北师大版八年级数学下册1.2 直角三角形 同步练习

合集下载

直角三角形(1)八年级数学下册同步备课系列(北师大版)

直角三角形(1)八年级数学下册同步备课系列(北师大版)

=
c2+4
1 2
ab

c
b a2+2ab+b2 = c2+2ab,
a
∴a2+b2=c2.
讲授新课
2.赵爽弦图
大正方形的面积可以表示为 c2 ;
也可以表示为
4
1 2
ab
+(b-a.)2
c a
b
b
b
b
c
c
∵ c2= 4 1 ab +(b-a)2,
2
c2 =2ab+b2-2ab+a2, c2 =a2+b2, ∴ a2+b2=c2.
观察上面两个定理,它们的条件与结论之间有怎样的关系?
讲授新课
再观察下面三组命题: 如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎; 三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论之间也有类似 的关系吗?与同伴进行交流.
解:原式可化为: a2-10a+25+b2-24b+144+c2-26c+169=0 (a-5)2+(b-12)2+(c-13)2=0 a=5,b=12,c=13. a2+b2=c2 ∴△ABC是直角三角形
当堂检测
16.指出下列命题的条件和结论,并说出它们的逆命题.
(1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
4. 下列长度的三条线段能组成直角三角形的是 ( A )
A.3,4,5
B.2,3,4
C.4,6,7

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

1.2直角三角形——直角三角形的边角性质+练习课件+2023-—2024学年北师大版数学八年级下册

【点拨】
∵1 宣=12矩,1 欘=112宣,1 矩=90°,∠A=1 矩,
∠B=1


∴∠A
= 90°,

B

1
1 2
1 ×2
×90°=
67.5°,
∴∠C=90°-∠B=90°-67.5=22.5°.
3 (母题:教材P34复习题T5)若三角形三个内角的比为 1 ∶2 ∶3,则这个三角形是__直__角____三角形.
(2)若AE是△ABC的角平分线,AE,CD相交于点F,求证: ∠CFE=∠CEF. 【证明】∵AE是△ABC的角平分线,∴∠DAF=∠CAE. ∵∠FDA=90°,∠ACE=90°, ∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°. ∴∠AFD=∠CEA. ∵∠AFD=∠CFE, ∴∠CFE=∠CEA,即∠CFE=∠CEF.
解:如图②,延长 MN 至点 C′,使 NC′=NC,连接 AC′, 则 AC′的长即为蚂蚁爬行的最短路程. 在 Rt△AMC′中,AM=3×2=6(cm), MC′=20+2=22(cm). 由勾股定理,得 AC′2=AM2+MC′2=62+222=520, 则 AC′=2 130 cm. 答:蚂蚁需要爬行的最短路程是 2 130 cm.
∵∠C=90°,∴∠4+∠5=90°. ∴∠3+∠5=90°,即∠FBG=90°. 又∵DF⊥EG,DE=DG,∴FG=EF. 在Rt△FBG中,BG2+BF2=FG2,∴AE2+BF2=EF2.
【点方法】
欲证AE2+BF2=EF2,应联想到勾股定理,把AE, BF和EF转. 化. 为同一个直角三角形的三边.
【点拨】
∵直角三角形的三边a,b,c满足c>a>b,∴该直角三 角形的斜边为c,∴c2=a2+b2,∴c2-a2-b2=0,∴S1= c2-a2-b2+b(a+b-c)=ab+b2-bc. ∵S2=b(a+b-c)= ab+b2-bc,∴S1=S2,故选C.

北师大版八年级下册数学《1.2第1课时直角三角形的性质与判定》说课稿

北师大版八年级下册数学《1.2第1课时直角三角形的性质与判定》说课稿

北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》说课稿一. 教材分析北师大版八年级下册数学《1.2 第1课时直角三角形的性质与判定》这一课时,主要让学生了解直角三角形的性质与判定。

在学习了勾股定理和三角函数的基础上,本节课让学生通过观察、实验、推理等方法,探索并证明直角三角形的性质,从而加深对勾股定理的理解和应用。

二. 学情分析八年级的学生已经掌握了基本的代数知识和几何知识,对于观察、实验、推理等方法有一定的了解和运用能力。

但是,对于证明直角三角形的性质和判定,还需要老师在课堂上进行引导和讲解。

三. 说教学目标1.知识与技能:让学生掌握直角三角形的性质和判定方法。

2.过程与方法:培养学生通过观察、实验、推理等方法探索数学问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。

四. 说教学重难点1.教学重点:直角三角形的性质和判定方法。

2.教学难点:证明直角三角形的性质和判定。

五.说教学方法与手段1.教学方法:采用问题驱动法、实验探究法、小组合作法等。

2.教学手段:多媒体课件、黑板、几何模型等。

六. 说教学过程1.导入新课:通过一个实际问题,引发学生对直角三角形性质的思考。

2.自主学习:让学生通过观察、实验、推理等方法,探索直角三角形的性质。

3.合作交流:学生分组讨论,分享探索成果,互相提问,解决问题。

4.讲解与演示:老师对学生的探索成果进行点评,讲解直角三角形的性质和判定方法,并进行现场演示。

5.练习巩固:让学生进行一些有关直角三角形性质和判定的练习题,巩固所学知识。

6.课堂小结:让学生总结本节课所学内容,老师进行补充。

七. 说板书设计板书设计如下:直角三角形的性质与判定a.直角三角形的两个锐角互余b.直角三角形的斜边最长c.直角三角形的两条直角边互相垂直d.如果一个三角形有一个角是直角,那么它是直角三角形e.如果一个三角形的两边长满足a^2 + b^2 = c^2,那么这个三角形是直角三角形八. 说教学评价1.课堂参与度:观察学生在课堂上的发言、提问、练习等情况,了解学生的参与程度。

2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)

2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)

2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)1.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,连接EM,DM,判断△EDM的形状,并说明理由.2.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧),AB=12.(1)如图1,AD=;(2)如图2,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,请直接写出EF的长.3.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.4.如图,在△ABC中,AB=AC=2,∠B=30°,D为BC上一点,连接AD.(1)求S△ABC;(2)若∠BAD=45°,求证△ACD为等腰三角形;(3)若△ACD为直角三角形,求∠BAD的度数.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,BC=2.(1)求AB的长度;(2)求△ABC的面积;(3)求CD的长度.6.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF 于F,AE=CF,求证:Rt△ADE≌Rt△CDF.7.如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.8.如图,四边形ABCD的对角线AC、BD相交于点O,∠ACB=∠ADB=90°,M为边AB 的中点,连接MC,MD.(1)求证:MC=MD;(2)若△MCD是等边三角形,求∠AOB的度数.9.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.10.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.11.如图,在△ABC中,∠ACB=90°,∠B=30°,CE垂直于AB于点E,D是AB的中点.(1)求证:AE=ED;(2)若AC=2,求DE的长.12.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.13.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,过点D作DF∥BE,交AC的延长线于点F,求∠D的度数.14.如图.在直角三角形BCD中,∠D=90°,∠DBC=15°,点A在直角边BD上,连接AC,AB=AC=4.求CD的长.15.如图,在Rt△ABC中,∠ACB=90°,D是边BC上一点,DE⊥AB于点E,点F是线段AD上一点,连接EF,CF.(1)若点F是线段AD的中点,试猜想线段EF与CF的大小关系,并加以证明.(2)在(1)的条件下,若∠BAC=45°,AD=6,求C、E两点间的距离.16.如图,△ABD是边长为2的等边三角形,点C为AB下方的一动点,∠ACB=90°.(1)若∠ABC=30°,求CD的长;(2)求点C到AB的最大距离;(3)当线段CD的长度最大时,求四边形ACBD的面积.17.如图,在等边△ABC中,点D,E分别在边BC、AC上,DE∥AB,过点E作EF⊥DE 交BC的延长线于点F.(1)求∠DFE的度数.(2)若CD=8,求DF的长.18.如图△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.19.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?20.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).参考答案1.(1)证明:连接ME,MD.∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△EDM是等边三角形.2.解:(1)过D作DG⊥AB于G,∵AD=BD,∠ADB=120°,∴∠DAB=∠ABD=30°,AG=BG=AB=6,∴AD=2GD,∵AD2=GD2+AG2,∴4CD2=GD2+62,∴GD=2,∴AD=4,故答案为:4;(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBC,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHF、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=12,∵AC=8,BC=CD=4,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=4,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=,故答案为:.3.(1)证明:∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴DE=DM,有(1)知DM=BC=6,∴DE=6,∵N是DE的中点,∴DN=DE=3,∴MN==3.4.(1)解:过A作AE⊥BC于E,则∠AEB=90°,∵AB=AC=2,∠B=30°,∴AE=AB=1,∵AB=AC=2,AE⊥BC,∴BC=2BE,由勾股定理得:BE===,∴BC=2BE=2,∴S△ABC==2×1=;(2)证明:∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BAD=45°,∴∠ADC=∠B+∠BAD=30°+45°=75°,∴∠DAC=180°﹣∠C﹣∠ADC=180°﹣30°﹣75°=75°,∴∠DAC=∠ADC,∴△ACD是等腰三角形;(3)解:分为两种情况:①∠DAC=90°时,∵∠C=∠B=30°,∴∠ADC=90°﹣∠C=60°,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°;②当∠ADC=90°时,∠BAD=∠ADC﹣∠B=90°﹣30°=60°;即∠BAD的度数是30°或60°.5.解:(1)∵∠ACB=90°,∠A=30°,∴AB=2BC,∵BC=2,∴AB=4;(2)在Rt△ABC中,∠ACB=90°,AB=4,BC=2,根据勾股定理得,AC===2,∴S△ABC=×BC×AC=×2×2=2;(3)∵S△ABC=×AB×CD=2,AB=4,∴×4×CD=2,解得CD=.6.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).7.解:MN⊥AC,证明:连接AM,CM,∵∠BAD=∠BCD=90°,M为BD的中点,∴AM=,CM=BD,∴AM=CM,∵N为AC的中点,∴MN⊥AC.8.(1)证明:∵∠ACB=∠ADB=90°,M为边AB的中点,∴MC=AB,MD=AB,∴MC=MD;(2)解:∵MC=MD=AB=AM=BM,∴∠BAC=∠ACM,∠ABD=∠BDM,∴∠BMC=2∠BAC,∠AMD=2∠ABD,∵△MCD是等边三角形,∴∠DMC=60°,∴∠BMC+∠AMD=120°,∴2∠BAC+2∠ABD=120°,∴∠BAO+∠ABO=60°,∴∠AOB=180°﹣60°=120°.9.证明:(1)连接DF,∵AD是边BC上的高,∴∠ADB=90°,∵点F是AB的中点,∴DF=AB=BF,∵DC=BF,∴DC=DF,∵点E是CF的中点.∴DE⊥CF;(2)∵DC=DF,∴∠DFC=∠DCF,∴∠FDB=∠DFC+∠DCF=2∠DFC,∵DF=BF,∴∠FDB=∠B,∴∠B=2∠BCF.10.解:(1)∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,AB=8,AC=6,∴DE=AB=4,DF=AC=3,AE=4,AF=3,∴四边形AEDF的周长=AE+DE+DF+AF=14;(2)△ABC的面积=×AB×AC=24,∵E、F分别是AB、AC的中点,∴△ADE的面积=△BDE的面积,△ADF的面积=△CDF的面积,∴四边形AEDF的面积=×△ABC的面积=12.11.(1)证明:∵∠ACB=90°,∠B=30°,∴AC=AB,∵∠ACB=90°,D是AB的中点,∴CD=AB,∴AC=CD,∵CE垂直于AB于点E,∴AE=ED;(2)解:∵AC=CD=AD=AB,∴△ACD是等边三角形,∴AC=AD=AC=2,∵CE⊥AD,∴DE=AE=1.12.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.13.解:∵∠ACB=90°,∠A=28°,∴∠ABC=62°,∴∠CBD=180°﹣62°=118°,∵BE平分∠CBD,∴∠EBC=∠CBD=59°,∴∠ABE=62°+59°=121°,∵DF∥BE,∴∠D=∠ABE=121°.14.解:∵AB=AC=4,∴∠B=∠ACB=15°,∴∠DAC=∠B+∠ACB=30°,∵∠D=90°,∴CD=AC=2.15.解:(1)EF=CF.证明:∵DE⊥AB,∴∠DEA=90°,在Rt△AED和Rt△ACD中,∵点F是斜边AD的中点,∴EF=AD,CF=AD,∴EF=CF;(2)连接CE,由(1)得EF=AF=CF=AD=3,∴∠FEA=∠F AE,∠FCA=∠F AC,∴∠EFC=2∠F AE+2∠F AC=2∠BAC=2×45°=90°,∴CE===.16.解(1)∵△ABD是等边三角形,∠DBA=60°,又∠ABC=30°,∴∠DBC=90°,∵∠ACB=90°,AB=2,∴BD=AB=2,AC=AB=1,BC==,∴CD===.∴CD的长为.(2)取AB的中点E,连接CE,∵∠ACB=90°,AB=2,CE=AB=1.又点C为AB下方的一动点,∴当CE⊥AB时,点C到AB的距离最大为1.(3)连接DE,∵△ABD为等边三角形,∴DE⊥AB,∵BD=AB=2,∴DE===,根据三角形三边关系CD≤CE+DE=1+,即C,D,E共线时,CD最大,∴CD的最大长度为1+,此时CD⊥AB,四边形ABCD的面积为AB•CD=×2×(1+)=1+,∴四边形ABCD的面积为:1+.17.解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠DFE=30°.(2)∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF,由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=8.又∵CE=CF,∴CF=8.∴DF=DC+CF=8+8=16.18.证明:(1)连接BE,∵DB=BC,点E是CD的中点,∴BE⊥CD.∵点F是Rt△ABE中斜边上的中点,∴EF=;(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;[方法二]由(1)得,EF=AF,∴∠AEF=∠F AE.∵EF∥AG,∴∠AEF=∠EAG.∴∠EAF=∠EAG.∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.19.解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.20.解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。

2017年春季新版北师大版八年级数学下学期1.2、直角三角形导学案27

2017年春季新版北师大版八年级数学下学期1.2、直角三角形导学案27
二、勾股定理的内容及证明四、自学检测、堂清试题
导学反思
认真阅读课本第14-16页:
①记住四个定理的内容。
②看懂勾股定理的证明过程。
③记住三组命题。
④看懂割补法证明勾股定理的过程。
合作探究
①如果一个命题是真命题,它的逆命题不一定是真命题。
“如果两个角是对顶角,那么它们相等 ”是真命题,但它的逆命题“如果两个角相等,那么它们是对顶角”是假命题。
“三角形中相等的边所对的角相等”是真命题,它的逆命题“三角形中相等的角所对的边相等”也是真命题。
以最快的速度完成这三个小题,看一看、比一比哪组同学完成的又快又好!
堂清试题
1、下列命题中,其逆命题 成立的是______________。
①同旁内角互补,两直线平行;
②如果两个角是直角,那么它们相等。
③如果两个实数相等,那么它们的平方相等。
④如果三角形的三边长a,b,c满足 ,那么这个三角形是直角三角 形。
直角三角形
课题
直角三角形(一)
授课教师
学习
目标
1、记住课本上的四个定理的内容,互逆命题、逆命题、定理的概念。
2、会用本节知识解决相关问题。
学习
重难点
学习重点:四个定理的内容,互逆命题、逆命题、定理的概念。
学习难点:本节知识解决相关问题。
学法
指导
讲练结合法多媒体演示法探究法尝试指导法
学习过程




学案
∴S梯形ACDE= (a+b)(a-b)= (a+b)2
∴∠ABE=180°-∠ABC-∠EBD=180°- 90°=90°A B=B E∴S△ABC= c2∵S梯形ACDE= S△ABE+S△ABC+ S△BED,

北师大版八年级下册数学 1.1---1.3基础同步练 (含答案)

北师大版八年级下册数学 1.1---1.3基础同步练  (含答案)

1.1等腰三角形一.选择题1.用一条长为36cm的细绳围成一个边长为8cm的等腰三角形,则这个等腰三角形的腰长为()A.8cm B.12cm C.8cm或14cm D.14cm2.如图,在等腰三角形ABC中,∠BAC=120°,DE是AB的垂直平分线,线段DE=1cm,则BC的长度为()A.8cm B.4cm C.6cm D.10cm3.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.84.若等腰三角形的一个内角是40°,则这个等腰三角形的其他内角的度数为()A.40°100°B.70°70°C.40°100°或70°70°D.以上都不对5.如图,E点在等腰△ABC的底边上的高AD上,且BE⊥CE,若∠BAC=70°,则∠ABE 的度数为()A.25°B.20°C.15°D.10°6.满足下列条件的三角形:①内角比为1:2:1;②内角比为2:2:5;③内角比为1:1:1;④内角比为1:2:3,其中,是等腰三角形的有()A.4个B.3个C.2个D.1个7.如图所示,在△ABC中,AB=AC,BE=CD,BD=CF,若∠A=α,则∠EDF等于()A.90°﹣αB.45°+αC.90°﹣αD.45°+α8.如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.89.如图,E为△ABC的边AB上一点,AC=BC=BE,AE=EC,BD⊥AC的延长线于点D,则∠CBD的度数为()A.18°B.28°C.36°D.15°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积等于△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③B.②③④C.①③④D.①②③④二.填空题11.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=4,AC=7,则AE=.12.如图,在△ABC中,∠B=∠C,D,E分别是线段BC、AC上的一点,且AD=AE.用等式表示∠1和∠2之间的数量关系是.13.等腰三角形两边长分别为2cm,5cm,该三角形的周长是.14.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D.若∠A=36°,则∠BDC 的大小为度.15.如图,已知∠AOB=α,在射线OA、OB上分别取点A1、B1,使OA1=OB1,连接A1B1,在A1B1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2,…,按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θn=.(用含α的式子表示)三.解答题16.如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=28°,且AD=AE,求∠EDC的度数.17.如图,在△ABC中,点D在AC的垂直平分线上.(1)若AB=AD,∠BAD=24°,求∠B和∠C的度数;(2)若AB=AD,AC=BC,求∠C的度数;(3)若AC=8cm,△ABD的周长为15cm,求△ABC的周长.18.已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.(1)若∠CAD=α,求∠ACD的度数.(2)在(1)的条件下,求∠BCF的大小;(用含α的式子表示)(3)判断△ACF的形状,并说明理由.参考答案1.D 2.C 3.C 4.C 5.D6.B 7.A 8.A 9.A 10.A11.312.∠1=2∠2.13.12cm.14.72.15..16.∵AB=AC,AD⊥BC,∴∠DAE=∠BAD=28°,∵AD=AE,∴∠ADE=(180°﹣∠DAE)=×(180°﹣28°)=76°,∴∠EDC=90°﹣∠ADE=90°﹣76°=14°.17.(1)∵点D在AC的垂直平分线上,∴AD=DC,在三角形ABD中,AB=AD,∴∠B=∠ADB=(180°﹣24°)×=78°,在三角形ADC中,AD=DC,∴∠C=78°×=39°;(2)设∠B=x°.∵CA=CB,∴∠A=∠CAB=x°,∵AB=AD=DC,∴∠B=∠ABD=x°,∠C=x°,在△ABC中,x+x+x=180,解得:x=72,∴∠C=×72°=36°.故∠C的度数是36°;(3)如图,∵DE是AC的垂直平分线,AC=8cm,∴DA=DC,CE=AE=4(cm),∵△ABD的周长为15cm∴AB+BD+AD=15(cm),即AB+BD+DC=15(cm),∴AB+BC+AC=15+8=23(cm),∴△ABC的周长为23cm.18.(1)∵AD=AC,∴∠ACD=∠ADC,∵∠CAD=α,∴∠ACD=(180°﹣∠CAD)=90;(2)过点A作AG⊥BC于点G,如图所示:∴∠DAG+∠ADG=90°,∵AD=AC,∴∠CAG=∠DAG=∠CAD=α,∵CF⊥AD于点E,∴∠DCE+∠ADG=90°,∴∠DCE=∠DAG=∠CAD=α,即∠BCF=α;(3)△ACF是等腰三角形.理由:∵∠B=45°,AG⊥BC,∴∠BAG=45°,∵∠BAC=45°+∠CAG,∠AFC=45°+∠DCE,∠DCE=∠DAG,∠CAG=∠DAG,∴∠BAC=∠AFC,∴AC=FC,∴△ACF是等腰三角形.1.2 勾股定理及其逆定理1.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是( )A.40°B.50°C.60°D.70°2.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB的度数为( )A.40° B.30° C.20° D.10°3. 下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 4.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80 5. 下列各组线段能构成直角三角形的一组是( )A .30,40,50B .7,12,13C .5,9,12D .3,4,6 6. 如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53 B .52C .4D .5 7. 将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85° 8. 下列命题的逆命题是真命题的有( )①对顶角相等;②在一个三角形中,如果有两条边相等,那么这两条边的对角也相等;③不相交的两条直线叫做平行线;④有三个角对应相等的两个三角形全等A .1个B .2个C .3个D .4个9. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积 B.最大正方形的面积C.较小两个正方形重叠部分的面积 D.最大正方形与直角三角形的面积和10. 直角三角形两个锐角 (互余;互补);有两个角互余的三角形是三角形.11. 直角三角形的两直角边的平方和等于斜边的平方;若三角形的两边的平方和等于第三边的平方,那么这个三角形是三角形.12. 下列命题中,其逆命题成立的是 (只填写序号).①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a、b、c(c为最长边)满足a2+b2=c2,那么这个三角形是直角三角形.13.命题“两个全等直角三角形的面积相等”的逆命题是.,这个命题是.14.命题“对顶角相等”的逆命题是,该逆命题是(填“真”或“假”)命题.15.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为或 cm2.16.有一个三角形两边长为4和5,若使三角形为直角三角形,则第三边长为或 .17. 写出下列命题的逆命题,并判断它们是真命题还是假命题. (1)两直线平行,同位角相等;(2)如果a 是偶数,b 是偶数,那么a +b 是偶数.18. 如图所示,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC.求证:∠EFA =90°.19. 如图,∠MAN =60°,若△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,求BC 的取值范围.20. 如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h.问:多长时间后这个人距B送奶站最近?答案:1---9 BCDCA CCCC10. 互余直角11. 斜边平方直角12. ①④13. 如果两个直角三角形的面积相等 那么它们全等 假命题14. 相等的角是对顶角 假15. 126 66 16. 3 4117. 解:(1)逆命题为:同位角相等,两直线平行(真命题);(2)逆命题为:如果a +b 是偶数,那么a 为偶数,b 为偶数(假命题).18. 证明:设正方形边长为4a ,则有AE 2=AB 2+BE 2,EF 2=EC 2+CF 2,AF 2=DF 2+AD 2,即AE 2=(4a)2+(3a)2=25a 2,EF 2=a 2+(2a)2=5a 2,AF 2=(4a)2+(2a)2=20a 2,∴AE 2=AF 2+EF 2,∴∠AFE=90°.19. 解:3<BC <2320. 解:过B 作BD⊥CD 于D ,在△ABC 中,AC =8,BC =15,AB =17, ∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形.∵∠1=30°,∴∠BCD=60°,∴∠CBD=30°,∴CD=12BC =7.5km ,∴时间为7.5÷2.5=3h.1.3《线段的垂直平分线》一.选择题1.到△ABC 三个顶点的距离相等的点是△ABC ( )A .三条中线的交点B .三条角平分线的交点C .三条边的垂直平分线的交点D .三条高的交点2.如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处3.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm4.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=4cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm5.如图,△ABC中,DE垂直平分AC交AB于点E,∠A=30°,∠B=70°,则∠BCE 等于()A.40°B.45°C.50°D.60°6.在△ABC中,∠B=50°,∠C=35°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.60°B.70°C.75°D.85°7.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB 于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二.填空题8.已知点P在线段AB的垂直平分线上,PA=4cm,则PB=cm.9.如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC 于点E,∠BAE=20°,则∠C=.10.如图,在△ABC中,DE是AC的垂直平分线,AB=4,△ABD的周长为12,则BC=.11.如图,△ABC中,BC的垂直平分线l与AC相交于点D,AB+AC=20cm,则△ABD的周长为cm.12.如图,在△ABC中,AB=AC,∠A=120°,BC=12cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为.三.解答题13.如图,直线m表示一条公路,A、B表示两所大学.要在公路旁修建一个车站P使到两所大学的距离相等,请在图上找出这点P.14.如图,在△ABC中,∠1=∠2,添加什么条件可得AD垂直平分BC?证明你的判断.15.已知:如图,在△ABC中,AB,AC的垂直平分线l1、l2相交于点P.求证:点P在BC 的垂直平分线上.16.如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21cm,△ABD的周长为13cm,求AE的长.17.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.18.在△ABC中,DE,HG分别为AB、AC的垂直平分线,与BC交于E、G两点,D、H 分别为垂足,直线DE、HG交于点F.(1)若BC=12,求△AEG的周长;(2)若∠DFH=80°,求∠EAG的度数.参考答案一.选择题1.解:∵线段垂直平分线上任意一点,到线段两端点的距离相等,∴到△ABC三个顶点的距离相等的点是△ABC三条边的垂直平分线的交点.故选:C.2.解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC 的垂直平分线上,故选:B.3.解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴∠BCE=∠B=15°,BE=CE,∴∠ACE=∠BCA﹣∠BCE=75°﹣15°=60°,∵Rt△AEC中,∠ACE=∠BCA=60°,AC=8cm,∴∠AEC=90°﹣∠ACE=90°﹣60°=30°,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.4.解:∵DE是AB的垂直平分线,∴DB=DA,AB=2AE=8(cm),∵△ADC的周长为9cm,∴AC+CD+DA=AC+CD+DB=AC+BC=9(cm),∴△ABC的周长=AC+BC+AB=17(cm),故选:D.5.解:∵∠A=30°,∠B=70°,∴∠ACB=180°﹣30°﹣70°=80°,∵DE垂直平分AC,∴EA=EC,∴∠ECA=∠A=30°,∴∠BCE=∠ACB﹣∠ECA=80°﹣30°=50°,故选:C.6.解:∠BAC=180°﹣∠B﹣∠C=95°,由作图可知,MN是线段AC的垂直平分线,∴∠DAC=∠C=35°,∴∠BAD=∠BAC﹣∠DAC=95°﹣35°=60°,故选:A.7.解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OE,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选:D.二.填空题8.解:∵点P在线段AB的垂直平分线上,∴PB=PA,∵PA=4cm,∴PB=4cm.故答案为4cm.9.解:∵DE是AC的垂直平分线,∴AE=CE,∴∠C=∠CAE,∵在Rt△ABE中,∠ABC=90°,∠BAE=20°,∴∠AEB=70°,∴∠C+∠CAE=70°,故答案为:35°.10.解:∵DE是AC的垂直平分线,∴AD=DC,∴BC=BD+DC=BD+DA,∵AB=4,△ABD的周长为12,∴BC=12﹣4=8.故答案为:8.11.解:∵l是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=20(cm),故答案为:20cm.12.解:∵AB=AC,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°,连接AM,AN,∵ME是AB的垂直平分线,∴AM=BM,∠BAM=∠B=30°,∴∠CAM=∠BAC﹣∠BAM=120°﹣30°=90°,∴CM=2AM=2BM,∴3BM=BC=12cm,∵BM=4cm,同理可得,CN=4,∴MN=BC﹣CN﹣BM=12﹣4﹣4=4(cm).故答案为:4cm.三.解答题13.解:如图所示,点P是AB线段的垂直平分线与直线m的交点.14.解:添加:AB=AC,理由:∵∠1=∠2,∴BD=CD,∴点D在线段BC的垂直平分线上,∵AB=AC,∴当A在线段垂直平分线上,∴AD垂直平分BC.15.证明:连接PA、PB、PC,∵l1是AB的垂直平分线,∴PA=PB,∵l2是AC的垂直平分线,∴PA=PC,∴PB=PC,∴点P在BC的垂直平分线上.16.解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为21cm,∴AB+BC+AC=21cm,∵△ABD的周长为13cm,∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=8cm,∴AE=4cm.17.解:(1)△CDE的周长为10.∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,∴AD=CD,BE=CE,∴∠A=∠ACD,∠B=∠BCE,又∵∠ACB=125°,∴∠A+∠B=180°﹣125°=55°,∴∠ACD+∠BCE=55°,∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.18.解:(1)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴△AEG的周长=AE+EG+AG=BE+EG+CG=BC=12,∴△AEG的周长是12.(2)∵DE,FG分别是△ABC的边AB、AC的垂直平分线,∴AE=BE,AG=CG,∴∠DAE=∠B,∠HAG=∠C,∵∠B+∠C+∠BAC=180°,∠DFH=80°,∴∠BAC=100°,∴∠B+∠C=80°,∴∠DAE+∠HAG=80°,∵∠DAE+∠HAG+∠EAG=∠BAC=100°,∴∠EAG=40°.。

2019-2020年北师大版八年级下册第一章直角三角形专题练习精选汇编(无答案)

2019-2020年北师大版八年级下册第一章直角三角形专题练习精选汇编(无答案)

第一章三角形的证明直角三角形(1)【例1】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,则∠DCB=( )A.50° B.45° C.40° D.25°例11.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为( )A.140° B.160° C.170° D.150°第1题【例2】已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A.只有② B.①② C.①③ D.②③2.如图,在△ABC中,AB=5 cm,BC=6 cm,BC边上的中线AD=4 cm,则∠ADC的度数是度.【例3】如图,在△ABC中,AD⊥BC,∠1=∠B.求证:△ABC是直角三角形.第2题3.如图,在△ACB中,∠ACB=90°,∠1=∠B.求证:CD⊥AB.【例4】下列说法中,正确的是( )A.任何一个命题都有逆命题 B.一个真命题的逆命题也是真命题C.任何一个定理都有逆定理 D.任何一个定理都没有逆定理4.以下命题的逆命题属于假命题的是( )A.有两个角相等的三角形是等腰三角形 B.全等三角形的对应角相等C.两直线平行,内错角相等 D.直角三角形两锐角互余第6题5.在Rt△ABC中,∠C=90°,∠B=54°,则∠A的度数是( )A.66° B.36° C.56 D.46°6.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,则图中相等的锐角的对数有( )A.4对 B.3对 C.2对 D.1对7.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )A.35° B.55° C.60° D.70°第7题8.如图,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4.则AD为( )A.48 B.24 C.10 D.129.若△ABC中,a=b=5,c=5 2,则△ABC为三角形.10.直角三角形三边长为6,8,10,则它斜边上的高为 . 第8题11.命题“如果ab=0,那么a=0,b=0”的逆命题是12.如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.13.在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线BE交AD于点F,试说明AE=AF.14.如图,在四边形ABCD中,∠ACB=90°,AB=15,BC=9,AD=5,CD=13.(1)求证:△ACD是直角三角形;(2)求四边形ABCD的面积.直角三角形(2)【例1】下列条件中,能判定两个直角三角形全等的是( )A.一锐角对应相等 B.两锐角对应相等 C.一条边对应相等 D.两条直角边对应相等1.下列条件不可以判定两个直角三角形全等的是( )A.两条直角边对应相等 B.有两条边对应相等 C.一条边和一锐角对应相等 D.一条边和一个角对应相等【例2】如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.2.如图,CD⊥AD,CB⊥AB,垂足分别为D和B,AB=AD.求证:CD=CB.【例3】如图,在Rt△ABC中,∠C=90°,且DE⊥AB于点E,CD=ED.求证:AD是∠BAC的角平分线.3.如图,∠ABC=∠ADC=90°,E是AC上一点,AB=AD.求证:EB=ED.4.要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是( )A.AC=A′C′,BC=B′C′ B.∠A=∠A′,AB=A′B′ C.AC=A′C′,AB=A′B′ D.∠B=∠B′,BC=B′C′5.如图,∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件合适的是( )A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD6.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=( ) A.40° B.50° C.60° D.75°7.如图,AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=°.8.如图,BE,CF为△ABC的高,且BE=CF,BE,CF交于点H,若BC=10,FC=8,则EC= .9.如图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△≌△,其判定依据是,还有△≌△,其判定依据是 .第5题第6题第7题第8题第9题10.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.11.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.(1)若B,C在DE的同侧(如图1)且AD=CE.求证:AB⊥AC;(2)若B,C在DE的两侧(如图2),其他条件不变,AB与AC仍垂直吗?若是,请给出证明;若不是,请说明理由。

北师大版八年级下册数学同步练习课件-第1章 3 第2课时三角形三边中垂线的性质

北师大版八年级下册数学同步练习课件-第1章 3 第2课时三角形三边中垂线的性质

A.AO 平分∠EAF
B.AO 垂直平分 EF
C.GH 垂直平分 EF
D.GH 平分 AF
12
▪ 9.△ABC中,∠A=62°,O是边AB和边BC的垂直平分线 的交点,28那° 么∠BCO=__________.
13
10.【内蒙古通辽中考】如图,在△ABC 中,按以下步骤作图:①分别以点 A 和点 C 为圆心,以大于12AC 的长为半径作弧,两弧相交于 M、N 两点;②作直线
B.50° D.70°
6
3.已知 D 是线段 AB 的垂直平分线上一点,且 BD=8,∠B=15°,则点 A 到 BD 的距离是______4____.
4.在等腰直角三角形 ABC 中,AB=AC,BC=a,其斜边上的中线与一腰的垂 a
直平分线交于点 O,则点 O 到点 A 的距离为___2_______.
3
知识点 2 线段垂直平分线的尺规作图法 (1)分别以已知线段 AB 两端点为圆心,以大于12AB 长为半径画弧,两弧相交于 C、 D 两点. (2)作直线 CD,则直线 CD 为线段 AB 的垂直平分线.
4
基础过关
▪ 1.到三角形三个顶点的距离都相等的点是这个D 三角形的
()
▪ A.三条高的交点
2
▪ 分析:延长CP交AB于点E,易证CE⊥AB,从而可得∠BCP 的度数,然后根据等腰三角形的性质即可求出∠DPC的度 数解.答:延长 CP 交 AB 于点 E.由△ABC 为等边三角形,可知 CA=CB.∵PA=
PB,∴CE⊥AB,∴AE=BE,∴∠BCE=12∠ACB=30°.∵PC=PB,∴∠PBC=∠ BCE=30°.∵BP=BD,∴∠BDP=12×(180°-30°)=75°.又∵∠BDP 为△PDC 的外 角,∴∠DPC=∠BDP-∠DCP=75°-30°=45°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级数学下册1.2 直角三角形同步练习一、单选题1.已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A. 4个B. 3个C. 2个D. 1个2.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A. 150°B. 180°C. 240°D. 270°3.半径为2的圆内有两条互相垂直的弦AB和CD,它们的交点E到圆心O的距离等于1,则=()A. 28B. 26C. 18D. 354.△ABC中,若a=5,b=13,c=12,则△ABC是()A. 等腰三角形B. 锐角三角形C. 钝角三角形D. 直角三角形5.下列命题的逆命题正确的是( )A. 两条直线平行,内错角相等B. 若两个实数相等,则它们的绝对值相等C. 全等三角形的对应角相等D. 若两个实数相等,则它们的平方也相等6.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是()A. 24cm2B. 30cm2C. 40cm2D. 48cm27.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,如果∠A=50°,则∠DCB=()A. 50°B. 45°C. 40°D. 25°8.如图,△是等边三角形,为的中点,,垂足为点,∥,,下列结论错误的是( )A. 30°B.C. △的周长为10D. △的周长为99.下列各组线段能构成直角三角形的一组是()A. 3,4,5B. 2,3,4C. 1,2,3D. 4,5,610.如图,等边的边长为3,点D在边上,,线段在边上运动,,有下列结论:① 与可能相等;② 与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为()A. ①④B. ②④C. ①③D. ②③二、填空题11.命题:“如果a=0,那么ab=0”的逆命题是________.12.我国南宋著名数学家秦九少韶的著作《数书九章》记载有这样一道题:“问有沙田一块,有三斜,其中小斜三里,中斜四里,大斜五里,欲知为田几何?”这道题讲的是有一块三角形沙田,三条边长分别为3里,4里,5里,问这块沙田的面积有多大?题中“里”是我国市制单位,1里=500米,则沙田的面积为________平方千米.13.已知等腰三角形的底角是15°,腰长为8cm,则三角形的面积是________.14.如图,有一直角三角形纸片ABC,,∠B=30°,AC=1,于点D,F,G分别是线段AD,BD上的点,H,I分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD 上的点E处,当FG=EG时,AF的长是________.15.如图,在等腰三角形ABC中,BC=3 cm,△ABC的面积是9 cm2,腰AB的垂直平分线EF交AC于点F,若点D为BC边上的中点,M为EF上的动点,则BM+DM的最小值为________.16.如图,的面积为,平分,于,则的面积为________;17.某花园小区有一空地(如图所示的△ABC),为美化小区,居委会准备将其开发种植花草,经测量AB=13m,BC=10m,BC边上的中线AD=12m,如果种植每平方米花草需要50元,那么种植这块三角形空地需要________元.三、解答题18.如图,在Rt△ABC中,∠C=90°,AC=BC=3 ,点D在AB上,且BD=2AD,连接CD,将线段CD绕点C逆时针方向旋转90°至CE,连接BE,DE.(1)求证:△ACD≌△BCE;(2)求线段DE的长度.19.△ABC为等边三角形,. .(1)求证:四边形是菱形.(2)若是的角平分线,连接,找出图中所有的等腰三角形.20.如图,一竖直的木杆在离地面6尺高的B处折断,木杆顶端C落在离木杆底端A的8尺处.木杆折断之前有多高?21.如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过点C作CF⊥AE,垂足为点F,过点B 作BD⊥BC交CF的延长线于点D.(1)试说明AE=CD;(2)若AC=10cm,求BD的长.22.我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设,,为三角形三边,为面积,则①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设(周长的一半),则②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从① ②或者② ① ;(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,的内切圆半径为,三角形三边长为,,,仍记,为三角形面积,则.23.请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图①,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图②,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(填“=”或“≠”);(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图③,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,DG=3,求的值.答案一、单选题1. D2. D3. A4. D5. A6.A7. A8. C9. A 10. D二、填空题11. 如果ab=0,那么a=0 12. 1.5 13. 16cm214. 15. 6 16. 0.5cm217.3000三、解答题18. (1)证明:∵将线段CD绕点C逆时针方向旋转90°至CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE.在△ACD与△BCE中,,∴△ACD≌△BCE;(2)解:∵在Rt△ABC中,∠C=90°,AC=BC=3 ,∴AB=6.∵BD=2AD,∴AD=2,BD=4.由(1)可知△ACD≌△BCE,∴∠CBE=∠A=45°,BE=AD=2,∴∠DBE=∠ABC+∠CBE=90°.∵在Rt△BDE中,∠DBE=90°,∴DE2=BE2+BD2,∴DE= =2 .19. (1)解:如图1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等边三角形,∴AB=BC,∵AB=AF,∴BD=AF,∵∠BDC=∠AEC,∴BD∥AF,∴四边形ABDF是平行四边形,∵AB=AF,∴四边形ABDF是菱形. (2)解:如图2中,∵BA=BC,BD平分∠ABC,∴BD垂直平分线段AC,∴DA=DC,∴△DAC是等腰三角形,∵AF∥BD,BD⊥AC∴AF⊥AC,∴∠EAC=90°,∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,∴∠DAE=∠DEA,∴DA=DE,∴△DAE是等腰三角形,∵BC=BD=BA=AF=DF,∴△BCD,△ABD,△ADF都是等腰三角形,综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.20. 解:16尺21. (1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,∴△DBC≌△ECA(AAS).∴AE=CD(2)解:由(1)得AE=CD,AC=BC,∴Rt△CDB≌Rt△AEC(HL)∴BD=EC= BC= AC,且AC=10cm.∴BD=5cm.22. (1)解:由①得:,由②得:,(2)解:公式①和②等价;推导过程如下:,,①中根号内的式子可化为:,(3)解:连接、、,如图所示:.23. (1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵∠GAE=∠C=90°,EA=EC,∴△EAG≌△ECF(ASA)∴EG=EF(2)解:EF=EG;过点E作EM⊥AB于点M,作EN⊥BC于点N,如图2所示,则∠MEN=90°,EM=EN,∴∠GEM=∠FEN,又因为∠EMG=∠ENF=90°,∴△EMG≌△ENF∴EF=EG.故答案为:= (3)解:过点E作EM⊥AB于点M,作EN⊥BC于点N,如图3所示:则∠MEN=90°,EM∥BC,EN∥AB,∴,∴,又∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,∴Rt△GME∽Rt△FNE,∴.。

相关文档
最新文档