沪科版数学八年级上册:13.1三角形中的边角关系-教案(2)

合集下载

沪科版数学八年级上册:13.1三角形中的边角关系-教案

沪科版数学八年级上册:13.1三角形中的边角关系-教案

13.1 三角形中的边角关系第2课时三角形中角的关系教学目标1.理解和掌握三角形按照内角的度数的分类;2.通过操作活动,探究并掌握三角形内角和性质,并能应用三角形内角和性质解决一些简单的实际问题;3.经历观察、操作、想象、推理、交流,发展推理能力和有条理的表达能力.在操作中进行自觉思考,积累数学探索的经验.教学重点通过操作活动,探究并掌握三角形内角和性质,并能应用三角形内角和性质解决一些简单的实际问题教学难点经历观察、操作、想象、推理、交流,发展推理能力和有条理的表达能力.在操作中进行自觉思考,积累数学探索的经验、教学过程一、情境导入同学们手中有直角三角板,请再画一个内角中不含90°的三角形.三角形若按角来分类,分为哪几类?二、合作探究探究点一:三角形按角分类下列说法中,正确的有( )①锐角三角形中最大的角一定小于90度;②所有的等边三角形都是锐角三角形;③所有的等腰三角形都是锐角三角形;④直角三角形一定不是等腰三角形.A.1个 B.2个 C.3个 D.4个解析:根据三角形按角分类的标准,准确把握各题的关键字眼,对它们做出判断:①最大角小于90°,即三个角都为锐角,满足锐角三角形的条件,故正确;②等边三角形的三个角都为60°,所以它是锐角三角形,故正确;③对于顶角是钝角或直角的等腰三角形,不满足题设条件,故错误;④直角三角形可能是等腰三角形,三角板中就有一个是等腰直角三角形,故错误.故选B.方法总结:熟悉三角形按边、角分类的特点,在分类时,要先确定分类标准,不要搞混淆它们,出现错解.探究点二:三角形的内角和【类型一】根据三角形内角和求角的度数如图,在△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于( )A.63°B.62°C.55°D.118°解析:在△ABC中,∠B=55°,∠C=63°,根据三角形的内角和定理,即可求得∠A 的度数,又由DE∥AB,根据两直线平行,同位角相等,即可求得∠DEC的度数.故答案为B.方法总结:此题比较简单,解题的关键是掌握“两直线平行,同位角相等”的应用.【类型二】根据三个角之间的关系求各个角在△ABC中,∠A是∠B的2倍,∠C比∠A+∠B大12°,求△ABC各角度数.解析:首先用代数式表示出每一个角,然后利用三角形内角和为180°,列出方程求解.解:设∠B=x°,则∠A=2x°,∠C=(x+2x+12)°,据题意得,x+2x+x+2x+12=180,解得x=28,∴∠B=28°,∠A=56°,∠C=96°.方法总结:借助方程思想解几何问题是一种常用的数学方法.注意列方程时,等式中不能带单位.【类型三】判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( ) A.直角三角形 B.锐角三角形C.钝角三角形 D.无法判定解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180°,得x+2x+3x=180°,解得x=30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.课堂小结三角形按角分类三角形的内角和1.根据三角形内角和求角的度数2.根据三个角之间的关系求各个角3.判断三角形的形状。

沪科版八年级数学上册13.1三角形中的边角关系教学设计

沪科版八年级数学上册13.1三角形中的边角关系教学设计
-小组讨论并总结三角形边角关系的解题策略和技巧。
作业要求:
-学生需按照作业要求,认真完成,书写工整,保持作业整洁。
-鼓励学生在解题过程中,标注解题思路,以便于教师了解学生的思考过程。
-对于完成作业过程中遇到的困难,学生应积极寻求帮助,及时解决疑问。
-计算给定三角形的内角和,以及未知角度。
-利用勾股定理求解直角三角形的未知边长。
2.实践应用题:设计一些与生活实际相关的问题,让学生将所学的三角形知识应用到解决实际问题中,培养学生的建模能力和实践能力。
-测量并计算学校旗杆的高度,如果知道旗杆底部与观察点的距离以及旗杆顶部的仰角。
-分析并计算给定三角形形状的屋顶面积。
-教师关注学生的学习过程,鼓励学生积极参与,体验数学学习的乐趣。
-学生通过自主探究、合作交流,形成良好的学习习惯,为终身学习打下基础。
二、学情分析
八年级学生已经在之前的数学学习中,掌握了基本的几何图形知识和相关性质,具备了一定的空间想象能力。在此基础上,他们对三角形的边角关系有了初步的认识,但对于三角形中较为复杂的边角关系及其应用,仍需进一步引导和拓展。此外,学生在解决实际问题时,可能存在以下困难:对三角形概念的理解不够深入,无法熟练运用相关定理和公式;缺乏将实际问题转化为数学模型的意识,导致解题思路不明确。因此,在本章节的教学中,教师应关注学生的基础知识掌握情况,结合生活实例,激发学生兴趣,引导他们主动探究三角形边角关系,提高解决问题的能力。同时,注重培养学生的逻辑思维和团队合作精神,使其在互动交流中,不断提升数学素养。
3.拓展提高题:提供一些综合性强、难度较高的题目,鼓励学有余力的学生挑战自我,拓展思维。
-解决涉及多个三角形的复合问题,如多边形的内角和计算。

沪科版数学8年级上册教案13.1三角形中的边角关系

沪科版数学8年级上册教案13.1三角形中的边角关系

13.1三角形中的边角关系(第1课时)
、知识目标:理解三角形的有关概念,掌握三角形
、能力目标:通过观察、操作、讨论等活动,培养学教学重、三角形三边关系的探究和归纳。

问题:看下列实物中,有你熟悉
件:一些含有三角形的建筑物)
三、讲授新课
.
图13-1
你能从图13-1中找出4
纸上画出该图形然后来找,是这个,
通过视频了解三角形的基本元素)
边)
范围内可以组成三角形呢?动手摆一摆。

5
13.1三角形中的边角关系(第2课时)
(1)
C(________________).
A=90o,
,CD
?
限制,学生的学习很可能“遭遇”
到一次成功,就会激励
13.1三角形中的边角关系(第3课时)
法作出高、角平分线、中线,点:作出三线。

角形纸片、三角,多媒体课件
条高有什么特点?
你能用折纸的方法找出你准备好的三角形
,折痕与交于点
三角形的面积
(3)的特点.
(4)
问题:(
(2)
三角形角平分线的定义.
框架、
线段垂线、三角形角
线关系。

BE= = BC
∠度,∠B=45度,AD
的度数。

的图形具有稳定性吗?
C
的对边是
的角平分线AD、CE相交于点F,α的式子表示∠AFC的度数。

么具有稳定性,要求学生能验证、
教科书课后习题节选
)任意三角形三条
BD。

学生在思考“能围成三角形三条边的关系”时,其中有一个学生说。

沪科版八年级数学上册《三角形中的边角关系》教案2

沪科版八年级数学上册《三角形中的边角关系》教案2

《三角形中的边角关系》教案教学目标1.了解三角形的概念,掌握分类思想.2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵.3.让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值.教学重难点1.重点:了解三角形的分类,弄清三角形三边关系.2.难点:对两边之差小于第三边的领悟.教学准备1.教师准备:多媒体课件.2.学生准备:四根小木条.教学过程(一)创设情境,探究新知请同学们仔细观察一组图片,找出你熟悉的图形三角形,引入课题教师:我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用.三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形.(二)合作交流,探究新知1.教师:你能画一个三角形吗?学生:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形3.自学指导:认真看书67页的内容.注意三角形边的表示方法.并思考下面问题:(1)知道三角形的顶点,边,角等概念,会用几何符号表示一个三角形;(2)会把三角形按边进行分类,知道每类三角形的特征;(3)知道等腰三角形的腰,底边,顶角,底角等概念;教师:依次向学生介绍有关知识4.巩固练习(多媒体展示)5.合作探究三角形的三边关系有这样的四根小棒(4cm、6cm、10cm、12cm)请你任意的取其中的三根,首尾连接,摆成三角形.(1)有哪几种取法?(2)是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以?(3)用三根什么样的小棒才能拼成三角形呢?你从中发现了什么?小组活动:学生自主探索并合作交流满足怎样的数量关系的三根小棒能组成三角形;我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形.这就是说:三角形中任何两边的和大于第三边教师:三角形中任意两边的差与第三边有什么关系?你能根据上面的结论,利用不等式的性质加以说明吗?6.讲解例题例1:等腰三角形中,周长为18cm(1)如果腰长是底边长的2倍,求各边长;(2)如果一边长为4cm,求另两边长解(1)设等腰三角形的底边长为x cm,则腰长为2x cm.根据题意,得x+2x+2x=18解方程,得x=3.6所以三角形的三边长为3.6cm,7.2cm,7.2cm(2)若底边长为4cm,设腰长为x cm,则有x+x+4=18解方程,得x=7cm若一条腰长为4cm,设底边长为x cm,则有4+4+x=18解方程,得x=10因为4+4<10,所以,以4为腰的话不能构成三角形所以,三角形的另两边长都为7cm7.随堂练习,巩固新知(1)教师:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法?学生:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形.(三)小结通过这节课的学习你有什么收获?(四)布置作业课本P73习题14.1第1,7题.。

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计

沪科版八年级数学上册13.1《三角形中边与角之间的不等关系》教学设计
3.教师将根据学生的作业完成情况,给予评价和反馈,鼓励学生持续进步。
2.教师给出三角形内角和定理,并通过几何证明来解释这个定理。同时,讲解三角形外角与相邻内角的关系,以及外角和等于360度的性质。
3.教师结合课本例题,讲解如何运用三角形的边角关系解决实际问题,如求三角形的未知边.教师将学生分成小组,每组选择一个实际问题进行讨论,如测量小河对岸两点之间的距离。
2.学生在规定时间内完成练习,教师对学生的答案进行批改,并及时反馈,纠正学生的错误。
3.教师针对共性问题进行讲解,帮助学生巩固所学知识,提高解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,用自己的话总结三角形边与角之间的关系、内角和定理以及实际应用。
2.学生分享学习心得,教师给予肯定和鼓励,并强调掌握三角形边角关系对于解决几何问题的重要性。
2.运用问题驱动的教学方法,引导学生主动探究三角形的内角和定理,培养学生的逻辑推理能力。
-教师可以提出问题,如“三角形的内角和是多少度?”“如何证明三角形的内角和为180度?”等,引导学生通过讨论和实验来解决问题。
3.创设丰富的教学情境,将三角形边角关系与生活实际相结合,提高学生的应用能力。
-例如,设计实际测量问题,如测量小河对岸两点之间的距离,让学生运用三角形知识解决问题。
2.将三角形的边角关系应用于解决复杂的几何问题,如计算未知边长、证明线段平行等。
3.学生在小组合作中,如何平衡独立思考与团队合作,避免过分依赖或孤立无援。
(三)教学设想
1.利用直观教具和实际案例导入新课,让学生在观察和操作中感知三角形的边角关系,从而激发学生的学习兴趣。
-例如,通过让学生测量不同三角形的三边长度,引导学生发现边与边之间的关系。

沪科版数学八年级上册教案-三角形中边的关系、三角形中角的关系、三角形中几条重要线段-3课时

沪科版数学八年级上册教案-三角形中边的关系、三角形中角的关系、三角形中几条重要线段-3课时

13.1三角形中的边角关系第1课时三角形中边的关系教学目标【知识与能力】1.了解三角形及相关概念,能正确识别和表示三角形;2.会根据边是否相等对三角形进行分类;3.掌握三角形三边关系,会判断已知三条线段能否构成三角形,会求三角形第三边的取值范围。

【过程与方法】教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观。

【情感态度价值观】让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。

教学重难点【教学重点】掌握三角形三边关系,会判断已知三条线段能否构成三角形。

【教学难点】会求三角形第三边的取值范围。

课前准备课件、教具等。

教学过程一、情境导入三角形是一种最常见的几何图形,如古埃及金字塔,香港中银大厦,交通标志等等,处处都有三角形的形象.那么什么叫做三角形呢?二、合作探究探究点一:三角形的识别例1 如图所示,图中三角形的个数共有( )A.1个 B.2个 C.3个 D.4个解析:根据三角形的定义进行判断.只要数出BC上有几条线段即可.很明显BC上有3条线段,所以有三个三角形,选C.方法总结:在比较复杂的图形中寻找三角形的方法:可以按照一定顺序寻找,即先固定一个顶点,变换另两个顶点,做到不重复、不遗漏.探究点二:三角形的分类例2 设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示它们之间关系的是( )解析:根据它们的概念:有一个角是直角的三角形是直角三角形;有两条边相等的三角形是等腰三角形;有三条边相等的三角形是等边三角形;有一个角是直角且有两条边相等的三角形是等腰直角三角形.故选A.方法总结:考查了三角形中各类三角形的概念,根据定义就能够找到它们彼此之间的包含关系.探究点三:三角形三边关系【类型一】判断已知线段能否构成三角形例3 下列各组长度的线段能构成三角形的是( )A.1.5cm,3.9cm,2.3cmB.3.5cm,7.1cm,3.6cmC.6cm,1cm,6cmD.4cm,10cm,4cm解析:A中,1.5+2.3=3.8<3.9,不能构成三角形;B中,3.5+3.6=7.1,不能构成三角形;C中,6+1>6,6-1<6,能构成三角形;D中,4+4=8<10,不能构成三角形.故选C.方法总结:判断三条线段能否组成三角形的简便方法是看较短的两条线段的长度是否大于最长的线段的长度.【类型二】求三角形第三边的取值范围例4 已知三角形的三边长分别是2,2x-3,6,则x的取值范围是________.解析:∵三角形的两边长分别为2和6,∴第三边边长2x-3的取值范围是:6-2<2x -3<6+2,即3.5<x<5.5.方法总结:根据三角形三边关系定理可知:已知两边之差<第三边长<已知两边之和,确定第三边的取值范围,再结合题干中的其他条件排除不合要求的其他值.【类型三】三角形的三边关系与等腰三角形例5 已知等腰三角形的两边长分别为3和5,则它的周长是________.解析:由等腰三角形两边长为3、5,分别从等腰三角形的腰长为3或5去分析即可求得答案,注意分析能否组成三角形.①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=13.综上所述,它的周长是11或13.易错提醒:要求等腰三角形的周长,要先确定等腰三角形的腰和底.先分两种情况讨论能否构成三角形,再进行计算.【类型四】三角形三边关系与绝对值的综合例6 若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a -b -c <0,b -c -a <0,c +a -b >0.∴|a -b -c |+|b -c -a |+|c +a -b |=b +c -a +c +a -b +c +a -b =3c +a -b .方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.三、板书设计三角形中边的关系⎩⎪⎨⎪⎧三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的封闭图形.三角形按边分类⎩⎪⎨⎪⎧不等边三角形等腰三角形(包括等边三角形)三角形的三边关系:三角形中任何两边的和 大于第三边,任何两边的差小于第三边.13.1三角形中的边角关系第2课时 三角形中角的关系教学目标【知识与能力】会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。

【最新沪科版精选】沪科初中数学八上《13.1 三角形中的边角关系》word教案 (2).doc

【最新沪科版精选】沪科初中数学八上《13.1 三角形中的边角关系》word教案 (2).doc

第13章三角形中的边角关系13.1 三角形中的边角关系第一课时三角形中的边角关系(一)教学目标1、了解三角形的概念,掌握分类思想2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值重、难点与关键重点:了解三角形分类思想,弄清三角形三边关系难点:对两边之差小于第三边的领悟关键:从观察、联想入手,应用连结两点之间的线中,线段最短这一原理进行迁移教学过程情境合一,探究新知投影图片,把事先收集的与三角形有关系的生活图片,运用投影仪播放,让学生对三角形有一个感性认识.如下图:教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.学生讨论教师归纳,由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.教师活动:给出一个三角形,如图,并标上字母,引导学生体会用符号来表示一个三角形的方法,认识三角形的基本元素:边、角、顶点等.学生活动:学会运用大小写字母来表示三角形的边与角,如图的三角形可记作⊿ABC,三边可记作AB、AC、CA;三个角可记作∠A、∠B、∠C,或可用三个字母表示为∠BAC、∠ABC、∠ACB.注意:表示边时要两个大写字母,或一个小写字母.注意小写字母标注的规律:通常顶点大写字母所对的变就是这个顶点的小写字母.教师给出不同类型的三角形,引导学生从边和角两种角度观察、分类.(1)从边的角度来分类有:不等边三角形等腰三角形(包括等边三角形)说明:对于等腰三角形来说,相等的两边称为腰,第三边称为底边。

两腰所夹的角称为顶角,腰与底边的夹角称为底角:而等边三角形的三边都相等,它是等腰三角形的特例.(2)从角的角度来分类有:锐角三角形(三个内角均为小于900的角)直角三角形(有一个角是900)钝角三角形(有一个内角大于900)联系实际,合作探究问题牵引1.国庆节的晚上,小明从甲地到乙地后再往丙地走,并到达丙地,小红从甲地直接到丙地,如图所示,请你谈谈小明和小红谁走的路程长?依据是什么?学生活动:发现小红走的路程短,小明走的路程长。

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1

沪科版数学八年级上册13.1《三角形中的边角关系》教学设计1一. 教材分析《三角形中的边角关系》是沪科版数学八年级上册第13章第1节的内容。

本节主要介绍三角形中的边角关系,包括三角形的内角和定理、三角形的边长关系等。

通过本节的学习,学生能够理解三角形的边角关系,并能够运用这些关系解决实际问题。

二. 学情分析八年级的学生已经学习了三角形的性质和角的度量,对于三角形的基本概念和性质有一定的了解。

但是,学生对于三角形边角关系的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,需要注重学生的参与和实践,通过操作和思考,引导学生理解和掌握三角形的边角关系。

三. 教学目标1.知识与技能:学生能够理解和运用三角形的内角和定理,掌握三角形的边长关系。

2.过程与方法:学生能够通过观察、操作和思考,探索三角形的边角关系,培养解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。

四. 教学重难点1.教学重点:三角形的内角和定理,三角形的边长关系。

2.教学难点:三角形边角关系的运用和解决实际问题。

五. 教学方法1.引导法:通过问题引导,激发学生的思考,引导学生探索三角形的边角关系。

2.实践操作法:让学生通过实际操作,观察和分析三角形的边角关系,加深理解。

3.合作学习法:学生分组合作,共同解决问题,培养合作精神和沟通能力。

六. 教学准备1.教学课件:制作教学课件,包括三角形的内角和定理和边长关系的图片和示例。

2.教学用具:准备一些三角形模型和测量工具,供学生实践操作使用。

3.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过一些实际问题,引导学生思考三角形中的边角关系,激发学生的学习兴趣。

2.呈现(10分钟)利用课件呈现三角形的内角和定理和边长关系的图片和示例,引导学生观察和分析,探索三角形的边角关系。

3.操练(10分钟)学生分组合作,利用准备好的三角形模型和测量工具,进行实际操作,观察和分析三角形的边角关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章三角形中的边角关系、命题与证明
13.1 三角形中的边角关系
第1课时三角形中边的关系
一、教学目标
1. 了解三角形的概念,掌握分类思想
2. 经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵
3. 让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值
二、教学重点及难点
重点:了解三角形分类思想,弄清三角形三边关系.
难点:对两边之差小于第三边的领悟.
三、教学用具
多媒体课件、直尺.
四、相关资源
《三角形系列》图片、《三角形1》图片、《锐角、直角、钝角三角形》图片、《等腰、等边三角形》图片、《三角形2》图片、《三角形3》图片.
五、教学过程
【课堂导入】
此图片是视频缩略图,本视频资源从生活实例出发,给出物品、建筑等常见的三角形形象及设计,同时适当提出问题,激发学生的求知欲。

若需使用,请插入【情景演示】认识三角形.
教师引入三角形:三角形是一种最常见的几何图形,同学们你们说说生活中的三角形有哪些?通过观察图片大家能否发现三角形有哪些特性?
教师活动:通过播放图片,引导学生认识三角形,并提出图中能找出的几个三角形具有什么样的特性.
学生思考回答:三角尺、警示牌、旗子等等.
插入图片《三角形系列》
教师给出定义:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形.
插入图片《三角形1》
点A,B, C叫做这个三角形的顶点;线段AB,BC,CA叫做这个三角形的边;∠A,∠B, ∠C叫做这个三角形的内角,简称三角形的角.
我们把这个三角形记作“△ABC",.读作“三角形ABC" .三角形的三边有时用它所对角的相应小写字母表示:如边BC对着∠A,记作a;边CA记作b;边AB记作c.
设计意图:开门见山引入课堂知识的教学.
【新知讲解】
1.三角形的识别、分类.
教师讲解:
三角形中,三个角都是锐角的三角形叫做锐角三角形( acute triangle),有一个角是直角的三角形叫做直角三角形(right triangle) 、有一个角是钝角的三角形叫做钝角三角形( obtuse triangle)
三角形中,三条边互不相等的三角形叫做不等边三角形( scalene triangle),有两条边相等的三角形叫做等腰三角形( isosceles triangle)、三条边都相等的三角形叫做等边三角形,又叫做正三角形( equilateral triangle) .
等腰三角形中,相等的两边叫做腰,第三边叫做底边两腰的夹角叫做顶角,腰与底边的夹角叫做底角.
三角形按边长划分可以分为:不等边三角形和等腰三角形(等边三角形是特殊的等腰三角形)
插入图片《锐角、直角、钝角》
插入图片《等腰、等边三角形》设计意图:带领学生认识三角形的相关概念.
2.三角形三边关系.
本图片是微课的首页截图,本微课资源讲解了三角形的三边关系及判断三条线段能否组成三角形.若需使用,请插入微课【知识点解析】三角形的三边关系.
教师展示PPT上图片,引导学生观察.
学生观察后发现:图中的三角形,尽管它的三边长不完全一样,如果把它的任意两
个顶点,例如B, C看作定点,则由“两点之间的所有连线中,线段最短”,可以得到AB +AC > BC.同理,得AC+BC>AB,AB+BC>AC.
教师总结以上,得三角形中任何两边的和大于第三边.根据不等式性质,不难得到三
角形中任何两边的差小于第三边.
插入图片《三角形2》
设计意图:通过观察,引导学生进行思考,明确三角形三边关系.
【典型例题】
例1如图所示,图中三角形的个数共有()
A.1个B.2个
C.3个D.4个
解析:根据三角形的定义进行判断.只要数出BC上有几条线段即可.很明显BC上有3条线段,所以有三个三角形,选C.
插入《三角形3》图片
设计意图:三角形的识别.
例2下列各组长度的线段能构成三角形的是()
A.1cm,3.9cm,2cm
B.3.5cm,7cm,3.6cm
C.6cm,1cm,6cm
D.3cm,10cm,4cm
解:A中,1+2=3<3.9,不能构成三角形;B中,3.5+3.6<7.1,不能构成三角形;C中,6+1>6,6-1<6,能构成三角形;D中,3+4=7<10,不能构成三角形.故选C.
设计意图:了解三角形三边关系.
例3(课本68页例1)等腰三角形中,周长是18cm.
(1)如果腰长是底边长的2倍,求各边长.
(2)如果一边长为4cm,求另两边长.
解(1) 设等腰三角形的底边长为x cm,则腰长为2x cm.根据题意,得
x+2x+2x=18.
解方程,得
x =3.6.
所以三角形的三边长为3.6cm,7.2 cm,7. 2 cm.
(2)若底边长为4cm,设腰长为xcm.根据题意,得
2x +4= 18.
解方程,得
x=7.
若腰长为4cm,设底边长为xcm.根据题意,得
2x4+x=18.
解方程,得
x=10.
由于4 +4 < 10,可知以4 cm为腰长不能构成周长为18cm的等腰三角形.
所以,三角形的另两边长都是7 cm.
设计意图:了解三角形三边关系.
【随堂练习】
1.已知三角形的三边长分别是2,2x-3,6,则x的取值范围是________.
解:∵三角形的两边长分别为2和6,∴第三边边长2x-3的取值范围是:6-2
<2x-3<6+2,即3.5<x<5.5.
2.已知等腰三角形的两边长分别为3和5,则它的周长是________.
解:由等腰三角形两边长为3、5,分别从等腰三角形的腰长为3或5去分析即可
求得答案,注意分析能否组成三角形.
①若等腰三角形的腰长为3,底边长为5,
∵3+3=6>5,
∴能组成三角形,
∴它的周长是:3+3+5=11;
②若等腰三角形的腰长为5,底边长为3,
∵5+3=8>5,
∴能组成三角形,
∴它的周长是:5+5+3=13.
综上所述,它的周长是11或13.
3.有两根长度分别为8m和5m的钢管,再用一根长度为3m的钢管能将他们焊接成一个三角形钢架吗?为什么?长度为4m呢?长度为2m呢?
解:不能,因为3+5=8,长度4cm可以,2cm不可以.
设计意图:通过学生练习,使教师及时了解学生对分段函数的理解情况,以便教师及时对学生进行矫正.
六、课堂小结
1.三角形中,三个角都是锐角的三角形叫做锐角三角形( acute triangle),有一个
角是直角的三角形叫做直角三角形(right triangle) 、有一个角是钝角的三角形叫做
钝角三角形( obtuse triangle)
2.三角形中,三条边互不相等的三角形叫做不等边三角形( scalene triangle),有两
条边相等的三角形叫做等腰三角形( isosceles triangle)、三条边都相等的三角形叫做
等边三角形,又叫做正三角形( equilateral triangle) .
3.等腰三角形中,相等的两边叫做腰,第三边叫做底边两腰的夹角叫做顶角,腰与底边的夹角叫做底角.
4.三角形按边长划分可以分为:不等边三角形和等腰三角形(等边三角形是特殊的等腰三角形)
5. 三角形中任何两边的和大于第三边.
设计意图:通过小结,回顾本节课所学新知,加深印象.
七、板书设计
第1课时三角形中边的关系
三角形的识别、分类
三角形三边关系。

相关文档
最新文档