航空发动机等领域,合金的质量和性能对设备的稳定运行至关重要,因此refractaloy26标准的制定是非常必要的。

第二部分:refractaloy26标准的详细规定2.1 化学成分要求根据refractaloy26标准,在制定合金的化学成分时,镍的含量应在50%~55%之间,铬的含量约为20%,钼、钴、铁等元素的含量也有具体的规定。

这些化学成分的控制,直接影响着合金的高温强度和抗蠕变性能。

2.2 热处理工艺要求为了保证refractaloy26合金的性能稳定,标准中还对热处理工艺进行了详细规定。

包括合金的退火、固溶处理、时效处理等工艺参数和条件,在制定合金材料时必须严格遵守。

第三部分:个人观点和理解在撰写这篇文章的过程中,我对refractaloy26标准有了更深入的了解。

我认为,标准的制定可以有效保证合金材料的质量稳定性和使用可靠性,有利于推动相关行业的发展和进步。

在实际生产和应用中,也需要严格遵守refractaloy26标准的各项规定,以确保合金材料的性能优良和使用安全。

高温合金牌号及具体性能表

高温合金牌号及具体性能表

高温合金牌号(GB/T14992-1994)高温合金:凡在应力及高温(一般指600~650摄氏度以上)同时作用下,具有长时间抗蠕变能力与高的持久强度和高的抗蚀性的金属材料,称为耐热合金或高温合金。

常用的有铁基合金、镍基合金、钴基合金,还有铬基合金、钼基合金及其他合金等。

高温合金是制造燃汽轮机、喷气式发动机等高温下工作零部件的重要材料。

表8-28高温合金的牌号及化学成分注:1.GH1035合金中的Ti和Nb为任选其一,不是同时加入的。

2.GH3039合金中允许有铈(Ce)存在。

3.表中B、Zr、Ce的含量为计算加入量,可不分析测定(除非产品标准或协议、合同中另有规定)。

表8-30高温合金的特性和应用注:各成分含量皆指质量分数。

表5-6-7中国与国外变形高温合金牌号近似对照N o.中国日本JIS美国德国①法国NF俄罗斯TOCT英国②DS/DTD GB/T旧牌号商业牌号AMS/SAEDINW-Nr.(L-Nr.)1 GH1015GH15- - - - - -ЭП868-2 GH1035GH35- - - - - -ЭП703-4 GH1040GH4- - - - - -ЭП395-5 GH1131GH131- - - - - -ЭП126-6 GH1140GH140- - - - - -ЭП602-7 GH2018GH18- - - - - - - N2638 GH2036GH36- - - - - -ЭП481-9 GH2038GH38A- - - - - -ЭП696A-10 GH2130GH130- - - - - -ЭП617-11 GH2132- GH132 A286AMSS525,X5NiCrTi26-151.4980(1.4944)Z6NCT25ATVSMoЭП786DTD5026SAEHEV712 GH2135GH135- - - - - -ЭП437-13 GH2136GH136- V57 - X5NirTi26-15 1.4980Z3NCT25;ATVS2- -14 GH2302GH302- - - -ЭП617-15 GH3030GH3- - - - -ATGR;NC20TЭП435HR5;DTD703B;N203,N40316 GH3039GH39- - - - - -ЭП602-17 GH3044GH44- - - - - -ЭП868-18 GH3128GH128- - - - - - - -19 GH4033GH33- - - - - -ЭП437ЪN80A20 GH4037GH37- -AMS5829;SAEHEV6;- -ATGS4;NC20KTAЭП6172HRC,2HR202DTD747B;N501,N50321 GH4043GH43- - - - - -ЭП598- -22 GH4049GH49- - - -(2.4636)NCK15ATDЭП929HR4;N11523 GH4133GH33A- - - - - -ЭП437ЪN80A24 GH4169GH169- Inconel7186,5662SAEXEV-1NiCr19NbMo 2.4668ATGC1;NC19FeNb- Inconel18*25 - GH19SUH661N155AMS5531,5585;SAEHEV1X12CrCoNi21-201.4971(1.4974)ATGXZ12CNKDW20- -26 - GH2NCF800B;NCF2BIncoloy800AMS5766,5871;X10NiCrAlTi32-201.487625NC35-20;NicralC-Incoloy800*27 - GH32- HestelloyXAMS55365754;SG-NiCr21Fe18Mo2.4613 ATGE -HR6HR20428 - GH25- L605AMS5537,5759;CoCr20W15Ni 2.4964ATGH;KC20WN- HR2529 - GH80A- -NiMonic80ANiCr20TiAl2.4952(2.4631)ATGS3NC20TA-2HR12HR201;2HR401;3HR601;DTD736B30 - GH141- Rene41AMS5545;5712NiCr19CoMo 2.4973ATGW2NC20KDTA- -31 - GH143- - - - 2.4634NCKD20ATr-HR3;DTD5007A; N10532 - GH145NCF750BInconelX-750AMS5542,5567NiCr15Fe7TiAL2.4669ATGF;NC15FeTNbAЭП974InconelX-750*33 - GH146- Udimet500AMS57515753NICr18Co 2.4983ATGW2;NC20KDTA-Udimet500*NPK2534 - GH163- - -NiCo20Cr20MoTi2.4650ATGWO;NCK20D-HR10,HR206;N26335 - GH167-HastelloyR-135AMS5872A- - - -36 - GH182-Hatell-oyC4- NiMo16Cr16Ti 2.4610 - -37 - GH333- RA333AMS5716;5717- -ATG33;Z6NCKDW45- -38 - GH600Imonel600AMS5665NiCr15Fe(NiCr15Fe8)2.4816NC15Fe;NiCralZ- -39 - GH710- - -ATGW4;Z6NCK18TDA-Udimet710*-40 - GH738- WaspaloyAMS5704;5544NiCr1gCo14Mo4Ti2.4654ATGW1;NC20K14- NPK5041 - GH901- Udimet901AMS5660;5561NiFeCr12Mo2.4975(2.4662)Z8NCDЭП725HR53,HR404;①W-Wr.是德国DIN17007系统的数字材料号(Wdrkstoff-Nummer);L-Nr.是德国航空标准数字牌号(Luftfahrtstoff-Nr)的缩写,在表中加括号,以示区别。

rene108高温合金对应标准

rene108高温合金对应标准

标题:Rene108高温合金对应标准1. 简介Rene108高温合金是一种用于制造高温高压环境下工作的合金材料。

它具有优异的耐热、抗氧化和抗蠕变性能,广泛应用于航空航天、石油化工、电力等领域。

由于其在高温环境下的稳定性和高强度特性,Rene108高温合金受到了广泛的关注和需求。

2. ASTM标准ASTM是美国材料与试验协会,它制定了一系列涵盖材料、产品、系统和服务的国际标准。

在高温合金领域,ASTM制定了一系列标准用于规范合金材料的化学成分、性能和测试方法。

对于Rene108高温合金,ASTM标准涵盖了其化学成分、机械性能、热处理工艺、减蠕变性能等方面的要求。

3. AMS标准AMS是美国航空材料规范,它主要关注航空航天领域的材料规范。

针对Rene108高温合金,AMS标准对其生产工艺、化学成分、机械性能、热处理工艺等方面进行了详细规定。

航空航天领域对材料的要求非常严格,因此符合AMS标准的Rene108高温合金具有较高的质量和可靠性保证。

4. 国际标准除了ASTM和AMS标准外,国际上还存在许多其他标准组织和机构,如ISO、ASME等,它们也制定了一系列针对高温合金的标准。

对于Rene108高温合金,如ISO5832-3、ISO6892、ASME BPVC Section VIII等标准也都对其性能和使用进行了规定。

5. 应用和意义符合规范的Rene108高温合金对于航空航天、石油化工、电力等行业的安全可靠运行具有重要意义。

合格的高温合金材料可以有效提高设备的使用寿命和稳定性,减少事故和故障发生的可能性。

标准化的生产和质量控制也有利于降低生产成本,提高生产效率。

6. 结语Rene108高温合金作为一种重要的高温材料,其对应的ASTM、AMS和国际标准的制定和遵循对于保证其质量和性能具有重要意义。

各行业企业在选用Rene108高温合金材料时,应当严格遵循相关标准要求,以确保所选用材料能够满足高温高压工作环境下的要求,从而为设备运行安全和可靠提供保障。

新型钴基高温合金成分设计的研究进展

新型钴基高温合金成分设计的研究进展

㊀第43卷㊀第3期2024年3月中国材料进展MATERIALS CHINAVol.43㊀No.3Mar.2024收稿日期:2021-07-29㊀㊀修回日期:2021-11-25基金项目:国家自然科学基金钢铁联合研究基金重点项目(U1960204);国家自然科学基金面上项目(51871042,52171107);中央高校基本科研业务费专项资金项目(N2023026)第一作者:张旭明,男,1998年生,硕士研究生通讯作者:高秋志,男,1981年生,副教授,硕士生导师,Email:neuqgao@马庆爽,女,1989年生,讲师,硕士生导师,Email:maqsneuq@DOI :10.7502/j.issn.1674-3962.202107062新型钴基高温合金成分设计的研究进展张旭明1,2,马庆爽1,2,张海莲3,毕长波4,张会杰1,2,李会军5,高秋志1,2(1.东北大学秦皇岛分校资源与材料学院,河北秦皇岛066004)(2.东北大学轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819)(3.秦皇岛市道天高科技有限公司,河北秦皇岛066000)(4.东北大学秦皇岛分校控制工程学院,河北,秦皇岛066004)(5.天津大学材料科学与工程学院,天津300354)摘㊀要:传统钴基高温合金的强化机制为固溶强化和碳化物强化,弱于有序γᶄ相沉淀强化的镍基高温合金的强化效果,日本学者发现了有序γᶄ相强化的Co-Al-W 系新型钴基高温合金,其强化效果明显优于传统钴基高温合金㊂由于新型钴基高温合金具有较传统镍基高温合金更高的承温能力以及更加优异的高温抗蠕变性能和抗氧化性能,因此被认为是最具潜力的航空发动机热端材料之一,近年来得到迅速发展㊂基于国内外学者对新型钴基高温合金的研究成果,系统总结多种合金元素(如Ta,Ti,W 和Nb 等)对新型钴基高温合金组织和性能的影响㊂在组织方面,总结合金元素对合金相变温度㊁γᶄ相的体积分数及形态㊁γᶄ相的尺寸㊁γ/γᶄ两相晶格错配度和有害相的影响;在性能方面,总结合金元素对合金抗氧化性能㊁力学性能及抗蠕变性能的影响,以期为新型钴基高温合金的成分设计提供参考㊂最后对新型钴基高温合金成分的高效率设计进行展望㊂关键词:钴基高温合金;成分设计;γᶄ相;组织性能;蠕变中图分类号:TG146.1+6㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2024)03-0230-08引用格式:张旭明,马庆爽,张海莲,等.新型钴基高温合金成分设计的研究进展[J].中国材料进展,2024,43(3):230-237.ZHANG X M,MA Q S,ZHANG H L,et al .Research Progress on Composition Design of Novel Cobalt Based Superalloy[J].MaterialsChina,2024,43(3):230-237.Research Progress on Composition Design ofNovel Cobalt Based SuperalloyZHANG Xuming 1,2,MA Qingshuang 1,2,ZHANG Hailian 3,BI Changbo 4,ZHANG Huijie 1,2,LI Huijun 5,GAO Qiuzhi 1,2(1.School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)(2.State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China)(3.Qinhuangdao Daotian High Technology Co.,Ltd.,Qinhuangdao 066000,China)(4.School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)(5.School of Materials Science and Engineering,Tianjin University,Tianjin 300354,China)Abstract :The strengthening mechanism of traditionalcobalt-based superalloys is solid solution strengthening and carbide strengthening whereas,both solid solution strength-ening and carbide strengthening are weaker than that of nickel-based superalloys with ordered γᶄprecipitation.Jap-anese scholars discovered a novel type of Co-Al-W superal-loys with ordered γᶄphase strengthening,and its strengthe-ning effect is significantly better than that of traditional co-balt-based pared with traditional nickel-based superalloys,the novel cobalt-based superalloys have higher temperature capability,more excellent high tempera-ture creep resistance and oxidation resistance,therefore,the novel cobalt-based superalloys are considered to be the㊀第3期张旭明等:新型钴基高温合金成分设计的研究进展most potential aeroengines hot side materials and have developed rapidly in recent years.In this review,based on the re-search results of the novel cobalt-based superalloys by scholars at home and abroad,the effects of various alloying elements (such as Ta,Ti,W,Nb and so on)on the structure and properties of novel cobalt-based superalloys were systematically summarized.In terms of microstructure,the effects of alloying elements on transformation temperature,volume fraction and morphology ofγᶄphase,the size ofγᶄphase,the lattice misfit ofγ/γᶄtwo phase and the harmful phase were summarized. Meanwhile,in terms of properties,the effects of alloying elements on oxidation resistance,mechanical property and creep resistance of the alloy were also discussed,it is expected to provide reference for the composition design of novel cobalt-based superalloys.Finally,the high efficiency design of novel cobalt-based superalloys are prospected.Key words:Co-based superalloy;composition design;γᶄphase;microstructure and properties;creep1㊀前㊀言高温合金是指能够在600ħ以上的高温环境下正常工作,承受较为复杂的机械应力,具有稳定性的同时又高合金化的金属材料[1]㊂常见的高温合金有铁基㊁镍基和钴基3种,高温合金具有组织稳定㊁强度高㊁抗氧化性好以及抗蠕变性能优良等特点,目前广泛应用于能源动力㊁航空航天等领域[2-4]㊂随着对高温合金性能要求越来越高,提高高温合金的承温能力尤为重要[5]㊂航空发动机和燃气轮机中应用最成功的是镍基高温合金,由于熔点的限制导致其承温能力的提升极为有限,因此开发承温能力更高的新型高温合金是未来该领域的重点研究方向[6]㊂沉淀强化型钴基高温合金即新型钴基高温合金,相比镍基高温合金具有更加优异的抗蠕变性能㊁抗腐蚀性能㊁耐磨性以及更高的熔点[7],开发潜力大,应用前景广阔[8]㊂实验证明,诸多合金化元素(如: Al,Ta,Ni等)能够提高钴基高温合金强化相的稳定性㊂目前关于合金元素对钴基高温合金组织和性能影响的研究相对独立,部分常见合金元素对钴基高温合金组织和性能的影响还尚未形成统一认识㊂本文系统总结了Ni, Ti,Mo和Cr等常见合金化元素对新型钴基高温合金组织性能的影响,以期为新型钴基高温合金的进一步成分设计和组织调控提供参考,并对该合金成分的设计进行了展望㊂2㊀新型钴基高温合金概述2006年,Sato等[9]开发了具有L12结构γᶄ-Co3(Al, W)强化相的新型Co-Al-W系高温合金,该合金的固㊁液相线温度比镍基单晶高温合金高100~150ħ[10-12]㊂相比常规镍基高温合金,新型Co-Al-W系高温合金具有更强的各向弹性异性[13],相关研究也表明Co-Al-W基新型高温合金的机械性能较为优异[14-17];但是γ/γᶄ两相区过窄[9,18]㊁γᶄ相的高温稳定性低[19-21]以及合金密度大等特点限制了该合金在航天工业中的应用㊂因此在提高新型钴基高温合金相稳定性的同时如何降低其质量密度是当前研究的重要问题[22]㊂钴基高温合金中常见相的晶体学参数如表1所示[5,23]㊂新型钴基高温合金的组织主要由γ-Co基体相和γᶄ-Co3X(X=Al,Ti和Ta等)两相组成㊂其中,γ-Co是面心立方(fcc)的相,高温下fcc结构的Co较为稳定㊂经热处理后的γᶄ相主要呈立方结构,但是由于晶格错配度的改变也可能呈球状[24]㊂一方面,固溶元素含量越高,固溶强化的效果也越显著,Mo和Ni等合金化元素可以提高γᶄ相的溶解温度[9,10,15,25-27];但另一方面,过量的合金化元素会导致有害二次相如β-CoAl㊁χ-Co3W和μ-Co7W6等在基体中析出,降低合金的组织稳定性㊂表1㊀钴基高温合金中常见相的晶体学参数[5,23] Table1㊀Crystallographic parameters of common phases in cobalt based superalloy[5,23]Phase Structure symbol ExampleεA3CoγA1CoγᶄL12Co3(Al,W)μD85Co7W6βB2CoAlηD024Ni3TiχD019Co3W3㊀合金化元素对新型钴基高温合金物理性能及组织的影响3.1㊀合金化元素对新型钴基高温合金相变温度及密度的影响㊀㊀高温合金相变温度的高低决定了合金承温能力的大小㊂合金相变温度越高,承温能力自然也就越高㊂Lass[28]利用CALPHAD热力学数据库探究了Ni元素对新型钴基高温合金的影响机理,结果表明,由于Ni元素倾向分布在γᶄ相中从而提高了γᶄ相的溶解温度,同时也扩大了Co-Al-W-Ni系新型钴基高温合金高温下稳定的γ/γᶄ两相区㊂Chen等[22]测量了分别添加多种合金化元素后的Co-5Al-14V-2X四元合金相变温度,如图1所示,Ti,Nb 和Ta等合金化元素可显著提高γᶄ相溶解温度,而Cr元132中国材料进展第43卷素增加了γᶄ相中Cr 原子与近邻原子的结合能,导致γᶄ相的生成能增加,使γᶄ相的溶解温度降低[29]㊂图1㊀Co-5Al-14V-2X 四元合金的γᶄ相溶解温度㊁固相线温度和液相线温度[22]Fig.1㊀γᶄsolvus,solidus and liquidus temperatures of the Co-5Al-14V-2X quaternary alloys [22]Jin 等[30]利用第一性原理计算了Co 3(Al,M )(M =Ti,V,Cr,Zr,Nb,Mo,Hf,Ta 和W)化合物的稳定性和力学性能,研究发现,大多数化合物都具有比较好的稳定性,Al 是稳定L12结构的重要元素㊂各种成分的钴基合金以及Mar-M-247镍基合金的相变温度如图2所示[15,22,31-34]㊂诸多新型钴基高温合金的相变温度高于传统镍基高温合金,尤其是含有难熔合金化元素的新型钴基高温合金,如Co-9Al-9W㊁Co-5Al-14V 等㊂这是因为Ti,Nb,Ta 和W等难熔合金化元素的加入在新型钴基高图2㊀基于文献整理的各种钴基合金的γᶄ相溶解温度㊁固相线温度和液相线温度[15,22,31-34]Fig.2㊀γᶄsolvus,solidus and liquidus temperatures of various Co-based alloys based on literature reviews [15,22,31-34]温合金中形成了高熔点的化合物,同时作为强γᶄ相形成元素,提高了γᶄ相的体积分数,从而实现了强化效果[26]㊂通常认为,高的γᶄ相溶解温度是提高高温合金服役温度的基础㊂低密度同样是高温结构材料不断追求的目标之一㊂图3为各种钴基高温合金的密度[22,33,35-39]㊂难熔元素的加入导致新型钴基高温合金密度大幅上升,其中Co-9Al-9.8W 高温合金密度最高,可达9.82g㊃cm -3,这是其较高的含W 量导致的㊂实验证明,其他合金化元素(Mo,Cr,V 和Ti 等)代替W 元素后,合金密度大幅下降,甚至可与传统镍基高温合金媲美㊂图3㊀基于文献整理的各种钴基高温合金的密度[22,33,35-39]Fig.3㊀Density of various Co-based superalloys based on literaturereviews [22,33,35-39]3.2㊀合金化元素对新型钴基高温合金中γᶄ相体积分数的影响㊀㊀合金中γᶄ相的体积分数主要由合金化元素向γᶄ相的分配决定,较高的γᶄ相体积分数使合金具有更优异的力学性能[40]㊂Chen 等[22]和Makineni 等[41]对不同Ni 含量的新型钴基高温合金中的γᶄ相体积分数进行了统计,发现γᶄ相的体积分数随着Ni 元素含量的增加大幅提升㊂Cr 元素含量增加会降低γᶄ相的体积分数,Cr 在合金中倾向于分布在γ相基体中[42],同时大量Cr 元素会导致合金中有害第二相的析出,从而消耗大量其他合金化元素,使γᶄ相体积分数降低㊂Ta,Ti 和Nb 等作为强γᶄ相形成元素,在合金中分布于γᶄ相之中,其含量增加可增加γᶄ相的体积分数;而Mo 元素在γ/γᶄ两相之间接近平均分232㊀第3期张旭明等:新型钴基高温合金成分设计的研究进展配,对合金中γᶄ相体积分数的影响较小[22,23,43-45]㊂Wang等[46]通过第一性原理计算发现Ru,Rh,Pd,Ir 和Pt 元素倾向于占据Co 3Ta 中的Co 位,而Re 元素倾向于占据Co 3Ta 中Ta 的位置,从而提高γᶄ的相体积分数㊂应该明确的是,较大的γᶄ相体积分数可增大位错运动的阻力,从而使得合金的瞬时拉伸强度和持久强度提高㊂3.3㊀合金化元素对新型钴基高温合金中γ/γᶄ相晶格错配度的影响㊀㊀新型钴基高温合金中γᶄ相的形态由界面自由能和错配应变能两方面因素共同决定㊂界面自由能与错配应变能之和越小,γᶄ相的形态越稳定㊂一般来说,界面自由能与错配应变能分别与界面面积和γ/γᶄ相的晶格错配度有关,晶格错配度绝对值越大,错配应变能越大[47]㊂新型钴基高温合金中晶格错配度一般为正值,当晶格错配度较小时,γᶄ相的形态由界面自由能主导,体积相同时球体的表面积最小,故γᶄ相倾向于呈球状;当晶格错配度较大时,γᶄ相的形态由错配应变能主导,由于金属弹性一般呈各向异性,故γᶄ相倾向于呈立方状㊂晶格错配度δ可定义为[41]:δ=2(a γᶄ-a γ)a γᶄ+a γ(1)其中,a γᶄ和a γ分别为γᶄ相和γ相的晶格常数㊂Ni 元素使γᶄ相的晶格常数变小,导致晶格错配度减小,促使γᶄ相球化㊂在含W 钴基高温合金中添加Cr 元素,由于Cr 原子占据W 原子的位置,导致合金晶格错配度减小而使γᶄ相趋于球状[48,49]㊂Gao 等[50]研究了不同成分钴基高温合金时效后的晶格错配度(图4),发现Cr 元素的加入降低了合金的晶格错配度㊂Ti 是钴基高温合金中γᶄ相形成元素之一,会增大γ/γᶄ两相的晶格错配度进而使合金中γᶄ相倾向于呈立方状㊂Ta 原子掺杂会引起更大的晶格畸变,所以Ta 元素对晶格错配度增加的贡献要大于Ti 元素[51]㊂Hf 也可以增大合金中γ/γᶄ相的错配度,因此同样有利于改善合金强度[52]㊂一般来说,合金化元素的原子半径与Co 原子半径相差越大,引起的图4㊀利用XRD 测量的γ/γᶄ两相之间的晶格错配度[50]Fig.4㊀Lattice misfit between the γ-and γᶄ-phases measured by high-energy synchrotron X-ray diffraction [50]晶格畸变越大,越会导致合金晶格错配度的提高,从而使γᶄ相越倾向于呈立方状㊂Zenk 等[49]发现提高γ/γᶄ两相界面处的晶格畸变,能够有效阻碍合金变形过程中位错的运动,提高合金力学性能㊂凡是能够增大γᶄ相晶格常数的合金元素(如Nb,Ti 和Ta 等),都能增加γᶄ相周围的共格应变,起到强化作用㊂但错配度太大会降低高温下γᶄ相的稳定性,容易聚集长大从而松弛弹性应力[52]㊂晶格错配度越小的γᶄ相则具有更高的高温稳定性,因而此类合金的抗蠕变性能也更加优异[53]㊂3.4㊀合金化元素对新型钴基高温合金中γᶄ相尺寸的影响㊀㊀影响γᶄ相尺寸和长大的因素主要有合金元素的扩散㊁晶格错配度㊁弹性模量等,γᶄ相的尺寸大小对合金的性能也具有至关重要的影响,一般来说γᶄ相的尺寸越小,分布越弥散,合金的性能越好[54]㊂不同含量的合金组织如图5所示,Chen 等[22]研究统计了不同Ni 质量分数(10,20,30)的合金组织中γᶄ相的平均尺寸分别为(324ʃ74),(425ʃ150)和(496ʃ153)nm,发现随着Ni 含量的增加γᶄ相出现了明显的粗化现象㊂图5㊀Co-x Ni-8Al-12V 合金在900ħ固溶退火处理72h 后的SEM 照片[22]:(a)x =10,(b)x =20,(c)x =30Fig.5㊀Field emission scanning electron microscope images of Co-x Ni-8Al-12V quaternary alloys annealed at 900ħfor 72h after solu-tion annealing treatment [22]:(a)x =10,(b)x =20,(c)x =30332中国材料进展第43卷㊀㊀Gao 等[50]对γᶄ相的尺寸统计结果显示,γᶄ相的平均尺寸随Ti 元素含量的增加而增加㊂Ti 原子在合金中的扩散速率比Al 原子更快,降低了两相之间的界面能导致γᶄ相生长的驱动力增大㊂Cr 和Mo 元素都能促进合金中γᶄ相的粗化,且Mo 元素的影响更大㊂Pandey 等[47]认为Lifshitz-Slyozov-Wagner(LSW)模型仅适用于含Ti 量较低的高温合金㊂一般来说,γᶄ相的长大分为2个过程,在时效时间较短即时效初期,γᶄ相依靠原子的扩散进行生长;在时效时间较长即时效后期,γᶄ相主要依靠互相合并进行长大[44,55]㊂3.5㊀合金化元素对新型钴基高温合金中μ相和η相的影响㊀㊀μ相是一种主要由2种不同大小的金属原子构成的拓扑密排相,其结构为D85结构㊂作为一种硬脆相,μ相可能会成为裂纹的形核位置和拓展通道[38],μ相析出的同时会消耗大量的合金元素,减弱合金固溶强化及沉淀强化作用㊂有害相一般在晶界析出,但当Cr 元素的含量足够高时,有害相也会在晶粒内部析出,从而强烈降低合金力学性能㊂图6为不同新型钴基高温合金的显微组织照片㊂可以发现,Cr 元素含量的增加导致W 元素在γ相和γᶄ相中的溶解度降低,促进μ相的沉淀析出[32,36,44]㊂同时有文献表明,Ni 元素能够提高合金的组织稳定性,有效减少μ-Co 7W 6有害相的析出,提高合金的力学性能[56]㊂η相是一种具有D024结构的有害相,与μ相类似,倾向于在晶界析出减弱强化作用,会对合金性能产生不良影响[23]㊂郭建亭[57]认为,Al /Ti 原子数比值是合金中能否形成η相的决定性因素,同时Al +Ti 含量和Al /Ti 原子数比值也是影响合金中γᶄ相体积分数和γᶄ/γ两相晶格错配度的关键因素,一般地,Al +Ti 含量越高γᶄ相体积分数越高,γᶄ/γ两相晶格错配度也越高;Al /Ti 原子数比值越高,γᶄ相体积分数越高,γᶄ/γ两相晶格错配度越低㊂因此要严格控制合金Al +Ti 含量和Al /Ti 原子比,避免η相的析出对合金组织稳定性和力学性能产生不良影响,同时保证钴基合金具有较高的γᶄ相体积分数和较宽的加工窗口㊂图6㊀不同Cr 含量合金固溶处理后的SEM 照片:(a)9Cr-A 合金[36],(b)12Cr 合金[44],(c)8Cr 合金[32],(d)12Cr 合金[44]Fig.6㊀SEM images of alloys with different Cr contents after solution treatment:(a)9Cr-A alloys [36],(b)12Cr alloys [44],(c)8Cralloys [32],(d)12Cr alloys [44]4㊀合金化元素对合金性能的影响4.1㊀合金化元素对钴基高温合金抗氧化性、抗热腐蚀性的影响㊀㊀抗氧化性和抗热腐蚀性也是衡量合金高温性能好坏的一项重要指标[58,59]㊂在新型钴基高温合金中,Al 除稳定γᶄ相外,还能在合金表面形成致密的Al 2O 3氧化薄膜来提高合金的抗氧化性[60]㊂但Ti 的存在会引入空位,降低Al 2O 3的热力学稳定性,从而降低合金的抗氧化性㊂Chung 等[32]证实Cr 降低了合金的氧化层厚度,随着Cr 浓度的增加,更薄的氧化层足以形成耐氧化的表面(图7)㊂同时有实验证明较高的Cr 含量有助于形成结构致密的Cr 2O 3和Al 2O 3,阻止O 进一步扩散到基体中[23]㊂Cr 元素与Al 元素可以协同作用加速Al 2O 3的形成,即降低形成Al 2O 3层所需的临界Al 浓度[36,61]㊂合金表面致密的Al 2O 3和Cr 2O 3氧化层阻断O 向基体的扩散,提432㊀第3期张旭明等:新型钴基高温合金成分设计的研究进展图7㊀不同合金的氧化层截面组织照片[32]:(a)L24-0Cr 合金,(b)L24-12Cr 合金Fig.7㊀Micrographs of oxide layer structure of different alloys[32]:(a)L24-0Cr,(b)L24-12Cr alloys高合金的抗氧化性㊂Chen 等[42]发现6Cr 钴基高温合金并没有优异的抗氧化性,因为合金中γᶄ相的体积分数减小导致γ相基体优先氧化,适当高的γᶄ相体积分数也能提高合金抗氧化性㊂Ni 元素能够促进Cr 2O 3的生长及延缓合金的结节性氧化,提高合金的抗氧化性能[62]㊂此外,Ta 的添加也被证实能在一定程度上提高合金的抗热腐蚀性能[52]㊂4.2㊀合金化元素对新型钴基高温合金力学性能及抗蠕变性能的影响㊀㊀作为结构构件的物质基础,结构材料的性能直接影响到构件能否满足使用要求,因此结构材料的设计往往对其力学性能提出要求㊂图8为Makineni 等[41]测试的Co-10Al-5Mo-2Nb 和Co-30Ni-10Al-5Mo-2Nb Co 基高温合金的拉伸性能,2种合金依靠高γᶄ相含量,室温下强度达到了800MPa,超过了诸多含W 钴基高温合金㊂W 能够引起明显的晶格膨胀,阻止位错运动,同时提高γᶄ相的体积分数,提高合金强度㊂Mo元素在钴基高温合金中易图8㊀不同Co 基高温合金在不同条件下的拉伸应力-应变曲线[41]:(a)室温下Co-10Al-5Mo-2Nb,(b)室温下Co-30Ni-10Al-5Mo-2Nb,(c)870ħ时Co-30Ni-10Al-5Mo-2NbFig.8㊀Tensile stress-strain curves of different Co-based alloys at dif-ferent conditions [41]:(a)Co-10Al-5Mo-2Nb at room temper-ature,(b )Co-30Ni-10Al-5Mo-2Nb at room temperature,(c)Co-30Ni-10Al-5Mo-2Nb at 870ħ与C 形成大量的MoC 碳化物,细小弥散的碳化物也可以改善合金的力学性能,同时也在一定程度上达到细晶强化的效果㊂Ti 会增大γᶄ相的粗化速率,对合金力学性能产生不利影响,但Bocchini 等[63]证明Ti 提高了合金的高温强度,这说明γᶄ相体积分数增大对合金的强度提升效果超过了组织粗化带来的负面影响㊂在Co-Al-W 基合金中,少量的B 元素能够促进富W 硼化物在晶界的析出,起到晶界强化的作用,有利于提高合金的力学性能[64]㊂高温合金需要在高温环境下长时间服役,因此要求它具有优异的抗蠕变性能㊂蠕变是指在恒应力或载荷下所发生的缓慢而连续的塑性变形,关于蠕变的研究对高温合金具有非常重要的意义㊂可通过探究合金化元素对新型钴基高温合金抗蠕变性能的影响及其机理进而对它进行针对性的设计㊂Cr 元素含量的增加显著增大了蠕变最小稳态应变速率[65],Povstugar 等[66]认为当合金中加入Cr 元素以后会生成有害的二次相并改变合金的堆垛层错能,恶化合金的抗蠕变性能,而Ni 能够部分抵消Cr 对合金抗蠕变性能的恶化[44]㊂W 和Nb 元素均能够强烈降低γ相基体的堆垛层错能,有效改善高温合金的抗蠕变性能㊂得益于晶界强化的作用,含B 合金拥有较其他合金更优异的抗蠕变性能㊂在Co-Al-W 基合金中加入Ta 元素能够明显提高合金的蠕变寿命,但与其他元素如Si 和Mo 等同时存在时会析出大量金属间化合物,降低合金抗蠕变性能[67]㊂在合金蠕变的过程中,经常出现γᶄ相的定向粗化,通常称之为筏化[66,68-70]㊂钴基高温合金一般表现出正晶格错配,在压缩状态下γᶄ相会在所施加压应力的垂直方向与拉应力的平行方向发生筏化[71]㊂如图9所示,0Cr 和4Cr 合金中的γᶄ相出现了筏化现象㊂8Cr 合金没有发生筏化是因为大量Cr 原子占据W 原子的晶格后降低了晶格错配度,导致γᶄ相缺乏各向异性的应力场,进而使筏化的驱动力减小[44]㊂5㊀结㊀语高温合金不仅是航空发动机的重要材料,也是能源㊁化工领域高温耐蚀部件的重要材料㊂新型钴基高温合金具有比镍基高温合金更高的γᶄ相溶解温度和熔点,但γᶄ相的高温稳定性还有待提高㊂本文主要针对不同合金化元素对新型钴基高温合金组织性能的影响做了总结梳理㊂Ni 能够有效提高合金性能,但过量的Ni 导致γᶄ相形态改变,新型钴基高温合金中的Ni 含量应保持在30%(原子数分数,下同)以下;Ti,Ta 和Nb 等强γᶄ相形成元素能够大幅提高γᶄ相的体积分数,过量将导致γᶄ相的加速粗化和密度增加,常见钴镍基高温合金中Ti,Ta 和Nb532中国材料进展第43卷图9㊀不同Co基合金蠕变后的SEM照片[44]:(a,b)0Cr,(c,d) 4Cr,(e,f)8CrFig.9㊀Post-creep SEM images of different Co-based alloys[44]:(a,b) 0Cr,(c,d)4Cr,(e,f)8Cr含量为2%~4%;Cr在提高合金的抗氧化性[72]的同时可促进有害相的析出,降低合金力学性能,新型钴基高温合金中Cr含量一般控制在4%~6%以下㊂新型钴基高温合金具有多项优于传统钴基高温合金的性能,是最具潜力的高温合金之一㊂但与发展相对成熟的镍基高温合金相比,新型钴基高温合金的发展和应用仍然具有很大的挑战,如合金的制造工艺以及零件的加工和热处理工艺尚不成熟等㊂目前我国合金成分设计数据库仍然不够健全,但随着计算材料学㊁材料基因工程等领域的发展,CALPHAD㊁第一性原理计算㊁机器学习等方法将在合金的高效设计中发挥更大的作用,将材料计算㊁计算机仿真模拟等多种设计思路与实验相结合有望实现新型钴基高温合金的高通量设计㊂参考文献㊀References[1]㊀杜金辉,吕旭东,董建新,等.金属学报[J],2019,55(9):1115-1132.DU J H,LV X D,DONG J X,et al.Acta Metallurgica Sinica[J], 2019,55(9):1115-1132.[2]㊀LIU Z,GAO Q,ZHANG H,et al.Materials Science&Engineering:A[J],2019,755:106-115.[3]㊀程远,赵新宝,岳全召,等.稀有金属材料与工程[J],2023,52(7):2599-2611.CHENG Y,ZHAO X B,YUE Q Z,et al.Rare Metal Materials and Engineering[J],2023,52(7):2599-2611.[4]㊀JIANG J,LIU Z,GAO Q,et al.Materials Science&Engineering:A[J],2020,797:140219.[5]㊀刘健.元素对γᶄ沉淀强化型钴基高温合金组织及力学性能的影响[D].合肥:中国科学技术大学,2019.LIU J.Effects of Alloying Elements on the Microstructure and Mechan-ical Behavior ofγᶄ-Strengthed Co-Base Superalloys[D].Hefei:Uni-versity of Science and Technology of China,2019.[6]㊀刘兴军,陈悦超,卢勇,等.金属学报[J],2020,56(1):1-20.LIU X J,CHEN Y C,LU Y,et al.Acta Metallurgica Sinica[J], 2020,56(1):1-20.[7]㊀KLEIN L,SHEN Y,KILLIAN M S,et al.Corrosion Science[J],2011,53(9):2713-2720.[8]㊀JINSHAN H,MIN Z,LONGFEI L,et al.Materials Letters[J],2020,262:127042.[9]㊀SATO J,OMORI T,OIKAWA K,et al.Science[J],2006,312(5770):90-91.[10]SUZUKI A.Acta Materialia[J],2008,56(6):1288-1297.[11]WALTER C,HALLSTEDT B,WARNKEN N.Materials Science andEngineering:A[J],2005,397(1/2):385-390.[12]PARK H,LI C,JAKUS A E,et al.Scripta Materialia[J],2020,188:146-150.[13]SUZUKI A,INUI H,POLLOCK T M.Annual Review of MaterialsResearch[J],2015,45(1):345-368.[14]BAUER A,NEUMEIER S,PYCZAK F,et al.Superalloys[J],2012,2012:695-703.[15]AKANE S,GARRET C D,TRESA M P.Scripta Materialia[J],2006,56(5):385-388.[16]LU S,ANTONOV S,LI L,et al.Metallurgical and Materials Transac-tions A[J],2018,49(9):4079-4089.[17]SHI L,YU J J,CUI C Y,et al.Materials Science and Engineering:A[J],2015,620:36-43.[18]BOCCHINI P J,LASS E A,MOON K W,et al.Scripta Materialia[J],2013,68(8):563-566.[19]KOBAYASHI S,TSUKAMOTO Y,TAKASUGI T,et al.Intermetallics[J],2009,17(12):1085-1089.[20]LASS E A,WILLIAMS M E,CAMPBELL C E,et al.Journal ofPhase Equilibria and Diffusion[J],2014,35(6):711-723. [21]LASS E A,GRIST R D,WILLIAMS M E.Journal of Phase Equilib-ria and Diffusion[J],2016,37(4):387-401.[22]CHEN Y,WANG C,RUAN J,et al.Acta Materialia[J],2019,170:62-74.[23]LLEWELYN S C H,CHRISTOFIDOU K A,ARAULLO-PETERS V J,et al.Acta Materialia[J],2017,131:296-304.[24]BANTOUNAS I,GWALANI B,ALAM T,et al.Scripta Materialia[J],2019,163:44-50.[25]BAUER A,NEUMEIER S,PYCZAK F,et al.Scripta Materialia[J],2010,63(12):1197-1200.[26]OOSHIMA M,TANAKA K,OKAMOTO N,et al.Journal of Alloys&Compounds[J],2010,508(1):71-78.632㊀第3期张旭明等:新型钴基高温合金成分设计的研究进展[27]POLLOCK T M,DIBBERN J,TSUNEKANE M,et al.JOM[J],2010,62(1):58-63.[28]LASS E A.Metallurgical and Materials Transactions A[J],2017,48(5):2443-2459.[29]CHEN M,WANG C Y.Journal of Applied Physics[J],2010,107(9):093705[30]JIN M,MIAO N,ZHAO W,et putational Materials Science[J],2018,148:27-37.[31]RUAN J,XU W,YANG T,et al.Acta Materialia[J],2020,186:425-433.[32]CHUNG D W,TOININ J P,LASS E A,et al.Journal of Alloys andCompounds[J],2020,832:154790.[33]ZHANG Y,FU H,ZHOU X,et al.Intermetallics[J],2019,112:106543.[34]ZHANG Y,FU H,ZHOU X,et al.Materials Science and Engineer-ing:A[J],2018,737:265-273.[35]MAKINENI S K,NITHIN B,CHATTOPADHYAY K.Scripta Materia-lia[J],2015,98:36-39.[36]LI W,LI L,ANTONOV S,et al.Journal of Alloys and Compounds[J],2020,826:154182.[37]QU S,LI Y,HE M,et al.Materials Science and Engineering:A[J],2019,761:138034.[38]LIU J,YU J J,YANG Y H,et al.Materials Science and Engineering:A[J],2019,745:404-410.[39]PHILIPPE T,VOORHEES P W.Acta Materialia[J],2013,61(11):4237-4244.[40]REYES T F L,DUNAND D C.Journal of Materials Research andTechnology[J],2021,11:2305-2313.[41]MAKINENI S K,NITHIN B,CHATTOPADHYAY K.Acta Materialia[J],2015,85:85-94.[42]CHEN Y,XUE F,WANG C,et al.Corrosion Science[J],2019,161:108179.[43]XU W W,SHANG S L,WANG C P,et al.Materials&Design[J],2018,142:139-148.[44]NG D S,CHUNG D W,TOININ J P,et al.Materials Science and En-gineering A[J],2020,778:139108.[45]PYCZAK F,BAUER A,GOKEN M,et al.Journal of Alloys andCompounds[J],2015,632:110-115.[46]WANG C,LI K,HAN J,et al.Journal of Alloys and Compounds[J],2019,808:151068.[47]PANDEY P,RAJ A,BALER N,et al.Materialia[J],2021,16:101072.[48]OMORI T,OIKAWA K,SATO J,et al.Intermetallics[J],2013,32:274-283.[49]ZENK C H,NEUMEIER S,STONE H J,et al.Intermetallics[J],2014,55:28-39.[50]GAO Q,JIANG Y,LIU Z,et al.Materials Science and Engineering:A[J],2020,779:139139.[51]YAN H Y,COAKLEY J,VORONTSOV V A,et al.Materials Scienceand Engineering:A[J],2014,613:201-208.[52]郭建亭.高温合金材料学[M].北京:科学出版社,2010:152.GUO J T.Materials Science and Engineering for Superalloys[M].Bei-jing:Science Press,2010:152.[53]MANIAR G N,BRIDGE J E.Metallurgical Transactions[J],1971,2(1):95-102.[54]CHEN J,GUO M,YANG M,et putational Materials Science[J],2021,191:110358.[55]SAUZA D J,DUNAND D C,SEIDMAN D N.Acta Materialia[J],2019,174:427-438.[56]周鹏杰,宋德航,吴海斌,等.航空材料学报[J],2019,39(6):73-80.ZHOU P J,SONG D H,WU H B,et al.Journal of Aeronautical Ma-terials[J],2019,39(6):73-80.[57]郭建亭.金属学报[J],2010,46(5):513-527.GUO J T.Acta Mentallurgica Sinica[J],2010,46(5):513-527.[58]GAO Q,LU B,MA Q,et al.Intermetallics[J],2021,138:107312.[59]GAO Q,SHANG H,MA Q,et al.Materials and Corrosion[J],2022,73(4):513-525.[60]YU H,UKAI S,HAYASHI S,et al.Corrosion Science[J],2017,118:49-59.[61]GAO Q,LIU Z,LI H,et al.Journal of Materials Science&Technolo-gy[J],2021,68:91-102.[62]GAO B,WANG L,LIU Y,et al.Corrosion Science[J],2019,157:109-115.[63]BOCCHINI P J,SUDBRACK C K,NOEBE R D,et al.Materials Sci-ence and Engineering A[J],2017,705:122-132. [64]马启慧,王清,董闯.材料导报[J],2020,34(3):03157-03164.MA Q H,WANG Q,DONG C.Materials Reports[J],2020,34(3): 03157-03164.[65]MURAKUMO T,KOBAYASHI T,KOIZUMI Y,et al.Acta Materialia[J],2004,52(12):3737-3744.[66]POVSTUGAR I,ZENK C H,LI R,et al.Materials Science and Tech-nology[J],2016,32(3):220-225.[67]BAUER A,NEUMEIER S,PYCZAK F,et al.Materials Science andEngineering:A[J],2012,550:333-341.[68]COAKLEY J,LASS E A,MA D,et al.Scripta Materialia[J],2017,134:110-114.[69]LI Y,PYCZAK F,PAUL J,et al.Materials Science and Engineering:A[J],2018,719:43-48.[70]XUE F,ZENK C H,FREUND L P,et al.Scripta Materialia[J],2018,142:129-132.[71]CHUNG D W,NG D S,DUNAND D C.Materialia[J],2020,12:100678.[72]高杉,邹俭鹏.稀有金属材料与工程.[J],2022,51(3):814-820.GAO S,ZOU J P.Rare Metal Materials and Engineering[J],2022, 51(3):814-820.(编辑㊀费蒙飞)732。

GH169高温合金带材金相分析

GH169高温合金带材金相分析

GH169高温合金带材金相分析金相分析是通过显微镜等手段观察和研究材料的组织结构和相状态,了解材料的显微组织特征、晶体结构和其他物理性能。

对GH169高温合金带材进行金相分析可以帮助我们了解其组织结构、晶体结构、相变行为等特征,为进一步研究和改进材料性能提供基础数据。

GH169高温合金带材主要由钴、镍、铬、钨等元素组成,其具有复杂的相结构。

首先,需要将GH169高温合金带材进行切割、研磨和抛光处理,制备出适合金相观察的试样。

然后,利用金相显微镜观察试样的显微组织,并进行相互作用的鉴定和定量分析。

在镜下观察中,我们可以看到GH169高温合金带材的显微组织主要由金属基体相和弥散分布的金属间化合物相组成。

金属基体相主要为γ相,而金属间化合物相主要为γ'相。

γ相为固溶体相,富含钴、镍等元素,具有良好的高温强度和塑性。

γ'相为硬质沉淀相,富含铬、钨等元素,能够提高材料的耐蠕变性能和抗氧化性能。

我们还可以通过光学显微镜下的显微组织观察,对GH169高温合金带材的晶粒尺寸、晶体形貌和晶界特征进行分析。

从显微组织观察中,我们可以看到GH169高温合金带材的晶粒具有较小的尺寸和较均匀的分布,晶界清晰且较少出现晶界偏聚。

除了显微组织的观察,还可以利用扫描电子显微镜(SEM)和能谱分析(EDS)等手段对GH169高温合金带材的成分和相态进行定量分析。

通过SEM观察,可以得到更详细的材料表面形貌和微观缺陷信息。

而EDS则可以通过对样品的元素成分分析,了解GH169高温合金带材中各种元素的含量及其分布情况。

综上所述,GH169高温合金带材的金相分析是一项重要的材料表征技术,可以通过显微组织的观察和成分的分析,了解其组织结构、相变行为和其他重要性能特征。

通过金相分析,我们可以更好地理解GH169高温合金带材的结构性能关系,并为材料的改进和应用提供科学依据。

UNS S66286(W.Nr.1.4980)铁镍铬基高温合金

UNS S66286(W.Nr.1.4980)铁镍铬基高温合金

上海商虎/张工:158 –0185 -9914铁基变形高温合金美国商标:Incoloy A-286/A286/UNSS66286/P.Q.A286法国商标:ZbNCT25一、Incoloy A-286 概述Incoloy A-286是Fe-25Ni-15Cr基高温合金,参加钼、钛、铝、钒及微量硼综合强化。

在650℃以下具有高的屈服强度和持久、蠕变强度,而且具有较好的加工塑性和满意的焊接功能。

适合制造在650℃以下长时间工作的航空发动机高温承力部件,如涡轮盘、压力机盘、转子叶片和紧固件等。

该合金能够生产各种形状的变形产品,如盘件、锻件、板、棒、丝和环形件等。

优质Incoloy A-286合金,是在Incoloy A-286合金基础上发展而来,只要是进步合金纯真度,约束气体含量,操控低熔点元素含量,并调整热处理准则,从而使合金的热强性和长时间使用功能进步。

1.1 Incoloy A-286 资料商标Incoloy A-2861.2 Incoloy A-286 相近商标A286,UNSS66286(美国),ZbNCT25(法国),P.Q.A286(美国)1.3 Incoloy A-286 资料的技术规范1.4 Incoloy A-286 化学成分Incoloy A-286合金化学成分见表1-1,优质Incoloy A-286合金化学成分见表1-2。

表1-1 %C Cr Ni Mo Ti Fe V B MnAl Si P S不大于≤0.0813.5~16.0 24.0~27.0 1.00~1.50 1.75~2.30 余0.10~0.50 0.001~0.010 1.00~2.00 0.04 1.00 0.030 0.020 注:1 冷拉棒、圆饼和环坯规范规定ω(Ti)1.80%~2.35%。

2 热轧和冷轧板规范规定,ω(B)0.003%~0.010%,ω(Mn)≤2.00%,ω(P)≤0.020%,ω(S)≤0.015%。

高温合金深度研究报告

高温合金深度研究报告

高温合金深度研究报告一、引言高温合金是一类能够在高温环境下保持优良力学性能和抗腐蚀能力的金属材料。

随着航空、能源、化工等领域的快速发展,高温合金的应用需求不断增加。

以下对高温合金进行深度研究,主要涉及高温合金的概述、合金元素分析、制备工艺研究、力学性能评价、抗腐蚀性能、发展趋势与挑战以及结论等方面。

二、高温合金概述高温合金是指在高温环境下具有优良力学性能和抗腐蚀能力的合金。

这类合金通常含有大量的铬、钴、镍等元素,以及少量的铝、钛、铌等元素。

高温合金具有较高的熔点、优良的抗蠕变性能、良好的抗氧化性和抗腐蚀性等特点,因此在航空发动机、燃气轮机、核工业等领域得到广泛应用。

三、合金元素分析高温合金的力学性能和抗腐蚀能力受到合金元素的影响较大。

常见的合金元素包括铬、钴、镍、铝、钛、铌等。

这些元素在合金中发挥着不同的作用,如提高熔点、增强抗氧化性和抗腐蚀能力等。

对于不同类型的高温合金,需要根据应用需求进行合理的元素配比,以获得最佳的性能表现。

四、制备工艺研究高温合金的制备工艺对其性能具有重要影响。

常见的制备工艺包括真空感应熔炼、真空电弧熔炼、电渣重熔等。

这些工艺能够控制合金的纯净度、成分均匀性等,从而影响其力学性能和抗腐蚀能力。

此外,热处理工艺也是关键的制备环节,通过控制加热温度、冷却速度等参数,可以调整合金的组织结构和力学性能。

五、力学性能评价高温合金的力学性能是其应用的重要指标之一。

常见的力学性能测试包括拉伸试验、弯曲试验、冲击试验等。

通过这些测试可以评价高温合金在不同温度和应力状态下的力学性能,如抗拉强度、屈服强度、延伸率等。

此外,高温疲劳性能也是评价高温合金力学性能的重要指标之一,对于发动机叶片等关键部件的可靠性具有重要意义。

六、抗腐蚀性能高温合金的抗腐蚀能力是其应用的重要指标之一。

在高温环境下,高温合金容易受到氧化和腐蚀的作用,导致其性能下降。

因此,高温合金需要具有良好的抗腐蚀能力,以保持其长期稳定的使用寿命。

高温合金材料的制备和性能测试

高温合金材料的制备和性能测试

高温合金材料的制备和性能测试高温合金材料是指能在高温环境下工作的金属材料。

由于高温环境的特殊性质,高温合金材料具有一系列独特的性质,例如抗氧化、耐热腐蚀、高强度、高温硬度等,因此广泛应用于航空、航天、汽车、核工业等行业。

本文将介绍高温合金材料的制备和性能测试。

一、高温合金材料的制备1. 熔铸法熔铸法是制备高温合金材料的主要方法之一。

该方法的基本原理是将各种金属和非金属元素按照一定的比例混合后,在高温下熔化,再逐步冷却形成所需的合金。

这种方法的优点是制备工艺简单,生产成本低,但是产品质量不容易控制,易产生内部缺陷和杂质。

2. 粉末冶金法粉末冶金法是制备高温合金材料的另一种常见方法。

该方法的基本原理是将金属和非金属粉末按照一定的比例混合,加工成粉末冶金件,然后在高温下进行烧结和变形加工,形成所需的合金。

这种方法的优点是产品的化学成分均匀,内部无缺陷,但是加工难度大,生产成本高。

3. 热处理法热处理法是制备高温合金材料的较为简单的方法之一。

该方法的基本原理是利用热处理的方法改变金属的结晶结构和物理性质,从而达到提高金属高温性能的目的。

这种方法适用于原料成分比较单一、不需要低温环节的高温合金材料制备。

二、高温合金材料的性能测试1. 抗氧化性能测试高温下的氧化是高温合金材料失效的主要原因之一。

因此,抗氧化性能的测试是高温合金材料性能测试中比较关键的一环。

通常采用高温氧化实验和动态载荷下的氧化实验来测试高温合金材料的氧化性能。

2. 耐热腐蚀性能测试高温下的腐蚀也是高温合金材料失效的原因之一。

耐热腐蚀性能的测试旨在了解高温合金材料在具体腐蚀环境下的长期性能。

常用的测试方法包括塔氏液腐蚀、硝酸腐蚀等。

3. 高强度性能测试高强度是高温合金材料具有的一种重要性能。

通过拉伸试验、冲击试验等方法,可以测试高温合金材料的高强度性能。

4. 高温硬度测试高温硬度是指高温下材料的抗压强度。

通常采用压痕硬度仪等设备来测试高温合金材料的高温硬度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【材料报告】1.4980高温合金材料分析
1.4980 金相组织结构:
该合金在标准热处理状态下,在γ基体上有球关均匀弥散的NI3(Ti,Al)型γ相以及TiN,TiC,晶界有微量的M3B2,晶界附近可能有少量η相和L相。

1.4980焊接性能
1. 具有满意的焊接性能,可用氩弧焊、点焊、缝焊进行焊接;
2. 合金于固溶状态进行焊接,焊后进行时效处理。

1.4980零件热处理工艺
1.固溶温度980~1000℃,根据零件截面厚度保温不同时间后进行空冷、油冷或水冷后,再在700~720℃时效12~16h后空冷;
2.优质1.4980合金制零件的热处理工艺为:固溶900℃±10℃,1~2h,油冷+时效750℃±10℃,16h,空冷。

1.4980 相近牌号:
GH2132 GH132(中国)、ZbNCT25(法国) A-286
1.4980 化学成份:
合金
牌号% 镍
Ni 铬
Cr 铁
Fe 钼
Mo 铌
Nb 钒
V 碳
C 锰
Mn 硅
Si 硫
S 铜
Cu 铝
Al 钛
Ti
1.4980 最小24.0 13.5 余量 1.0 0.1 1.9
最大27.0 16.0 1.5 0.5 0.08 0.35 0.35 0.002 0.3 0.35 2.35
1.4980 工艺性能与要求:
1、该合金具有良好的可锻性能,锻造加热温度1140摄氏度,终锻900摄氏度。

2、该合金的晶粒度平均尺寸与锻件的变形程度、终锻温度密切相关。

3、合金具有满意的焊接性能。

合金于固溶状态进行焊接,焊后进行时效处理。

4、表面处理工艺:在高温下工作的零件可采用W-2珐琅涂层进行有效的保护
1.4980 特性及应用领域概述:
该合金是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。

在650摄氏度以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。

适合制造在650摄氏度以下长期工作的航空发动机高温承力部件,如压气机盘、转子叶片和紧固件等。

在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工
塑性和满意的焊接性能。

适合制造在650℃以下长期工作的航空发动机高温承力部
件等。

应用领域
•航空发动机中部件
•发动机压气机盘、涡轮盘、承力环
•机匣、增压器、涡轮轮子
•加力燃烧室零件和紧固件
•紧固件和板材焊接承力件
1.4980物理性能:
密度
g/cm3 熔点
℃热导率
λ/(W/m•℃) 比热容
J/kg•℃弹性模量
GPa 剪切模量
GPa 电阻率
μΩ•m 泊松比线膨胀系数
a/10-6℃-1
7.99 1364
1424 14.2(100℃) 0.914 15.7(20~100℃)
1.4980力学性能:(在20℃检测机械性能的最小值)
热处理方式抗拉强度σb/MPa 屈服强度σp0.2/MPa 延伸率σ5 /% 布氏硬度HBS 固溶处理930 590 15 ≤341
直径450mm盘件在不同温度下的拉伸应力-应变曲线。

相关文档
最新文档