人教A版必修二 2.3.2平面与平面垂直的判定 教案
人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计

2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。
人教版高中数学必修2(A版) 2.3.2平面与平面垂直的判定 PPT课件

类似地,下面的这个二面角应该如何表示?
Q l
B P
二面角的表示
(1)二面角-AB- (2)二面角P AB Q (3)二面角 l (4)二面角P l Q
A
三.新知的探索 思考4:我们常说“把门开得大一些”,是指哪个角
大一些?
三.新知的探索
在上述变化过程中,图形在变化,形成的二面角也在变化, 我们应该怎样刻画二面角的大小?
2.3.2平面与平面垂直的判定
一.复习与回顾
1.1如何作出两条异面直线的夹角? 1.2如何作出斜线与平面的夹角? “空间问题平面化” 1.3在研究上述两个问题时,我们采用了相同的方法,即将 空间角的问题转化为平面角进行处理.
P
a
a
O
a
b/
A
B
b
二.新知的引入
三.新知的探索
我们知道直线上的一点将直线分割成两部分, 每一部分分别叫射线. 那么平面上的一条直线将整个平面一分为二, 每一部分应该叫做什么呢?
(2)角的两边分别在两个面内
(3)角的两边都要垂直于二面角的棱
三.新知的探索 观察:
1.教室相邻的两个墙面分别与地面所成的二面角是多少度? 相邻的两个墙面所成的二面角又是多少度?
2.教室相邻的两个墙面分别与地面有什么样的位置关系? 相邻的两个墙面又有什么位置关系呢?
三.新知的探索 3.4定义:
线线垂直
线面垂直
面面垂直
3.转化与化归思想:空间问题平面化处理 习题2.3 必做题A组 第1题、第2题 选做题B组 第1题
P
PA BC PA AC A
BC AC
人教版数学必修二2.3.2《平面与平面垂直的判定》教学教案设计

课题:平面与平面垂直的判定(新授课)
1.教学任务分析:通过教学活动,
(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.
(2)在二面角的概念教学中,让学生体会以下几点:
a.二面角的大小是用平面角来度量的.
b.二面角的平面角的大小由二面角的两个面的位置唯一确定.
c.平面角的两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所
确定的平面和二面角的棱垂直.
(3)了解平面与平面垂直的定义,通过探究掌握平面与平面垂直的判定定理.
(4)通过例题教学,探究确定二面角的平面角的方法,会求特殊二面角的大小.
2.教学难点、重点:
(1)重点:
确定二面角,面面垂直判定定理的应用.
(2)难点:
各种情景下确定二面角的平面角.
3.教学方式与手段:
采用“启发式”、“探究式”、“讲练结合”法.
借助多媒体电脑平台.
4.教学基本流程(总体设计):
从生活实例让学生感性认识二面角
↓
二面角的概念
↓
二面角的平面角
↓
定义两平面垂直
↓
面面垂直的判定
↓
应用、探究
↓
课堂小结、作业
5.页面设计(相应内容逐步演示):
课题:平面与平面垂直的判定
1.二面角概念
2.确定二面角的平面角的方法
3.平面与平面垂直的定义
4.平面与平面垂直的判定定理
5.应用举例
6.小结与作业。
【数学】2.3.2 平面与平面垂直的判定课件(人教A版必修2)1

观察1:为了解决实际问题,人们需要研 究两个平面所成的角。 请同学们观察下 面的水坝,水坝在修建的时候,为了坚固 耐用,水坝的坡面与水平面要成一个适当 的角度,这个角就是两个面所成的角。 观察2:当我们把教 室的门打开到一定位 置,门所在的面与墙 所在的面也形成一个 角。 我们把类似这样的角成为二面角.
P
C
B
A
O
分析:要证平面PAC 平面PBC, 即证平面PBC经过平面PAC的一条 垂线
即证BC 平面PBC.
例3
证明: 设已知⊙O平面为α PA 面 , BC 面
PA BC 又 AB为圆的直径 AC BC PA BC AC BC PA AC A PA 面PAC
l
门框AB与地 面垂直, 门与地面垂直吗?
平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条 垂线,那么这两个平面互相垂直
l α 符号表示: αβ l β
E B
C D
l
A
线线 垂直
线面 垂直
面面 垂直
例题:如图,AB是⊙O的直径,PA垂直于⊙O 所在的平面,C是圆周上不同于A,B的任意一 点,求证:平面PAC⊥平面PBC
几个重要概念:
半平面
定义:从一条直线出发
l
P α β
棱
的两个半平面所组成的 图形叫做二面角
记为:二面角α-l-β
Q
简记:P-l-Q
面
二面角的平面角
A
/
• ∠AOB即为二面角α-l-β的
α
O
A
O/
l
B/
平面角
β
B
说明: 1.平面角的大小与棱上点的选取无关 2. 平面角的两边分别在二面角的两个面内,分别 垂直于二面角的棱。
高中数学面面垂直判定教案

高中数学面面垂直判定教案
教学目标:
1. 了解什么是垂直面。
2. 学会判断两个平面是否垂直。
3. 掌握垂直平面的相关性质和定理。
教学准备:
1. 教材:高中数学教科书
2. 教具:黑板、彩色粉笔、几何工具箱、投影仪
3. 辅助教学资料:包含平面垂直判定例题的练习册
教学步骤:
一、导入
1. 显示一个三维图形,引导学生思考其中的平面之间可能存在的关系。
2. 引导学生提出平面的垂直关系,并与垂直直线进行对比。
二、概念讲解
1. 解释垂直平面的定义。
2. 理论性讲解平面垂直的判定方法。
三、例题演练
1. 利用黑板进行示范,解答几个基础的垂直平面判定题目。
2. 让学生自行尝试几道练习题,并及时纠正。
四、深化延伸
1. 引导学生思考:如何用平面方程去判断两个平面是否垂直?
2. 讲解垂直平面的性质及相关定理。
五、课堂小结
1. 复习本节课所学的知识点,并强调重点。
2. 鼓励学生在课后多进行练习,巩固所学内容。
六、作业布置
1. 布置一定量的平面垂直判定练习题作为课后作业。
2. 提醒学生及时复习本节课所学内容。
教学反思:
1. 观察学生的学习情况,及时调整教学步骤和讲解方式。
2. 鼓励学生多提出问题,促进思维的拓展和深入。
3. 关注学生的作业情况,及时纠正错误,巩固学习成果。
必修2高二数学第二章2.3.2平面与平面垂直的判定教学课件人教新课标

二面角
从一条直线引出的两个半平面所组成的 图形叫做二面角.这条直线叫做二面角的棱, 这两个半平面叫做二面角的面。
注:面内的一条
QB
直线,把这个平面分 β
成两部分,每 一部
P
分都叫做半平面。
lα
A
二面角的记法
用面1-棱-面2表示一个二面角 下图二面角记做 二面角α-l-β,或二面角α-AB-β。
新课导入
修水坝时,为了使水坝坚固耐用,必须使 水坝面与水平面成一定的角度。
砌墙时,要保证墙面与地面垂直。
A
C
B
D
教室的门打开时与墙 面成一定的角度。
书本展开时两页直面 成一定的角度。
2.3.2 平面与平面垂直的判定
教学目标
知识与能力
➢使学生正确理解和掌握“二面角”、“二面角 的平面角”及“直二面角”、“两个平面互相 垂直”的概念。 ➢使学生掌握两个平面垂直的判定定理及其简单 的应用。
思 考 当二面角的两个面重合时,二面角的大小为多 少度?当二面角的两个面合成一个平面时,二面角 的大小为多少度?一般地,二面角的平面角的取值 范围如何?
二面角为0°
二面角为90°
二面角的取值范围是[0, 2 ]。
两个平面互相垂直
平面角是直角的二面角叫做直二面角。
若两个平面相交,如果它们所成的二面 角是直二面角,就说这两个平面互相垂直。
B
OA
l
二面角的平面角必须满足: 1)角的顶点在棱上 2)角的两边分别在两个面内 3)角的边都要垂直于二面角的棱
A O
l
B
是二面角
A
O B
不是二面角
二面角的平面角用来度量二面角的大小,二 面角是多少度,就说这个二面角是多少度。
人教A版必修二高一数学《2.3.2面面垂直的判定》课件

线线垂直
线面垂直
面面垂直
例2:如图,AB是⊙O的直径,PA垂直⊙O所在 的平面,C是圆周上不同于A,B的任意一点. 求证:平面PAC⊥平面PBC. P
证明:设⊙O所在的平面为,由已知
PA BC PA BC
∵AB是⊙O的直径
∴∠ACB=90°即BC⊥AC
A
C
·O
B
又PA AC A PA 平面PAC AC 平面PAC BC 平面PAC
∪
√
二、填空题: 1.过平面α的一条垂线可作__无__数_个平面与平面α垂直.
2.过一点可作_无__数__个平面与已知平面垂直.
3.过平面α的一条斜线,可作___1_个平面与平面α垂
直.
4.过平面α的一条平行线可作___1_个平面与α垂直.
3、已知AB⊥平面BCD,BC⊥CD,你能发现哪些平 面互相垂直,为什么?
一、两个平面垂直的定义
[情境[问探题索]研究] (1)竖电1.线平杆面时与,平电面线垂杆直所的在定的义直线与地面应满足怎样的位置呢?
(2)如为果了两让个一平面墙所砌成得的稳二固面,角不是易直倒角塌(,即墙成面直所二在面的角平)面,与就 地面说又这应两该个满平足面怎互样相的垂位直置.关系呢?
容易2得.出两结个论平:面电垂线直杆的与判地定面定应理该垂直,否则容易倾倒;如果 墙面发生提倾出斜问,题墙:就如容果易你倒是塌一,个所质以检砌员墙,时你,怎不样能去让检墙测面、倾判斜断.建
三、二面其角逆12、、定的找证理到明平作1或出中面作来的出角角二就:面是角所的求3它小平、的的来面二角平度角面面量角角的的大大小用
二二面面四角角C、--二AABB--面D角3、的计算平所面求的角角的作法:
2.3.2 平面与平面垂直的判定

第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.2 平面与平面垂直的判定一、教学目标1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
二、教学重点、难点。
重点:平面与平面垂直的判定;难点:如何度量二面角的大小。
三、学法与教学用具。
1、学法:实物观察,类比归纳,语言表达。
2、教学用具:二面角模型(两块硬纸板)四、教学设计(一)创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知1、二面角的有关概念老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)2、二面角的度量二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 3.2平面与平面垂直的判定
【教学目标】
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;
(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
(4)通过实例让学生直观感知“二面角”概念的形成过程;
(5)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
【教学重难点】
重点:平面与平面垂直的判定。
难点:找出二面角的平面角。
【教学过程】
(一)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们先利用具体的实物来进行观察,研探。
(二)研探新知
1、二面角的有关概念
老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)
角二面角
图形 A
边
顶点 O B
边
A
β
棱l
B α
定义
从平面内一点出发的两条射线(半
直线)所组成的图形
从空间一直线出发的两个半平面所组成的图形
构成 射线 — 点(顶点)一 射线
半平面 一 线(棱)一 半平面
表示
∠AOB
二面角α-l -β或α-AB-β
2、二面角的度量
二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
教师特别指出:
(1)在表示二面角的平面角时,要求OA ⊥L ,OB ⊥L ; (2)∠AOB 的大小与点O 在L 上位置无关; (3)当二面角的平面角是直角时,这两个平 面的位置关系怎样?
承上启下,引导学生观察,类比、自主探究,
获得两个平面互相垂直的判定定理:
一个平面过另一个平面的垂线,则这两个平面垂直。
图2.3-3 (三)实际应用,巩固深化
例1、(课本69页例3)设AB 是圆O 的直径,PA 垂直于圆O 所在平面,C 是圆周上的任意点,求证:面PAC ⊥面PBC.
变式: 课本69P 的探究问题
例2、已知直线PA 垂直正方形ABCD 所在的平面,A 为垂足。
求证:平面PAC ⊥平面PBD 。
说明:这两题都涉及线面垂直、面面垂直的性质和判定,其中证明BC ⊥平面PAC 和BD ⊥平面PAC 是关键.从解题方法上说,由于“线线垂直”、“线面垂直”与“面面垂直”之间可以相互转化,因此整个解题过程始终沿着“线线垂直⇔线面垂直⇔面面垂直”转化途径进行.
变式. 课本69P 的练习 (四)小结归纳,整体认识 (1)二面角以及平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系? (五)当堂检测
P81习题 2.3 A 组 第4、6、7题, B 组 第1题 【板书设计】
B
A
O
β α
二面角的概念
两个平面垂直的定义
两个平面垂直的判定定理
三种形式描述
例1
例2
【作业布置】
导学案课后练习与提高
2.3.2平面与平面垂直的判定
课前预习学案
一、预习目标:(1)明确角的定义及推广。
(2)初步知道什么是二面角。
二、预习内容
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
问题3、二面角的有关概念
角二面角
图形
A
边
顶点 O B
边
A
β
棱l
B α
定义
从平面内一点出发的两条射线(半
直线)所组成的图形
构成射线—点(顶点)一射线
表示∠AOB
问题4、二面角如何度量?
三、提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容
课内探究学案
一.学习目标
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;
(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
(4)通过实例让学生直观感知“二面角”概念的形成过程;
(5)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
学习重点:平面与平面垂直的判定。
学习难点:找出二面角的平面角。
二、学习过程
(一)、二面角的平面角
1、如何找出二面角的平面角?
90说明了什么?
2、二面角的平面角为︒
(二)、平面与平面垂直的判定定理(文字,符号及图形表示)
(三)、定理的应用
P中的例3)
例1(课本
69
P的探究问题
变式1、课本
69
例2、已知直线PA垂直正方形ABCD所在的平面,A为垂足。
求证:平面PAC⊥平面PBD。
P的练习
变式2、课本
69
当堂达标测试
P81习题 2.3 A组第4、6、7题, B组第1题
课后练习与提高
1.过平面α外两点且垂直于平面α的平面()
D一个或无数个
C有且仅有两个()
()A有且只有一个()B不是一个便是两个()
2.若平面α⊥平面β,直线n ⊂α,m ⊂β,m n ⊥,则 ( )
()A n ⊥β ()B n ⊥β且m ⊥α ()C m ⊥α ()D n ⊥β与m ⊥α中至少有一个成立
3.对于直线,m n 和平面,αβ,α⊥β的一个充分条件是 ( )
()A m n ⊥,//,//m n αβ ()B ,,m n m n αβα⊥=⊂
()C //,,m n n m βα⊥⊄ ()D ,,m n m n αβ⊥⊥⊥
4.设,,l m n 表示三条直线,,,αβγ表示三个平面,给出下列四个命题:
①若,l m αα⊥⊥,则//l m ;②若,m n β⊂是l 在β内的射影,m l ⊥,则m n ⊥;
③若,//m m n α⊂,则//n α; ④若,αγβγ⊥⊥,则//αβ. 其中真命题是 ( ) ()A ①②
()B ②③ ()C ①③ ()D ③④
5.如图正方体1111ABCD A B C D -中,,,,E F M N 分别是111111,,,A B BC C D B C 的中点, 求证:平面MNF ⊥平面ENF 。
方形,PA ⊥底
6.如图,四棱锥P ABCD -的底面是边长为a 的正面ABCD ,E 为AB 的中点,且PA AB =,
(1)求证:平面PCE ⊥平面PCD
(2)求点D 到平面PCE 的距离 参考答案
1、D
2、D
3、B
4、A 5,6(略)
D
E
A 1
D 1
C 1M
A
B
F
C N
B 1。