数字与模拟电路设计技巧
模拟电路和数字电路的设计和开发

模拟电路和数字电路的设计和开发电路设计和开发是电子工程师的基本工作之一。
随着科技的发展,电路设计也在不断的创新和升级。
本文将就模拟电路和数字电路的设计和开发进行详细的探讨和论述。
一、模拟电路设计与开发1. 模拟电路的定义和发展模拟电路是指处理各种连续信号的电路,包括声波、光信号、热信号、压力信号等。
模拟电路最初是用来处理语音和音乐信号的,现在已经广泛应用于医学、工业、通讯、能源等领域。
2. 模拟电路的基础知识模拟电路的基础知识包括电路分析方法、电路基本元器件、集成电路等。
电路分析方法包括基尔霍夫定律、欧姆定律和基本电路分析技巧等。
电路基本元器件包括电阻、电容、电感等。
3. 模拟电路的设计流程模拟电路的设计流程包括需求分析、系统设计、电路设计、电路验证、电路实现等。
需求分析阶段是确认最终产品的性能目标。
系统设计阶段是选择电路拓扑结构和器件,通过仿真验证电路性能。
电路设计阶段包括电路布图、元器件选型、仿真等。
电路验证阶段是通过实验验证系统性能。
电路实现阶段是通过 PCB 制版和器件组装完成产品。
二、数字电路设计与开发1. 数字电路的定义和发展数字电路是指处理各种数字信号的电路,主要应用于计算机、手机、数码相机、电视机、机器人等。
数字电路最初应用于最基本的计算器,现在已经广泛应用于人们的日常生活。
2. 数字电路的基础知识数字电路的基础知识包括二进制、逻辑代数、数字系统设计、集成电路等。
二进制是数字电路的最基本的表示方法,数字电路中的逻辑运算通常使用逻辑代数的符号。
数字系统设计包括数字逻辑设计、定时分析、测试和维护。
集成电路是数字电路的核心。
3. 数字电路的设计流程数字电路的设计流程包括需求分析、系统设计、数字逻辑设计、模拟仿真、电路布局、FPGA 代码编写等。
需求分析阶段是确认最终产品的性能目标。
系统设计阶段是选择数字电路拓扑结构和器件,通过仿真验证电路性能。
数字逻辑设计阶段包括设计状态机、选择逻辑块、处理时序等。
PCB设计模拟布局与数字布局技术的要领

PCB设计模拟布局与数字布局技术的要领PCB(Printed Circuit Board)是电子电路所必需的基础部件之一。
它重要的作用在于将电路板上的各种元器件、电子器件、传感器设备连接在一起,实现各种电路功能。
好的PCB设计师需要有一定的电路原理基础知识。
同时,他们必须理解电路设计规范和模拟布局与数字布局技术。
本文旨在探讨PCB设计中的模拟布局与数字布局技术的要领。
一、模拟布局技术模拟电路和数字电路的差异在于,前者的信号是连续变化的模拟信号,而后者的信号是离散数值的数字信号。
因此,模拟布局需要关注信号的连续性以及器件产生的噪声和交叉干扰。
下面介绍一些模拟布局技术的要领:1. 电源和地线的布局每个电路板都必须有一个电源,而电源的地线是所有电路板的共同接地点。
在布局时,电源的线路应该尽可能短,并且要放在每个板的边缘处。
地线应该是尽可能粗的线路,并且应该交错地排列。
这样可以减少电源线对其他线路的干扰。
2. 分类布局模拟电路通常按其使用的频率等级进行分类,每个功能块分别进行布局,以减少信号交叉干扰。
例如,低频放大器与高频振荡器必须分别进行布局,以减少噪声和交叉干扰。
3. 线路布局线路的长度和宽度影响电路板上的信号速度和抗干扰能力。
因此,在布局时应该缩短信号线路的长度并使其尽可能宽。
同时,必须避免信号线路与电源线路和地线共线。
这种布局模式可以有效减少电磁干扰引起的信号串音和其他问题。
4. 组件安排模拟电路中使用的基本电路元件是电阻、电容和电感。
这些元件的放置位置和方向对线路的性能和稳定性有直接影响。
在安排元件时,应优先考虑干扰源和受干扰元件之间的距离,并优先安排相互干扰较小的元件。
二、数字布局技术数字布局是以数字信号为基础,以信号延迟、滤波和误差修正等为目标的布局技术。
它主要解决的问题是抗干扰和提高电路速度。
下面介绍一些数字布局技术的要领:1. 信号线的选择数字信号线具有短脉冲宽度和低电平峰值等特征,而噪声和交叉干扰容易影响数字信号的传输。
在PCB上怎样设计“数字地和模拟地”

在PCB上怎样设计“数字地和模拟地”?来源于:/thread-294768-1-1.html方法一:按电路功能分割接地面分割是指利用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。
按电路功能分割地线例如图所示,利用分割技术将4个不同类型电路的接地面分割开来,在接地面用非金属的沟来隔离四个接地面。
每个电路的电源输入都采用LC滤波器,以减少不同电路电源面间的耦合。
对于各电路的LC滤波器的L和C来说,为了给每个电路提供不同的滤波特性,最好采用不同数值。
高速数字电路由于其具有高的瞬时功率,高速数字电路放在电源入口处。
接口电路考虑静电释放(ESD)和暂态抑制的器件或电路等因素,位于电源的末端。
在一块印刷电路板上,按电路功能接地布局的设计例如图所示,当模拟的、数字的、有噪声的电路等不同类型的电路在同一块印刷电路板上时,每一个电路都必须以最适合该电路类型的方式接地。
然后再将不同的地电路连接在一起。
二.采用局部接地面振荡器电路、时钟电路、数字电路、模拟电路等可以被安装在一个单独的局部接地面上。
这个局部接地面设置在PCB的顶层,它通过多个通孔与PCB的内部接地层(0V参考面)直接连接,一个设计例如图5.7.20所示。
将振荡器和时钟电路安装在一个局部接地面上,可以提供一个镜像层,捕获振荡器内部和相关电路产生的共模RF电流,这样就可以减少RF辐射。
当使用局部接地面时,注意不要穿过这个层来布线,否则会破坏镜像层的功能。
如果一条走线穿过局部化接地层,就会存在小的接地环路或不连续性电位。
这些小的接地环路在射频时会引起一些问题。
如果某器件应用不同的数字接地或不同的模拟接地,该器件可以布置在不同的局部接地面,通过绝缘的槽实现器件分区。
进入各部件的电源电压使用铁氧体、磁珠和电容器进行滤波。
一个设计例如图5.7.21和图5.7.22所示。
三:PCB采用“无噪声”的I/O地与“有噪声”的数字地分割设计为了使用电缆去耦或屏蔽技术来抑制共模噪声,在PCB设计时,需要考虑为电缆的去耦(将电流分流到地)和屏蔽提供没有受到数字逻辑电路噪声污染的“无噪声”或者“干净”的地。
集成电路中的数字与模拟信号混合设计

集成电路中的数字与模拟信号混合设计集成电路,这玩意儿听起来是不是特高大上?感觉离咱的日常生活有点远?其实啊,不是那么回事儿!今儿咱就来聊聊集成电路中的数字与模拟信号混合设计。
先说说啥是集成电路。
想象一下,你有一个超级小的城市,里面住着无数的电子小精灵,它们在各自的岗位上忙忙碌碌,完成各种任务。
这个小小的城市就是集成电路。
数字信号呢,就像一群整齐划一的士兵,只有 0 和 1 两种状态,要么在,要么不在,干脆利落。
模拟信号呢,则像个情绪丰富的艺术家,数值可以在一个范围内连续变化,细腻而多变。
我记得有一次,我在修一台老式收音机。
那收音机的声音一会儿大一会儿小,刺啦刺啦的,可把我急坏了。
后来一检查,发现就是集成电路里数字和模拟信号混合出了问题。
我就像是个侦探,一点点排查,终于找到了那个“捣乱分子”。
在集成电路的设计中,要让数字和模拟信号和谐共处,可不是件容易的事儿。
就好比让一群急性子和一群慢性子一起合作完成一个项目。
数字信号速度快,处理起来简单直接;模拟信号呢,对精度和稳定性要求特别高。
要是设计不好,它们就会互相干扰,就像两个人在吵架,谁也不让谁,最后整个系统都乱套了。
比如说,在电源设计上,数字部分和模拟部分就得分别对待。
数字部分像个精力旺盛的小伙子,消耗能量大,电源得足够稳定和强大;模拟部分则像个娇弱的小姑娘,对电源的噪声特别敏感,稍有风吹草动,就会“发脾气”。
布线也是个大问题。
数字信号的线路就像高速公路,宽敞笔直;模拟信号的线路则像山间小道,弯曲细腻。
要是不小心把它们混在一起,那可就像是在高速公路上开着拖拉机,或者在山间小道上跑赛车,准得出乱子。
还有一个特别重要的事儿,就是屏蔽。
得给模拟信号穿上“防护服”,免得被数字信号这个“大嗓门”给吵到。
这就好比你在一个嘈杂的市场里,想要安静地看书,就得给自己围个小空间,挡住外面的吵闹声。
在实际的设计中,工程师们得像个经验丰富的大厨,把数字和模拟这两种不同的“食材”巧妙地搭配在一起,做出一道美味的“电子大餐”。
模拟与数字混合电路设计中的布局布线方法

模拟与数字混合电路设计中的布局布线方法在数字和模拟电路的混合设计中,布局布线是一个非常关键的步骤。
合理的布局布线可以减小信号噪音,降低功耗,提高电路性能和可靠性。
下面我们将介绍一些在模拟与数字混合电路设计中常用的布局布线方法。
1. 分离模拟和数字部分:合理的模拟和数字部分的分离可以确保两者之间的干扰最小化。
在布局时,尽量将模拟和数字电路分别布置在不同的区域,并采取适当的物理隔离措施,如使用地平面隔离层或金属屏蔽罩,以降低互相干扰的可能性。
2. 近源布线与远源布线:在布线时,模拟信号线和数字信号线应该分开布线,以降低互相之间的干扰。
模拟信号线应该尽量靠近信号源布线,以减小传输的干扰。
而数字信号线应该尽量远离模拟信号线,以降低数字信号对模拟信号的干扰。
3. 分层布局:将模拟和数字信号线分层布局,可以有效减小相互之间的串扰。
模拟信号线和数字信号线应尽量位于不同的PCB层次或地平面区域上,以减小互相之间的干扰。
4. 使用地平面:地平面是一个非常重要的设计元素,它可以提供良好的地电平和电磁屏蔽。
在布局时,尽量增加地平面的面积,并保持地平面的连续性,以降低信号噪音和互相之间的干扰。
5. 电源分割和滤波:在混合电路设计中,电源噪声对模拟信号的影响非常大。
因此,应该将电源分割为模拟和数字两个部分,并在输入处添加滤波电路,以减小电源噪声对模拟信号的影响。
6. 信号线的长度和走向:信号线的长度和走向对电路性能和功耗有着重要的影响。
一般来说,尽量保持信号线的长度一致,并避免信号线的尖锐转弯和临近的平面走线。
此外,应尽量避免信号线的交叉和平行布线,以减小信号之间的串扰。
7. 地线和电源线的布线:地线和电源线在布线时也需要注意。
地线应尽量靠近模拟信号线,以提供良好的地引用。
电源线应尽量靠近数字信号线,以减小电源噪声对模拟信号的干扰。
总结起来,模拟与数字混合电路的布局布线方法包括分离模拟和数字部分、近源布线与远源布线、分层布局、使用地平面、电源分割和滤波、合理的信号线长度和走向以及合理的地线和电源线布线。
PCB板电路设计中的数字地和模拟地考虑

PCB板电路设计中的数字地和模拟地考虑1 为什么要分数字地和模拟地因为虽然是相通的,但是距离长了,就不一样了。
同一条导线,不同的点的电压可能是不一样的,特别是电流较大时。
因为导线存在着电阻,电流流过时就会产生压降。
另外,导线还有分布电感,在交流信号下,分布电感的影响就会表现出来。
所以我们要分成数字地和模拟地,因为数字信号的高频噪声很大,如果模拟地和数字地混合的话,就会把噪声传到模拟部分,造成干扰。
如果分开接地的话,高频噪声可以在电源处通过滤波来隔离掉。
但如果两个地混合,就不好滤波了。
2 如何设计数字地和模拟地在设计之前必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度、流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积、流过环路的电流大小以及频率的平方成正比)。
在设计中要尽可能避免这两种情况。
有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。
尽管这种方法可行,但是存在很多潜在的问题,在复杂的大型系统中问题尤其突出。
最关键的问题是不能跨越分割间隙布线,一旦跨越了分割间隙布线,电磁辐射和信号串扰都会急剧增加。
在PCB设计中最常见的问题就是信号线跨越分割地或电源而产生EMI问题。
我们采用上述分割方法,而且信号线跨越了两个地之间的间隙,信号电流的返回路径是什么呢?假定被分割的两个地在某处连接在一起(通常情况下是在某个位置单点连接),在这种情况下,地电流将会形成一个大的环路。
流经大环路的高频电流会产生辐射和很高的地电感,如果流过大环路的是低电平模拟电流,该电流很容易受到外部信号干扰。
最糟糕的是当把分割地在电源处连接在一起时,将形成一个非常大的电流环路。
模拟与数字混合信号集成电路设计方法与技巧

模拟与数字混合信号集成电路设计方法与技巧数字混合信号集成电路(Analog Mixed-Signal Integrated Circuit,简称AMS IC)是同时包含了模拟电路和数字电路的集成电路。
它可以完成模拟信号处理和数字信号处理两种功能,广泛应用于各种领域,例如通信、消费电子、汽车电子等。
在设计AMS IC时,需要考虑到模拟电路和数字电路之间的相互影响,以及相应的设计方法和技巧。
首先,AMS IC设计需要综合考虑模拟电路和数字电路。
模拟电路主要用于接收和处理模拟信号,需要考虑到噪声、幅度范围、线性度、频率响应等因素。
数字电路主要用于处理和传输数字信号,需要考虑到时钟、功耗、面积、速度等因素。
在设计AMS IC时,需要找到一个平衡点,既能满足模拟电路的性能要求,又能满足数字电路的性能要求。
其次,AMS IC设计需要注意模拟电路和数字电路之间的相互影响。
模拟电路的性能对数字电路有直接影响,例如模拟电路的噪声和非线性度会降低数字电路的性能。
数字电路的操作也会对模拟电路产生影响,例如时钟的频率和相位会影响模拟电路的采样和重建性能。
因此,在设计AMS IC时,需要仔细分析和评估这些影响,并采取相应的措施来降低不良影响。
在AMS IC设计中,还需要考虑一些特殊技巧和方法。
首先,需要设计合适的模拟-数字界面电路,将模拟信号转换为数字信号,并将数字信号转换为模拟信号。
这些界面电路需要满足高速传输、低功耗、低噪声等要求。
其次,需要采取合适的电源和接地策略,以降低模拟电路和数字电路之间的干扰。
例如,可以采用分层供电和模拟数字分隔,减少共模噪声的影响。
此外,还需要合理选择器件和工艺,例如选择高性能模拟电路器件、互补金属氧化物半导体(CMOS)工艺等,以实现设计需求。
在实际AMS IC设计中,还需要运用一些常用的技巧和工具。
例如,可以采用模拟电路仿真工具来评估模拟电路的性能,例如SPICE。
可以采用时序分析工具来评估数字电路的性能,例如伊凡威尔科技公司的PrimeTime。
CAD在电子电路设计中的模拟电路和数字电路设计

CAD在电子电路设计中的模拟电路和数字电路设计电子电路设计是现代电子工程中至关重要的一个环节,它涵盖了模拟电路设计和数字电路设计两个方面。
随着计算机辅助设计(Computer-Aided Design,CAD)的逐渐发展和应用,电子电路设计变得更加高效和精确。
本文将探讨CAD在电子电路设计中的应用,着重介绍其在模拟电路设计和数字电路设计中的作用和优势。
一、模拟电路设计中的CAD应用模拟电路是以连续信号为基础的电路,常见的模拟电路有放大电路、滤波电路和混频电路等。
CAD在模拟电路设计中的应用主要包括以下几个方面:1. 模拟电路仿真:CAD软件可以通过建立电路模型和输入相应的参数,进行电路的仿真计算。
仿真结果可以帮助设计工程师快速评估电路性能,并优化设计。
2. 参数优化:CAD软件还可以通过自动调整电路元件的参数,从而找到最佳的电路性能。
设计工程师可以通过设定优化目标和约束条件,让CAD软件自动搜索最优解。
3. 原理图设计:CAD软件提供了方便快捷的原理图绘制工具,设计工程师可以通过拖拽元件符号、连线等方式进行电路图的设计和编辑。
CAD软件还提供了丰富的元件库,方便工程师选择和使用合适的元件。
4. 布局和布线:在模拟电路设计中,电路的布局和布线对性能至关重要。
CAD软件提供了自动布局和布线工具,可以帮助设计工程师快速生成合理的电路布局和布线方案。
二、数字电路设计中的CAD应用与模拟电路不同,数字电路以离散信号为基础,常见的数字电路有逻辑门电路、计数器和存储器等。
CAD在数字电路设计中的应用主要包括以下几个方面:1. 逻辑设计:CAD软件提供了强大的逻辑设计工具,设计工程师可以通过逻辑门的连接和布线,实现复杂的数字电路功能。
CAD软件还提供了逻辑模拟和验证功能,帮助工程师检查电路的正确性。
2. 状态机设计:在某些数字电路中,状态机是非常重要的组成部分。
CAD软件可以辅助设计工程师建立状态机模型,并通过状态转换图进行设计和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字与模拟电路设计技巧模拟与数字技术的融合由于IC与LSI半导体本身的高速化,同时为了使机器达到正常动作的目的,因此技术上的跨越竞争越来越激烈。
虽然构成系统的电路未必有clock设计,但是毫无疑问的是系统的可靠度是建立在电子组件的选用、封装技术、电路设计与成本,以及如何防止噪讯的产生与噪讯外漏等综合考量。
机器小型化、高速化、多功能化使得低频/高频、大功率信号/小功率信号、高输出阻抗/低输出阻抗、大电流/小电流、模拟/数字电路,经常出现在同一个高封装密度电路板,设计者身处如此的环境必需面对前所未有的设计思维挑战,例如高稳定性电路与吵杂(noisy)性电路为邻时,如果未将噪讯入侵高稳定性电路的对策视为设计重点,事后反复的设计变更往往成为无解的梦魇。
模拟电路与高速数字电路混合设计也是如此,假设微小模拟信号增幅后再将full scale 5V的模拟信号,利用10bit A/D转换器转换成数字信号,由于分割幅宽祇有4.9mV,因此要正确读取该电压level并非易事,结果造成10bit以上的A/D转换器面临无法顺利运作的窘境。
另一典型实例是使用示波器量测某数字电路基板两点相隔10cm的ground电位,理论上ground电位应该是零,然而实际上却可观测到4.9mV数倍甚至数十倍的脉冲噪讯(pulse noise),如果该电位差是由模拟与数字混合电路的grand所造成的话,要测得4.9 mV的信号根本是不可能的事情,也就是说为了使模拟与数字混合电路顺利动作,必需在封装与电路设计有相对的对策,尤其是数字电路switching时,ground vance noise不会入侵analogue ground的防护对策,同时还需充分检讨各电路产生的电流回路(route)与电流大小,依此结果排除各种可能的干扰因素。
以上介绍的实例都是设计模拟与数字混合电路时经常遇到的瓶颈,如果是设计12bit以上A/D转换器时,它的困难度会更加复杂。
虽然计算机计算速度很快,不过包含身边物理事象在内的输入数据都是模拟数据,因此必需透过计算机的A/D转换器,将模拟信号转换成为数字信息,不过模拟的输出信号level比数位信号低几个位数,一旦遇到外部噪讯干扰时,模拟信号会被噪讯盖住,虽然模拟在恒时微小变化量上具有非常重要的意义,不过若被外部噪讯掩盖时就不具任何价值,尤其是温度、湿度、压力等模拟量是模拟信耗的基础,它对微弱的模拟电路具有决定性的影响。
为配合数字机器高速化的趋势,今后对高速模拟化技术的要求会越来越高。
如图1所示随着数字高速化,数字信号也越来越近似模拟信号波形,为了忠实传送如此的信号必需使用模拟式的思维来往处理,也就是说高速化时代数字设计者必需同时需兼具模拟素养。
模拟电路注意事项2是设计模拟电路时必需注意得事项,除此之外电路图上仍存有许无法描述的设计要素,会以导线形式、浮游容量等形态造成电路特性变动,为了确保电路的可靠性因此必需将这些设计要素充分纳入电路设计、封装设计与电路板设计。
图2 设计高频电路时主要检讨项目list(1).round并非零奥姆虽然一般的电路图的接地(ground)阻抗都标示零奥姆,事实上电路pattern不可能没有阻抗(impedance)(图3),也就是说当电流流入电路pattern时必然会产生压降现象,而该压降却是各种问题的根源。
例如双面电路板的送信端与收信端以两点连接时,接地间的阻抗与大电流或是switching所产生的过渡电流,会造成两点间发生电位差,如果该电压成为噪讯电压与信号重迭的话,就会导致误差甚至使组件损坏,因此必需针对SN比进行有效的对策。
图3 电路pattern的阻抗(2).共通阻抗如第(1)项所述为了杜绝接地间产生电位差,单点接地设计成为数字模拟混载电路常用的手法(图4),不过这种设计能够处理的频率有一定的限度,即使采用粗短导线pattern,但是当频率超过数MHz时就有可能进入发生问题的范围,因此如何确实掌控接地线的电流与阻抗造成的压降关系,成为设计上非常重要的课题。
图5是典型的电路pattern对策实例,虽然该对策具有充分的共通阻抗概念,不过还是存有许多困难点。
由于better ground可大幅减少烦琐的设计,因此最近高频电路几乎都是采用多层电路板。
图4 单点ground电路图5 典型的共通阻抗电路设计模拟数字混载电路时必需注意的是数字电路switching会产生过渡电流,由于过渡电流会流入复归电路的接地端,为了防止该电流流入模拟电路的接地端,因此模拟电路与数字电路的接地端,通常会在入口处作单点接地设计,如果这样的防护设计还是会对模拟与数字电路造成影响时,就必需在模拟电路的接地端插入高频用ferrite core(ground beads),主要原因是提高模拟电路的的阻抗(从数字电路观之)具有很好的效果。
如果高速数字电路各信号发生延迟现象时,就需同时对tinning进行同步化,利用极大过渡电流的流动获得如图6所示之De-coupling电容效应,但是前提是必需谨慎选用合适的容量值,否则就无法获得预其的效果。
此外驱动模拟数字混载电路的电源若是单电源设计时,必需将模拟与数字的电源作电气绝缘。
图7是典型的模拟与数字电路电源部分作电气绝缘的电路设计。
图6 De-coupling电容效应图7 典型的模拟数字电路单电源的De-coupling(3).高输入阻抗电路直流增幅或是近似直流的低频微小电流、电压增幅时,如果使用FET等高输入operation-amplifier,必需注意以下几种漏电现象:(a).电流增幅时必需注意输入偏压(bias)电流。
如图8所示信号电流作电压转换获得1V输出电压,由于误差为1%因此输入偏压电流需低图8 典型的电流增幅电路(b).电压增幅时必需注意输入阻抗(impedance)。
如图9所示信号电流以输入电阻作电压转换获得1V输出电压,由于误差为1%因此operation-amplifier的输入阻抗必需大于100MΩ。
图9 典型的电压增幅电路(c).PCB的漏电流对信号电流的影响。
如果PCB的漏电会影响信号电流时,必需考虑装设grounding,不过需注意的是浮游容量增加,可能会使高频领域特性降低。
(4).降低外部磁界的影响微小信号增幅时极易受到从电源转换器发出的磁界影响,此时需设法取得从电源转换器的物理位置间隔,如此一来输入信号与电源就不会产生大回路(loop)。
(5).组件内与导线、导线之间、接地线的浮游容量组件内的浮游容量会使频率特性恶化降低动作速度,经常是造成共振的主要原因,它的详细动作机制如下述:.inductor coil内在的寄生容量影响,会在某个高频领域以上使inductor成为容量性,虽然这种特性适用于所有电子组件,不过在宽频领域却无法显示理想特性,尤其是inductor的电抗(reactance)可计算的范围受到限制,其指标通常是以自我共振频率的形式记载于厂商的型录(catalogue),如果直接采用自我共振以下的频率时电抗会成为正值,主要原因是电抗与阻抗一样,如果频率比自我共振频率更低时电抗会成为负值,相对的如果频率比自我共振频率更高时电抗会成为正值,阻抗就成为正值。
.condenser会因导线(lead wire)的阻抗成份,在某个高频领域以上出现阻抗特,如果低于自我共振时电抗会成为正值。
换言之condenser主要功能是在其频率以上会使电抗成为正值,阻抗成为负值。
.transformer的输出入之间的结合容量会使高频波脉冲(pulse)减半,造成机器的耐噪讯性(noise)恶化,因此必需谨慎选用输出入端的结合容量与线间容量较小的高频波transformer。
.高频电路尽量利用浮游容量,虽然祇要加大物理上的位置关系,就可获得降低浮游容量的效果,不过如同此却违反机器小型化的诉求,有效对策是减少并排电路图案(pattern)的长度,同时尽量利用浮游容量,例如stub、λ/4传输线路、特性阻抗都是可以采行的方案。
(6).电路板与电子组件的导线电路板与电子组件的导线(lead wire)具有寄生阻抗,它与浮游容量一样在高频领域时便无法忽视它的影响力,导线的寄生阻抗往往是造成电路延迟动作与电路的复归电路产生位相回旋,进而成为发振的主要原因之一,有效对策是封装时尽量使用粗宽的电路pattern,同时电子组件底部导线越短越好。
(7).防止宽频领域增幅器发振宽频领域用增幅器通常会外设补偿用电容,虽然该电容值可以改变增幅器频率特性,不过加大容量却可有效抑制电路发生不安定发振。
基于不牺牲频率特性的考虑,高输入阻抗的宽频增幅器经常使用补偿用电容,不过better ground常因浮游容量,极易引起电路发生不安定的发振,有效对策是在输入端装设铁氟龙材质的端子,或是取消better ground。
better ground是微小宽频领域用增幅器的基本设计,如果前段使用高输入阻抗operation-amplifier,同时设置类似LH0033等阻抗转换电路时,对后段等化动作会有很大的助益,此时电源端子除了高频电容之外,还需装设ferrite core形成filter结构。
(8).外部噪讯对接口导线与信号线、电源线的影响曝露外部的信号线与电源线极易受到外部电磁诱导、静电诱导的影响,成为放射噪讯的天线(antenna),进而造成电子机器极大伤害。
常用对策是使用filter、shield以及电路平衡传输等方法。
由于噪讯本身具有common mode噪讯成份,因此电源线装设Filter或是多段式Filter可获得很好的效果。
如图10所示电路板之间的连接,经常使用common mode扼流圈(choke coil),随着使用条件的不同,送信与收信两端同时装设扼流圈的情况也屡见不鲜。
接口导线则以同轴电缆(cable)或是附有shield之双缠绕线(twist pair wire)具有很好的抗噪讯效应。
电路入口端(connector)设置Filter,虽然可以防止外部噪讯流入,不过必需防止信号频率发生发生衰减现象。
Filter与connector的组合应用同样可获得有很好的噪讯防护效应,此外光结合的绝缘方法虽然会有成本上的困扰,不过噪讯防护效果却令人侧目。
有关EMI对策目前为止不论采用那种方式都无法完美无缺,换言之基本上必需根据噪讯环境,采取复合对策反复定量检讨对策结果,尤其是经验的累积具有决定性的影响。
图10 电路板之间的连接(9).焊接与不同金属产生的热起电力1mV以下微小信号直流增幅时经常发生不同金属接点产生热起电力,进而造成机器发生动作误差现象,常用对策是降低接点之间的温差,同时避免operation-amplifier等处理小信号的电子组件太靠近发热组件。