一元一次不等式复习讲义
七年级下册一元一次不等式讲义

环球雅思教育学科教师讲义两边同除以-1,得 x ≤9这个不等式的解集在数轴上的表示,如图所示.一元一次方程和一元一次不等式解法的比较解方程的一般步骤: 解不等式的一般步骤:1. 去分母 1. 去分母2. 去括号 2. 去括号3. 移项 3. 移项4. 合并同类项 4. 合并同类项5.系数化为1 5. 系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 例6.131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 注意:针对上述解方程与解不等式的步骤和格式的比较,讨论下列问题:(1)解一元一次不等式的步骤是怎样?它与解一元一次方程的步骤有何异同?(2)解一元一次不等式时,需注意什么?(3)解一元一次不等式的基本思想是什么?结合回答,提醒学生:①在解方程中易犯的错误,在解不等式也易犯,要特别注意.如要去分母时,各项都要乘以公分母.加括号与去括号时,要遵循有关法则等;知识点三一元一次方程的应用【导入训练】1、(河北省)在一次“人与自然”知识竞赛中,竞赛试题中共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分,如果一个学生在本次竞赛中得分不低于60分,那么他至少选对了______道题。
评析:不等式应用题的难点之一是辨别它与方程应用题的异同,如何列出不等式,要善于抓住题中“不低于”、“至少”等字词的数学含义。
本题中对“倒扣2分”应理解为不选或选错,实际应扣6分,故当设选对了x道题,则不选或选错题为(25-x)道,则有100-6(25-x)≥60 解出:x≥18x=19,即他至少选对了19道题。
《一元一次不等式》全章复习与巩固(提高)知识讲解

《不等式与一次不等式》全章复习与巩固(提高)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:a<b,b<c则a<c.这个性质也叫做不等式的传递性.不等式的基本性质2:不等式两边都加上(或减去)同一个数,所得到的不等式仍成立.如果a>b,那么a±c>b±c如果a<b,那么a±c<b±c不等式的基本性质3:不等式两边都乘(或都除以)同一个正数,所得到的不等式仍成立;不等式两边都乘(或都除以)同一个负数,必须改变不等号的方向,所得到的不等式成立.如果a>b,c>0,那么ac>bc,a bc c >;如果a>b,c<0,那么ac<bc,a bc c .要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.用适当的语言翻译下列小题:(1)x与9的差是正数或0;(2)b与-5的和既不是正数也不是负数;(3)y的5倍既大于x又小于3x+2;(4)a的2倍与-4的差小于5或大于7;(5)102y x -≥; (6)12302x -<-<;(7)(8) 【答案与解析】解:(1)x -9≥0; (2)b+(-5)=0; (3)x<5y<3x+2;(4)2a-(-4)<5或2a-(-4)>7; (5)y 的一半与x 的差非负;(6)x 的一半与3的差既大于-2又小于0; (7)x>-3或写作:大于-3的数;(8)2<x ≤3或写作:既大于2又小于等于3的数. 【总结升华】对“既……又……”,“既是……也是……”,“是……或是……”等连接词也要逐步领会积累.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
一元一次不等式总复习讲义

一元一次不等式总复习讲义一元一次不等式知识要点不等式用符号≤≥≠“<”(“”)“>”(“”)“”连接而成的式子,叫 比较等式与不等式的基本性质. 见下表:例1、判断题:1、若kb ka -<-,则 b a > ( )2、若b a >,则 2323ba -<- ( ) 3、若,,d cb a =<,则 bd ac < ( ) 4、若0<<b a ,则 b a > ( )5、对于实数若a ,总有 a a 23-> ( )6、若b a >,则22b a > ( )7、若b a >,0≠ab ,则ba 11< ( ) 8、若,1a a <则10<<a ( )一元一次不等式(组)解法解一元一次不等式的一般步骤:(1) 去分母(根据不等式的基本性质3) (2) 去括号(根据单项式乘以多项式法则) (3) 移项(根据不等式的基本性质2)8、已知a 、b 为常数,若ax+b>0的解集是x<13,则bx-a<0的解集是( )A.x>-3B.x<-3C.x>3D.x<39、下列不等式中,与523x -≤-1同解的不等式是 ( ) A .3-2x ≥5 B .2x -3≥5 C .3-2x ≤5 D .x ≤410、代数式231x -与x -2的差是负数,那么x 的取值范围是( )A .x >1B .x >-53C .x >-43D .x <111、一个三角形的一边长是(x+3)cm ,这边上的高是5cm ,它的面积不大于20cm 2,则( ) A .x >5 B .-3 < x ≤5 C.x≥ -3 D .x ≤512、关于x 的方程x m x --=-425的解在2与10之间,则m 的取值范围是( )A 、8>mB 、32<mC 、328<<mD 、8<m 或32>m 13、4与某数的7倍的和不大于6与该数的5倍的差,若设某数为x ,则x 的最大整数解是( )A 、1B 、2C 、-1D ,014、若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 15、 如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥216、不等式4-3x ≥2x -6的非负整数解有( ) A.1 个 B. 2 个 C. 3个 D. 4个17、解不等式1-2x x 3297-≤,得其解的范围为( )A .61≥x B .61≤x C .23≥x D .23≤x18、不等式组⎪⎩⎪⎨⎧<≥-323x x 所有整数解之和是A.9B.12C.13D.15 19、不等式组1124,2231.22x x x x ⎧+>-⎪⎪⎨⎪-⎪⎩≤的解集在数轴上表示正确的是( )20、若不等式组⎩⎨⎧≥-≥-035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 21、不等式组()⎪⎩⎪⎨⎧<-+<+043321413x x 的最大整数解是( )A 、0B 、-1C 、-2D 、1 22、某市科学知识竞赛的预赛中共20道选择题,答对一题得10分,满分200分, 答错或不答扣5分,总得分不少于80分者就通过预赛而进入决赛,若小王通过了预赛,那么他至少答对了( )A.10道题B.12道题C.14道题D.16道题23、某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A 、22厘米B 、23厘米C 、24厘米D 、25厘米 二、填空题1、不等式2x+1>﹣5的解集是 . 2.如a <3,那么不等式ax >3x +5的解集是_______.3.关于x 的方程kx+15=6x+13的解为负数,则k 的取值范围是_________.4.若a<0,则关于x 的不等式ax-b≤0的解集为_____5.当x _______时,代数式232+x 的值比代数式31+x 的值不大于-3.6.方程x +2m =4(x +m )+1的解为非负数,则m 的取值应为________.7、在数轴上表示不等式组⎩⎨⎧>>b x ax 的解集如上图所示,则不等式组⎩⎨⎧≤<bx a x 的解集是 。
一元一次不等式总复习PPT课件

8 B
A 6 C
1:在⊿ABC中,AB=8,AC=6,则BC的 取值范围_2__<_B__C_<__1_4
A
8 B
D 6
6 2:在上述条件下,若AD是BC边上的中线, C 则AD的取值范围_1_<_A_D__<_7_
E
x>a x>b x<a x<b x<a x>b x>a x<b
在数轴上表示
ba ba ba ba
解集
x>a
口诀
两大取其大
x<b 两小取其小
b<x<a 比的大要的大要取小中比间小.
无解
比大的要大比小 的要小无解.
{ 1、解下列不等式组
x-2 2
≤
x-5 5
1-
x-1 6
>
2x+1 3
并把解集在数轴表示出来.
变式一:
{ 不等式组
x≥2a-1
x<3
无解,求a的范围
变式二:
{ 不等式组
x≥2a-1
x ≤ 3 无解,求a的范围
{ 4、若不等式组 X>m的解集是x>m, X>n
则m,n的大小关系___m__≥__n
{ X>m+1
5、不等式组
无解,求m的范围
X<2m-1
{ X>a
6、不等式组 X<-a 有解,求a的范围
1、若a<b,则
a-2 <b-2 a+c__<b+c
2a <2b
-a >-b
_a__ 5
Байду номын сангаас
_<___
_b__ 5
第三讲 一元一次不等式复习

文字记忆
同大取大 同小取小 大小小大 取中间 大大小小 则无解
当a>b时,
的解集是 X>a
b b b b a
a a a a
当a>b时,
的解集是 X<b 的解集是 b ≤ X<a
当a>b时,
当a>b时,
的解集是 无解 的解集是 X=a
不等式组
大小等同 取等值
2(x+3)>x+5 (1)
例3、解不等式组
并求x的最大值。
练一练
1、解一元一次不等式,并把解在数轴上表示出来:
(1)6 4(1 x) 2(2 x 9) x 3 0.5 2 x (2) 1 2 3
2、求使不等式3(x-3)-1<2x成立的正整数解。
练一练
x x2 20 3 3、解不等式 x 5 2 3 并把它的解集表示的数轴上。
变式一:
x≥2a-1 不等式组 x<3 无解,求a的范围
{ {
变式二:
x≥2a-1 不等式组 x ≤ 3 无解,求a的范围
5、已知,不等式组
3(x-4)< 2(4x+5)-2
x5 1 3
1 x > 2 2
①求此不等式组的整数解 ②若上述整数解满足方程ax-3=3a-x,求a的值 ③ 在① ②的条件下,求代数式 a
二、交流对话,巩固练习
x 2 1 2x 不等式 1, 去分母得 ( 8、 2 4
A 2(x+2)-(1-2x) >1 C 2(x+2)-(1-2x) >4 B
C )
2(x+2)-1-2x >4
D 2x+2-(1-2x) >4
二、交流对话,巩固练习
y 0.3 0.5 y 在解不等式 1时, 9、 0.5 0.6 ) 下列变形正确的是 ( D 10 y 3 5 y y 0.3 0.5 y A 10 10 B 5 6 5 6
八年级一元一次不等式(教师讲义带答案).

第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
一元一次不等式综合讲义

一元一次不等式综合讲义地区:江苏教材版本:苏教版学生学习情况:一元一次不等式本节课的主要内容1.不等式的认识与不等式的解以及解集2.不等式的基本性质3.一元一次不等式以及一元一次不等式的解4.一元一次不等式组和解集以及不等式组的运用5.知识回顾6.本次作业【知识梳理1】不等式的认识与不等式的解以及解集1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式14<-x 的解集是5<x . 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
8.3.1一元一次不等式组复习课件

x 8 x m
C、m<8 D、m≤8
有解,那么m的取值范围是( C ) A、m>8 B、m≥8
2、如果不等式组
x a的解集是x>a,则a_______b ≥ 。 x b
3.已知关于x不等式组
{ xa
x 1
a≤-1 无解,则a的取值范围是____
例4.若不等式组
5、已知不等式 3 x a 0 的正整数解 恰是1,2,3,4,那么a的取值范围是_________
解: 解不等式①,得,x
① ②
8
解不等式②,得,
4 解不等式②,得, x 5
所以不等式组无解。
所以不等式组的解集为:
x3
练习
1.不等式组
2.不等式组
3( x 1) ( x 3) 8 2x 1 1 x 的解集应为_________; 1 2 3
① ②
x8
所以这个不等式组的解集为:
1 x 8
2x 1 5 解法二: 1 3
解:不等式各项都乘以3,得: 各项都加上1,得: 即:
3 2 x 1 15
3 1 2 x 1 1 15 1
2 2 x 16
1 x 8
取值范围是 。
5 x 3m m 15 4 2 4
2.m是什么正整数时,方程
的解是非负数
3.关于x的不等式组
xa 0 的整数解共有5个,则a 3 2 x 1
。
的取值范围是
练习二
5 2 x 1 a>3 无解,则a的取值范围是___ 4.已知关于x不等式组 xa 0
2、若关于x的不等式组 值范围是_________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式与一元一次不等式组一.知识梳理1.知识结构图(二).知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集. 不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点) 只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式:解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 7.一元一次不等式组的解集 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.x ax b >⎧⎨<⎩ba无解(大小分离解为空)9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解1.常见题型分类(加粗体例题需要作答) 定义类1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .用不等式表示a 与6的和小于5; x 与2的差小于-1;数轴题1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >0同等变换1.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-61.解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2。
解不等式12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩3.解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来.此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或bx a <) 当0a <时,b x a <(或bx a >)当0a <时,b x a <(或bx a>)4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________.1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在1. 不等式|x |<37的整数解是________.不等式|x |<1的解集是________.1.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A.x <2 B.x >-2 C.当a >0时,x <2 D.当a >0时,x <2;当a <0时, x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)y x<0中,正确结论的序号为________。
2. 下列不等式变形正确的是( )(A)由a >b ,得2-a <2-b (B)由a >b ,得a 2-<b 2- (C)由a >b ,得a>b(D)由a >b ,得2a >2b1.当x_______时,代数式2x -5的值不大于0.2.当x ________时,代数式61523--+x x 的值是非负数. 3.当代数式2x-3x 的值大于10时,x 的取值范围是________. 4.已知x 的12与3的差小于x 的-12与-6的和,根据这个条件列出不等式.你能估计出它的解集吗?1.关于x 的方程5-a(1-x)=8x -(3-a)x 的解是负数,则a 的取值范围是( ) A 、a <-4 B 、a >5 C 、a >-5 D 、a <-52.已知-4是不等式ax >9的解集中的一个值,试求a 的取值范围.3.已知不等式2x-1>x 与ax -6>5x 同解,试求a 的值.4.如果关于x 的不等式-k -x +6>0的正整数解为1,2,3,正整数k 应取怎样的值?5.不等式a (x -1)>x +1-2a 的解集是x <-1,请确定a 是怎样的值.6.已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.7.若关于x 的方程3x +2m =2的解是正数,则m 的取值范围是( )A.m >1B.m <1C.m ≥1D.m ≤1字母不等式1已知关于x 的不等式2<x a )1(-的解集为x <a-12,则a 的取值范围是( ).A .a >0 B.a >1 C.a <0 D.a <12若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是( )A .76<<mB .76<≤mC .76≤≤mD .76≤<m3关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是 .4已知关于 x ,y 的方程组的解满足x >y ,求p 的取值.5若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2(B)k ≥2(C)k <1(D)1≤k <26等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥17知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.8 k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.9 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .强化练习题 1.当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.2.当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.3.已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.4.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.5.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.6.k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?7.已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.8.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.9.如果不等式组2223xax b⎧+⎪⎨⎪-<⎩≥的解集是01x<≤,那么a b+的值为.10.如果一元一次不等式组3xx a>⎧⎨>⎩的解集为3x>.则a的取值范围是( )A.3a> B.a≥3 C.a≤3 D.3a<11.若不等式组0,122x ax x+⎧⎨->-⎩≥有解,则a的取值范围是()A.1a>- B.1a-≥ C.1a≤ D.1a<12.关于x的不等式组12x mx m>->+⎧⎨⎩的解集是1x>-,则m = .13.已知关于x的不等式组521x ax-⎧⎨->⎩≥,只有四个整数解,则实数a的取值范围是.。