Verilog分频器设计

合集下载

实验六 Verilog设计分频器计数器电路答案

实验六 Verilog设计分频器计数器电路答案

实验六Verilog设计分频器/计数器电路一、实验目的1、进一步掌握最基本时序电路的实现方法;2、学习分频器/计数器时序电路程序的编写方法;3、进一步学习同步和异步时序电路程序的编写方法。

二、实验内容1、用Verilog设计一个10分频的分频器,要求输入为clock(上升沿有效),reset(低电平复位),输出clockout为4个clock周期的低电平,4个clock周期的高电平),文件命名为fenpinqi10。

v.2、用Verilog设计一异步清零的十进制加法计数器,要求输入为时钟端CLK(上升沿)和异步清除端CLR(高电平复位),输出为进位端C和4位计数输出端Q,文件命名为coute r10.v。

3、用Verilog设计8位同步二进制加减法计数器,输入为时钟端CLK(上升沿有效)和异步清除端CLR(低电平有效),加减控制端UPDOWN,当UPDOWN为1时执行加法计数,为0时执行减法计数;输出为进位端C和8位计数输出端Q,文件命名为couter8.v。

4、用VERILOG设计一可变模数计数器,设计要求:令输入信号M1和M0控制计数模,当M1M0=00时为模18加法计数器;M1M0=01时为模4加法计数器;当M1M0=10时为模12加法计数器;M1M0=11时为模6加法计数器,输入clk上升沿有效,文件命名为mcout5。

v。

5、VerilogHDL设计有时钟时能的两位十进制计数器,有时钟使能的两位十进制计数器的元件符号如图所示,CLK是时钟输入端,上升沿有效;ENA是时钟使能控制输入端,高电平有效,当ENA=1时,时钟CLK才能输入;CLR是复位输入端,高电平有效,异步清零;Q[3.。

0]是计数器低4位状态输出端,Q[7..0]是高4位状态输出端;COUT是进位输出端.三、实验步骤实验一:分频器1、建立工程2、创建Verilog HDL文件3、输入10分频器程序代码并保存4、进行综合编译5、新建波形文件6、导入引脚7、设置信号源并保存8、生成网表9、功能仿真10、仿真结果分析由仿真结果可以看出clockout输出5个clock周期的低电平和5个clock的高电平达到10分频的效果,设计正确。

verilog奇偶分频、一段式、两段式、三段式状态机

verilog奇偶分频、一段式、两段式、三段式状态机

汇报总结1、偶数分频偶数倍分频相对简单,可以通过计数器对预分频的脉冲沿计数实现,如果要进行N倍(N为整数)偶数分频,可由预分频的时钟触发计数器计数,当计数器从0计数到N/2—1时,输出时钟进行翻转,并给计数器一个复位信号,使得下一个时钟从零开始计数,以此循环下去。

分频的主体程序如下:`define div_en 8module freq_div_even(clk_in,reset,clk_out);input clk_in;input reset;output clk_out;reg clk_out;reg[2:0] count;initialbegincount=0;clk_out=0;endalways@(posedge clk_in)beginif(!reset)begincount<=0;clk_out<=0;endelseif(count==(`div_en/2-1))beginclk_out<=~clk_out;count<=0;endelsebegincount<=count+1;endendendmodule下面定义N为8,对一个脉冲8分频,测试程序如下:`timescale 1ns/1nsmodule testbench;reg reset;reg clk_in;reg[2:0] count;wire clk_out;freq_div_even test(.clk_in(clk_in),.reset(reset),.clk_out(clk_out));initialbeginreset=0;clk_in=0;#5 reset=1;endalways #10 clk_in=~clk_in;endmodule波形图如下:2、奇数分频对于对占空比没有特殊要求的奇数分频,需要对上升沿和下降沿脉冲进行计数,利用下降沿产生的波形移相半个输入脉冲的作用,最后用错位“异或”法实现。

verilogHDL分频器(奇数分频和偶数分频)

verilogHDL分频器(奇数分频和偶数分频)

module clk_div(//-----------input-----------iCLK,div,//-----------output----------oCLK);//-----------input-----------parameter WIDE=14;input iCLK;input[WIDE-1:0]div;//-----------output-----------output oCLK;wire oCLK_odd;wire oCLK_even;assign oCLK=div[0]?oCLK_odd:oCLK_even;div_odd DUTo (.iCLK(iCLK),.oCLK(oCLK_odd),.div(div)); div_even DUTe (.iCLK(iCLK),.oCLK(oCLK_even),.div(div));endmodule// oddmodule div_odd(//--------input--------iCLK,div,//--------output--------oCLK);//--------input--------parameter WIDE=14;input iCLK;input[WIDE-1:0]div;//--------output--------output oCLK;reg outCLK;/*=========================== solve 1=========================== reg cout;reg[WIDE-1:0] cnt;initial cnt=0;wire inCLK;reg cc;initial cc=0;always @(posedge cout)cc<=~cc;assign inCLK = iCLK^cc;always @(posedge inCLK)beginif(cnt<(div[WIDE-1:1]))begincnt<=cnt+1;cout<=1'b0;endelsebegincnt<=0;cout<=1'b1;endendalways @(negedge iCLK)outCLK <= cout;assign oCLK=cc;*///======================== //solve 2//======================== reg[WIDE-1:0] cnt_a;initial cnt_a=0;reg[WIDE-1:0] cnt_b;initial cnt_b=0; reg cout_a;reg cout_b;always @(negedge iCLK)beginelse if(cnt_a<=(div[WIDE-1:1]))begincnt_a=cnt_a+1;cout_a=1'b1;endelse if(cnt_a>(div[WIDE-1:1])&&cnt_a<(div[WIDE-1:0]-1))begincout_a=1'b0;cnt_a=cnt_a+1;endelsebegincnt_a=0;endendalways @(posedge iCLK)beginif(cnt_b<=(div[WIDE-1:1]))begincnt_b=cnt_b+1;cout_b=1'b1;endelse if(cnt_b>(div[WIDE-1:1])&&cnt_b<(div[WIDE-1:0]-1))begincout_b=1'b0;cnt_b=cnt_b+1;endelsebegincnt_b=0;endendassign oCLK = cout_a&cout_b;endmodule//evenmodule div_even(//--------input--------iCLK,div,//--------output--------oCLK);//--------input--------parameter WIDE=14;input iCLK;input[WIDE-1:0]div;//--------output--------output oCLK;reg oCLK;initial oCLK = 1'b0;reg[WIDE-1:0] cnt;initial oCLK = 0;always @(posedge iCLK)beginif(cnt<(div[WIDE-1:1]-1))cnt <= cnt + 1;elsebegincnt <= 0;oCLK <= ~oCLK;endendendmodule//============================//testbench//============================/*module clk_div_test;//-----------input-----------parameter WIDE=14;reg iCLK;reg[WIDE-1:0] div;//-----------output-----------wire oCLK;clk_div cc(.iCLK(iCLK),.div(div),.oCLK(oCLK));always #20 iCLK = ~iCLK;initialbeginiCLK = 0;div=14'd7;#1000 $stop;endendmodule*/module clk_div14bits(clk,a,clkout);input clk,a;output clkout;reg clkout;wire oCLK1,oCLK2;clk_div cc1(.div(14'd8),.iCLK(iCLK),.oCLK(oCLK1)); clk_div cc2(.div(14'd9),.iCLK(iCLK),.oCLK(oCLK2));always @(a or posedge clkin)beginif(a==1)clkout=oCLK1;elseclkout=oCLK2;endendmodule//测试代码//testbenchmodule clk_div14bits_test;//-----------input-----------parameter WIDE=14;reg clk;reg[WIDE-1:0] div;//-----------output-----------wire oCLK;clk_div14bits cc3(.clk(clk),.a(a),.clkout(clkout)); always #20 clk = ~clk;initialbeginiCLK = 0;div=14'd7;#1000 $stop;EndModelsim仿真结果1.七分频2.四分频。

实验六Verilog设计分频器计数器电路

实验六Verilog设计分频器计数器电路

实验六Verilog设计分频器/计数器电路一、实验目的1进一步掌握最基本时序电路的实现方法;2学习分频器/计数器时序电路程序的编写方法;3进一步学习同步和异步时序电路程序的编写方法。

二、实验内容1、用Verilog设计一个10分频的分频器,要求输入为clock(上升沿有效),reset(低电平复位),输出clockout为5个clock周期的低电平,5个clock周期的高电平),文件命名为fenpinqi10.v。

2、用Verilog设计一异步清零的十进制加法计数器,要求输入为时钟端CLK(上升沿)和异步清除端CLR(高电平复位),输出为进位端C和4位计数输出端Q,文件命名为couter10.v。

3、用Verilog设计8位同步二进制加减法计数器,输入为时钟端CLK(上升沿有效)和异步清除端CLR(低电平有效),加减控制端UPDOWN,当UPDOWN为1时执行加法计数,为0时执行减法计数;输出为进位端C和8位计数输出端Q,文件命名为couter8.v。

4、用VERILOG设计一可变模数计数器,设计要求:令输入信号M1和M0控制计数模,当M1M0=00时为模18加法计数器;M1M0=01时为模4加法计数器;当M1M0=10时为模12加法计数器;M1M0=11时为模6加法计数器,输入clk上升沿有效,文件命名为mcout5.v。

5、VerilogHDL设计有时钟时能的两位十进制计数器,有时钟使能的两位十进制计数器的元件符号如图所示,CLK是时钟输入端,上升沿有效;ENA是时钟使能控制输入端,高电平有效,当ENA=1时,时钟CLK才能输入;CLR是复位输入端,高电平有效,异步清零;Q[3..0]是计数器低4位状态输出端,Q[7..0]是高4位状态输出端;COUT是进位输出端。

三、实验步骤:第一个实验:1、打开QuartusII,新建一个工程f_fenpinq10yjq2、新建一个Verilog HDL文件3、输入程序:module fenpinqi10(clk,reset,clkout);input clk,reset;output clkout;reg clkout;reg[2:0] cnt;always @(posedge clk , negedge reset)beginif(!reset)begin clkout<=0;cnt<=0;endelse if(cnt==4)begin cnt<=0;clkout<=~clkout;endelse cnt<=cnt+1;endendmodule4、设置顶层实体名(点settings>general >下拉选fenpinqi10)5、编译6、执行file>Create/Update>Create Symbol Files for Current Flie为VHDI设计文件生成原件符号7、建立波形文件8、导入引脚9、仿真结果如下:总结:仿真结果与实验一的题意相符,所以仿真正确。

一种基于Verilog的FPGA分频设计

一种基于Verilog的FPGA分频设计

中 图 分 类 号 : TP3 2 1 3.2
d i1 . 9 9 jis . 0 6 3 6 . 0 0 0 . 1 o : 0 3 6 / .s n 1 O — 2 9 2 1 . 3 0 3
F PGA ( i l o r mma l Ga e A r a ) 现 F e d Pr g a be t r y 即
F GA 进 行 实 现 时 , 管 在 目前 大 部 分 设 计 中 , 泛 P 尽 广
收 稿 日期 :0 0 0 2 2 1 6 4
awa s@ ( o e g l l y p s d eck)
be n gi
/ 进行计 数 /
i ( f n< 3d4)
作 者 简 介 : 振铎 ( 9 2 ) 男 , 南 泌 阳 人 , 士 , 要 研 究 方 向 郭 18 一 , 河 硕 主
文 章编 号 : 0 6 2 9 2 1 ) 3 0 5 —0 1 0 ~3 6 ( 0 0 0 — 0 9 4

种 基 于 Vei g的 F GA 分 频 设 计 rl o P
郭 振 铎 , 洲 峰 , 庆 伟 ,朱 永 胜 刘 徐
( 中原 工 学 院 ,河南 郑 州 4 0 0 ) 5 0 7
的 电路 功能.F GA在 通信 、 据处 理 、 P 数 网络 、 器 、 仪 工业 控制 、 事和 航空 航 天 等 众 多 领域 得 到 了广 泛 军 应用 .在现代 电子 系 统 中 , 字 系 统 所 占的 比例越 数
来 越 大 . 系 统 发 展 的 趋 势 是 数 字 化 和 集 成 化 ,而 F G 作 为 可 编 程 AS C ( 用 集 成 电路 )器 件 , P A I 专 在 数 字 逻 辑 系 统 中 发 挥 越 来 越 重 要 的 作 用 .分 频 器 是 数 字 系 统 设 计 中 的 基 本 电路 , 据 不 同 设 计 的 需 要 , 根 我们会 遇到偶 数 分 频 、 数分 频 、 整 数 分 频 等 , 奇 半 有

用verilog实现任意倍分频器的方法

用verilog实现任意倍分频器的方法

用verilog语言写的任意整数的分频器占空比:对于一串理想的脉冲序列中(如方波),正脉冲的持续时间与脉冲总周期的比值,叫做这个方波的占空比。

分频分为奇分频和偶分频第一,偶数倍分频:偶数倍分频应该是大家都比较熟悉的分频,通过计数器计数是完全可以实现的。

如进行N倍偶数分频,那么可以通过由待分频的时钟触发计数器计数,当计数器从0计数到N/2-1时,输出时钟进行翻转,并给计数器一个复位信号,使得下一个时钟从零开始计数。

以此循环下去。

这种方法可以实现任意的偶数分频。

第二:奇数倍分频:奇数倍分频常常在论坛上有人问起,实际上,奇数倍分频有两种实现方法:首先,完全可以通过计数器来实现,如进行三分频,通过待分频时钟上升沿触发计数器进行模三计数,当计数器计数到邻近值进行两次翻转,比如可以在计数器计数到1时,输出时钟进行翻转,计数到2时再次进行翻转。

即是在计数值在邻近的1和2进行了两次翻转。

这样实现的三分频占空比为1/3或者2/3。

如果要实现占空比为50%的三分频时钟,可以通过待分频时钟下降沿触发计数,和上升沿同样的方法计数进行三分频,然后下降沿产生的三分频时钟和上升沿产生的时钟进行相或运算,即可得到占空比为50%的三分频时钟。

这种方法可以实现任意的奇数分频。

归类为一般的方法为:对于实现占空比为50%的N倍奇数分频,首先进行上升沿触发进行模N计数,计数选定到某一个值进行输出时钟翻转,然后经过(N-1)/2再次进行翻转得到一个占空比非50%奇数n分频时钟。

再者同时进行下降沿触发的模N计数,到和上升沿触发输出时钟翻转选定值相同值时,进行输出时钟时钟翻转,同样经过(N-1)/2时,输出时钟再次翻转生成占空比非50%的奇数n分频时钟。

两个占空比非50%的n分频时钟相或运算,得到占空比为50%的奇数n分频时钟。

另外一种方法:对进行奇数倍n分频时钟,首先进行n/2分频(带小数,即等于(n-1)/2+0.5),然后再进行二分频得到。

分频器设计——50MHZ(含verilog程序)

分频器设计——50MHZ(含verilog程序)

分频器设计一、实验目的1、熟悉分频器的原理;2、掌握采用Verilog HDL 语言设计分频器的方法;3、进一步学习利用VerilogHDL 语言进行层次设计的方法。

二、实验内容1、采用Verilog 语言设计一个十分频器,记录Verilog 程序;2、对十分频器进行功能仿真,观察仿真波形;3、仿真没有问题后,将分频比改为50000000,实现一个50M 分频器。

利用此分频器和开发板上的50MHz 时钟信号,得到1Hz 的秒脉冲信号,完成如图1-2.28所示的秒计数器。

50M分频器50MHz 脉冲信号二位十进制计数器1Hz 秒脉冲数码管(个位)数码管(十位)复位和计数使能(拨码开关)程序设计如下:module fenp(clk_out,clk_in,reset);output clk_out;input clk_in;input reset;reg [1:0] cnt;reg clk_out;always@(posedge clk_in or posedge reset)beginif(reset)begincnt<=0;clk_out<=0;endelsebeginif(cnt==24999999)beginclk_out<=!clk_out;cnt<=0;endelsecnt<=cnt+1;endendendmodule本程序经验证,完全可以实现实验要求。

文章来自某大学EDA实验课。

verilog十六分频实现

verilog十六分频实现

verilog十六分频实现Verilog是一种硬件描述语言,用于进行数字电路的设计和仿真。

十六分频是一种常见的时钟频率分频方法,即将一个时钟信号分频为十六分之一的频率。

下面是一个基于Verilog的简单示例,实现对一个时钟信号进行十六分频:```verilogmodule clk_dividerinput wire clk_in,output wire clk_outreg [3:0] count = 4'b0000;count <= count + 1;if (count == 4'b1111) begincount <= 4'b0000;clk_out <= ~clk_out; // 反相输出endendendmodule```在这个示例中,`clk_in`是输入时钟信号,`clk_out`是输出时钟信号。

我们使用一个4位的计数器 `count` ,每当输入时钟信号出现上升沿时,计数器就会加1,然后检查计数器的值。

当计数器的值等于1111时,表示已经计数到16,这时我们将计数器清零,并且将输出时钟信号取反。

这样,当输入时钟信号的频率为f时,输出时钟信号的频率就会变为f/16使用这个Verilog模块的示例代码如下所示:```verilogmodule top_module;reg clock = 0;//使用时钟分频器模块clk_divider divider.clk_in(clock),.clk_out(clk_out)always clock = ~clock; // 模拟一个5ns的时钟信号initial begin$dumpfile("wave.vcd");$dumpvars(0, top_module);$monitor("clock_out=%b", clk_out);//模拟100个时钟周期repeat (100) begin; // 延迟10nsend$finish;endendmodule```在这个示例中,我们创建了一个名为`top_module`的顶层模块,并将时钟分频器模块实例化为`clk_divider`。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Verilog分频器设计module adder(clk,z);output z;reg q;reg z;always@(posedge clk)beginif(q%9==0)z<=q;elseq=q+1;endendmodulemodule counter9(clk,datein,z); output z;input clk;input datein;reg z;reg[3:0] q;always@(posedge clk)beginq<=q+1;if (q==4'b1001)beginq<=4'b0000;z<=datein;endendendmodule2008-11-04 19:58分频器是FPGA设计中使用频率非常高的基本单元之一。

尽管目前在大部分设计中还广泛使用集成锁相环(如altera的PLL,Xilinx的DLL)来进行时钟的分频、倍频以及相移设计,但是,对于时钟要求不太严格的设计,通过自主设计进行时钟分频的实现方法仍然非常流行。

首先这种方法可以节省锁相环资源,再者,这种方式只消耗不多的逻辑单元就可以达到对时钟操作的目的。

偶数倍分频:偶数倍分频应该是大家都比较熟悉的分频,通过计数器计数是完全可以实现的。

如进行N倍偶数分频,那么可以通过由待分频的时钟触发计数器计数,当计数器从0计数到N/2-1时,输出时钟进行翻转,并给计数器一个复位信号,使得下一个时钟从零开始计数。

以此循环下去。

这种方法可以实现任意的偶数分频。

module odd_division(clk,rst,count,clk_odd); /*count没必要放在端口中,这里只是为了仿真时观察*/input clk,rst;output clk_odd;output[3:0] count;reg clk_odd;reg[3:0] count;parameter N = 6; /*6分频* /always @ (posedge clk)if(! rst)begincount <= 1'b0;clk_odd <= 1'b0;endelseif ( count < N/2-1)begincount <= count + 1'b1;endelsebegincount <= 1'b0;clk_odd <= ~clk_odd;endendmodule奇数倍分频:归类为一般的方法为:对于实现占空比为50%的N倍奇数分频,首先进行上升沿触发进行模N计数,计数从零开始,到N-1)/2进行输出时钟翻转,然后经过(N+1)/2再次进行翻转得到一个占空比非50%奇数n分频时钟。

再者同时进行下降沿触发的模N计数,到和上升沿过(N-1)/2时,输出时钟再次翻转生成占空比非50%的奇数n分频时钟。

两个占空比非50%的n分频时钟相或运算,得到占空比为50%的奇数n分频时钟。

module even_division(clk,rst,count1,count2,clk_even); /*count1,count2没必要放在端口中,这里只是为了仿真时观察*/input clk,rst;output[3:0] count1,count2;output clk_even;reg[3:0] count1,count2;reg clkA,clkB;wire clk_even,clk_re;parameter N = 5; /*5分频*/assign clk_re = ~clk;assign clk_even = clkA | clkB;always @(posedge clk)if(! rst)begincount1 <= 1'b0;clkA <= 1'b0;endelseif(count1 < (N - 1))begincount1 <= count1 + 1'b1; /*这里是非阻塞赋值是先执行了下面的IF判断,最后才赋的值。

最初看这程序时没注意,想了好半天*/if(count1 == (N - 1)/2)beginclkA <= ~clkA;endendelsebeginclkA <= ~clkA;count1 <= 1'b0;endalways @ (posedge clk_re)if(! rst)begincount2 <= 1'b0;clkB <= 1'b0;endelseif(count2 < (N - 1))begincount2 <= count2 + 1'b1;if(count2 == (N - 1)/2)beginclkB <= ~clkB;endendelsebeginclkB <= ~clkB;count2 <= 1'b0;endendmoduleVerilog HDL的分频器设计2009-12-03 10:22用D触发器实现2倍分频的Verilog描述?module divide2( clk , clk_o, reset);input clk , reset;output clk_o;wire in;reg out ;always @ ( posedge clk or posedge reset)if ( reset)out <= 0;elseout <= in;assign in = ~out;assign clk_o = out;endmodule用verilog实现分频的一点心得2007-08-04 22:40在用verilog编写程序的过程中,将时钟进行11分频,花了好多的心思才将其搞定。

通常实现偶数的分频比较容易,以十分频为例:always @( posedge clk or posedge reset)if(reset)begink<=0;clk_10<=0;endelseif(k==4)begink<=0;clk_10<=~clk_10;endelsek<=k+1;二分频最简单了,一句话就可以了:always @ (negedge clk)clk_2<=clk_2;若进行奇数分频,则稍微麻烦点,以11分频为例:always @( posedge clk)if(!reset)begini<=0;clk11<=0;endelseif(i==5)beginclk11<=~clk11;i<=i+1;endelseif(i==10)begini<=0;clk11<=~clk11;endelsei<=i+1;以上语句虽然可以实现,但是逻辑有点繁,弄不好就出错了,建议使用两个always语句来实现:always @( posedge clk)if(!reset)i<=0;elsebeginif(i==10)i<=0;elsei<=i+1;endalways @( posedge clk)if(!reset)clk11<=0;elseif((i==5)|(i==10))clk11<=~clk11;两个always,一个用来计数,一个用来置数。

另外,这个样子好像也可以,在时钟的上升沿和下降沿都计数,但是不被综合器综合,会提示敏感信号太复杂:always @( posedge clk or negedge clk)if(reset)begink<=0;clk_11<=0;endelseif(k==10)begink<=0;clk_11<=~clk_11;endelsek<=k+1;三分频的Verilog实现rickywu 发表于2005-12-12 11:14:00//很实用也是笔试面试时常考的,已经经过仿真占空比要求50%和不要求占空比差别会很大,先看一个占空比50%的描述module div3(CLKIN,CLKOUT,RESETn);input CLKIN,RESETn;output CLKOUT;//internal counter signalsreg[1:0] count_a;reg[1:0] count_b;reg CLKOUT;always @(negedge RESETn or posedge CLKIN)beginif (RESETn==1'b0)count_a<=2'b00;elseif (count_a==2'b10)count_a<=2'b00;elsecount_a<=count_a+1;endalways @(negedge RESETn or negedge CLKIN)beginif (RESETn==1'b0)count_b<=2'b0;elseif (count_b==2'b10)count_b<=2'b00;elsecount_b<=count_b+1;endalways @(count_a or count_b or RESETn)beginif (RESETn==1'b0)CLKOUT=1'b0;else if((count_a+count_b==4)||(count_a+ count_b==1)) CLKOUT=~CLKOUT;endendmodule0 1 2 0 1 2\ / / \ \ / / \0 1 2 0 1 2下面是一个非50%的描述,只用了上升沿module div3(CLKIN,CLKOUT,RESETn);input CLKIN,RESETn;output CLKOUT;wire d;reg q1,q2;wire CLKOUT;always @(negedge RESETn or posedge CLKIN) beginif (RESETn==1'b0)q1<=1'b0;elseq1<=d;endalways @(negedge RESETn or posedge CLKIN)beginif (RESETn==1'b0)q2<=1'b0;elseq2<=q1;endassign d=~q1 & ~q2;assign CLKOUT=q2;endmodule占空比不是50%,只用了单沿触发器,寄存器输出。

至于其他奇数要求50%的或者不要求的占空比的,都可以参照上面两个例子做出。

相关文档
最新文档