阿波罗尼斯问题详细解答

合集下载

阿波罗尼斯问题详细解答

阿波罗尼斯问题详细解答

――――――阿波罗尼斯问题详细解答1序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录目录内容阿波罗尼斯是一个什么样的人?什么是阿波罗尼斯问题?阿波罗尼斯问题有多少个子问题?怎样作一条线段的垂直平分线?怎样过线段上一点作该线段的垂线?怎样过圆上一点作该圆的切线?怎样作两个圆的公切线?什么叫反演变换?怎样作反演圆内一点的反演点?怎样作反演圆外一点的反演点?怎样作一条直线的反演图形?怎样作一个圆的反演图形?怎样才能让一条直线经过反演变换后保持不变?怎样才能让一个圆经过反演变换后保持不变?怎样作线段 a、b 的比例中项 c?什么叫圆的幂?怎样作出圆的幂?什么是圆的根轴(或等幂轴)?怎样作出圆的根轴?什么是圆的根心?怎样作出圆的根心?什么叫相(位)似中心?怎样作出相(位)似中心?什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点?什么叫两圆周的共同幂?什么叫相似轴?怎样作出相似轴?阿波罗尼斯问题之一:点点点阿波罗尼斯问题之二:线线线阿波罗尼斯问题之三:点线线阿波罗尼斯问题之四:点点线阿波罗尼斯问题之五:点点圆阿波罗尼斯问题之六:点圆圆阿波罗尼斯问题之七:点线圆阿波罗尼斯问题之八:线圆圆阿波罗尼斯问题之九:线线圆阿波罗尼斯问题之十:圆圆圆米勒问题和米勒定理页码 03 03 03 03 04 04 05 06 06 06 07 08 10 10 10 11 11 13 13 14 16 17 17 18 19 22 26 31 35 41 47 55 692第 01 个问题: 阿波罗尼斯是一个什么样的人? 阿波罗尼斯,Apollonius,有时也翻译为“阿波罗尼奥斯”,古希腊大数学家,生活在公 元前 260 年到公元前 190 年,著有《论相切》和《圆锥曲线》。

专题11 最值模型-阿氏圆问题(解析版)

专题11 最值模型-阿氏圆问题(解析版)

专题11 最值模型-阿氏圆问题最值问题在中考数学常以压轴题的形式考查,“阿氏圆”又称“阿波罗尼斯圆”,主要考查转化与化归等的数学思想。

在各类考试中都以高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的阿氏圆问题进行梳理及对应试题分析,方便掌握。

【模型背景】已知平面上两点A、B,则所有满足PA=k·PB(k≠1)的点P的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。

【模型解读】如图 1 所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。

故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。

如图3所示:注意区分胡不归模型和阿氏圆模型:在前面的“胡不归”问题中,我们见识了“k·P A+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【最值原理】两点之间线段最短及垂线段最短解题。

例1.(2022·安徽·九年级期末)如图,在Rt△ABC中,△ACB=90°,CB=7,AC=9,以C为圆心、3为半径作△C,P为△C上一动点,连接AP、BP,则13AP+BP的最小值为()A.7B.2C.410D.13【答案】B【详解】思路引领:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.利用相似三角形的性质证明MP13=P A,可得13AP+BP=PM+PB≥BM,利用勾股定理求出BM即可解决问题.答案详解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM.∵PC=3,CM=1,CA=9,∵PC2=CM•CA,∵PC CM CA CP=,∵∵PCM=∵ACP,∵∵PCM∵∵ACP,∵13 PM PCPA AC==,∵PM13=P A,∵13AP+BP=PM+PB,∵PM+PB≥BM,在Rt∵BCM中,∵∵BCM=90°,CM=1,BC=7,∵BM2217=+=52,∵13AP+BP≥52,∵13AP+BP的最小值为52.故选:B.例2.(2020·广西中考真题)如图,在Rt中,AB=AC=4,点E,F分别是AB,AC的中点,点PABC是扇形AEF 的上任意一点,连接BP ,CP ,则BP +CP 的最小值是_____..【分析】在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .证明,推出==,推出PT =PB ,推出PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题. 【详解】解:在AB 上取一点T ,使得AT =1,连接PT ,P A ,CT .∵P A =2.AT =1,AB =4,∵P A 2=AT •AB ,∵=, ∵∵P AT =∵P AB ,∵,∵==,∵PT =PB ,∵PB +CP =CP +PT , ∵PC +PT ≥TC ,在Rt 中,∵∵CAT =90°,AT =1,AC =4,∵CT ,∵PB +PC ,∵PB +PC . 【点睛】本题考查等腰直角三角形的性质,三角形相似的判定与性质,勾股定理的应用,三角形的三边关系,圆的基本性质,掌握以上知识是解题的关键.例3.(2022·四川成都·模拟预测)如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的EF 1217PAT BAP ∽PT PB AP AB 1212124=PA ATAB PA PAT BAP ∽PT PB AP AB 121212ACT 22AT AC +171217121717一个动点,则12PD PC -的最大值为_______.【答案】152【分析】如图,连接BP ,在BC 上取一点M ,使得BM =32,进而证明BPM BCP △∽△,则在点P 运动的任意时刻,均有PM =12PC ,从而将问题转化为求PD -PM 的最大值.连接PD ,在△PDM 中,PD -PM <DM ,故当D 、M 、P 共线时,PD -PM =DM 为最大值,勾股定理即可求得DM .【详解】如图,连接BP ,在BC 上取一点M ,使得BM =32, 31232BM BP ==,3162BP BC ==BM BP BP BC ∴= PBM CBP ∠=∠∴BPM BCP △∽△12MP BM PC BP ∴==12MP PC ∴=12PD PC PD MD ∴-=-在△PDM 中,PD -PM <DM ,当D 、M 、P 共线时,PD -PM =DM 为最大值,四边形ABCD 是正方形90C ∴∠=︒在Rt CDM 中,2222915622DM DC MC ⎛⎫=+=+= ⎪⎝⎭故答案为:152. 【点睛】本题考查了圆的性质,相似三角形的性质与判定,勾股定理,构造12PC 是解题的关键. 例4.(2022·浙江·舟山九年级期末)如图,矩形ABCD 中,4,2AB AD ==,以B 为圆心,以BC 为半径画圆交边AB 于点E ,点P 是弧CE 上的一个动点,连结,PD PA ,则12AP DP +的最小值为( )A 10B 11C 13D 14【答案】C【分析】连接BP ,取BE 的中点G ,连接PG ,通过两组对应边成比例且夹角相等,证明BPG BAP ,得到12PG AP =,则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,求出DG 的长得到最小值. 【详解】解:如图,连接BP ,取BE 的中点G ,连接PG ,△2AD BC BP ===,4AB =,△2142BP BA ==, △G 是BE 的中点,△12BG BP =,△BP BG BA BP=, △PBG ABP ∠=∠,△BPGBAP ,△12PG BP AP BA ==,△12PG AP =, 则12AP DP PG DP +=+,当P 、D 、G 三点共线时,取最小值,即DG 长, 224913DG AD AG =+=+=.故选:C .【点睛】本题考查矩形和圆的基本性质,相似三角形的性质和判定,解题的关键是构造相似三角形将12AP 转换成PG ,再根据三点共线求出最小值.例5.(2022·广东·广州市第二中学九年级阶段练习)如图,在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (5,3),点P 是第一象限内一动点,且135APB ∠=︒,则4PD +2PC 的最小值为_______.【答案】20【分析】取一点(1,0)T ,连接OP ,PT ,TD ,首先利用四点共圆证明2OP =,再利用相似三角形的性质证明12PT PC =,推出14+2=4(+)=4(+)2PD PC PD PC PD PT ,根据+PD PT DT ≥,过点D 作DE OC ⊥交OC 于点E ,即可求出DT 的最小值,即可得.【详解】解:如图所示,取一点(1,0)T ,连接OP ,PT ,TD ,△A (2,0),B (0,2),C (4,0),△OA =OB =2,OC =4,以O 为圆心,OA 为半径作O ,在优弧AB 上取一点Q ,连接QB ,QA ,△1452Q AOB ∠=∠=︒,135APB ∠=︒,△45135180Q APB ∠+∠=︒+︒=︒, △A ,P ,B ,Q 四点共圆,△2OP OA ==,△2OP =,1OT =,4OC =,△2OP OC OT =,△OP OT OC OP=,△POT POC ∠=∠,△POT COP △∽△,△12PT OP PC OC ==,△12PT PC =, △14+2=4(+)=4(+)2PD PC PD PC PD PT ,过点D 作DE OC ⊥交OC 于点E , △D 的坐标为(5,3),△点E 的坐标为(5,0),TE =4,△22=3+4=5DT△+PD PT DT ≥,△4+220PD PC ≥,△4+2PD PC 的最小值是20,故答案为:20.【点睛】本题考查了四点共圆,相似三角形,勾股定理,三角形三边关系,解题的关键是掌握这些知识点.例6.(2021·浙江金华·一模)问题提出:如图1,在等边△ABC中,AB=9,△C半径为3,P为圆上一动点,连结AP,BP,求AP+13BP的最小值(1)尝试解决:为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP,在CB上取点D,使CD=1,则有13== CD CP CP CB又△△PCD=△△△△△13=PDBP△PD=13BP△AP+13BP=AP+PD△当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=4,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图4,在扇形COD中,O为圆心,△COD=120°,OC=4.OA=2,OB=3,点P是CD上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【答案】(1)BCP,PCD,BCP,2592;(2)210;(3)作图与求解过程见解析,2P A+PB的最小值为97.【分析】(1)连结AD,过点A作AF△CB于点F,AP+13BP=AP+PD,要使AP+13BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=4,BF=2,证明△ABP△△PBF,当点F,点P,点C 三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,确定12OA OPOP OF==,且△AOP=△AOP,△AOP△△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+13BP=AP+PD,要使AP+13BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+13BP最小值为AD,△AC=9,AF△BC,△ACB=60°△CF=3,AF=932;△DF=CF﹣CD=3﹣1=2,△AD=22259 =2AF DF+,△AP+13BP的最小值为2592;故答案为:2592;(2)如图2,在AB上截取BF=2,连接PF,PC,△AB=8,PB=4,BF=2,△12BP BFAB BP==,且△ABP=△ABP,△△ABP△△PBF,△12FP BPAP AB==,△PF=12AP,△12AP+PC=PF+PC,△当点F,点P,点C三点共线时,AP+PC的值最小,△CF=222262210BF BC+=+=,△12AP+PC的值最小值为210,故答案为:210;(3)如图3,延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,△OC=4,FC=4,△FO=8,且OP=4,OA=2,△12OA OPOP OF==,且△AOP=△AOP△△AOP△△POF△1=2AP OAPF OF=,△PF=2AP△2P A+PB=PF+PB,△当点F,点P,点B三点共线时,2AP+PB的值最小,△△COD=120°,△△FOM=60°,且FO=8,FM△OM△OM=4,FM=43,△MB=OM+OB=4+3=7△FB=2297FM MB+=,△2P A+PB的最小值为97.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..例7.(2022·广东·二模)(1)初步研究:如图1,在△P AB中,已知P A=2,AB=4,Q为AB上一点且AQ=1,证明:PB=2PQ;(2)结论运用:如图2,已知正方形ABCD的边长为4,△A的半径为2,点P是△A上的一个动点,求2PC+PB的最小值;(3)拓展推广:如图3,已知菱形ABCD的边长为4,△A=60°,△A的半径为2,点P是△A上的一个动点,求2PC−PB的最大值.【答案】(1)见解析;(2)10;(3)237【分析】(1)证明△P AQ△△BAP,根据相似三角形的性质即可证明PB=2PQ;(2)在AB上取一点Q,使得AQ=1,由(1)得PB=2PQ,推出当点C、P、Q三点共线时,PC+PQ的值最小,再利用勾股定理即可求得2PC+PB的最小值;(3)作出如图的辅助线,同(2)法推出当点P在CQ 交△A的点P′时,PC−PQ的值最大,再利用勾股定理即可求得2PC−PB的最大值.【详解】解:(1)证明:△P A=2,AB=4,AQ=1,△P A2=AQ⋅AB=4.△PA AB AQ PA=.又△△A=△A,△△P AQ△△BAP.△12PQ PAPB AB==.△PB=2PQ;(2)如图,在AB上取一点Q,使得AQ=1,连接AP,PQ,CQ.△AP=2,AB=4,AQ=1.由(1)得PB=2PQ,△2PC+PB=2PC+2PQ=2(PC+PQ).△PC+PQ≥QC,△当点C、P、Q三点共线时,PC+PQ的值最小.△QC =22QB BC +=5,△2PC +PB =2(PC +PQ )≥10.△2PC +PB 的最小值为10.(3)如图,在AB 上取一点Q ,使得AQ =1,连接AP ,PQ ,CQ ,延长CQ 交△A 于点P ′,过点C 作CH 垂直AB 的延长线于点H .易得AP =2,AB =4,AQ =1.由(1)得PB =2PQ ,△2PC −PB =2PC −2PQ =2(PC −PQ ) ,△PC −PQ ≤QC ,△当点P 在CQ 交△A 的点P ′时,PC −PQ 的值最大.△QC =22QH CH + =37,△2PC −PB =2(PC −PQ )≤237.△2PC −PB 的最大值为237.【点睛】本题考查了圆有关的性质,正方形的性质,菱形的性质,相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决.例8.(2022·江苏·苏州九年级阶段练习)阅读以下材料,并按要求完成相应的任务.已知平面上两点AB 、,则所有符合0(PA k k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标中,在x 轴,y 轴上分别有点()(),0,0,C m D n ,点P 是平面内一动点,且OP r =,设OP k OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值.下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==,又,POD MOP POM DOP ∠=∠∴.任务:()1将以上解答过程补充完整.()2如图2,在Rt ABC 中,90,4,3,ACB AC BC D ∠=︒==为ABC 内一动点,满足2CD =,利用()1中的结论,请直接写出23AD BD +的最小值.【答案】(1)222.m k r +(2)4103. 【分析】 △ 将PC+kPD 转化成PC+MP ,当PC+kPD 最小,即PC+MP 最小,图中可以看出当C 、P 、M 共线最小,利用勾股定理求出即可;△ 根据上一问得出的结果,把图2的各个点与图1对应代入,C 对应O,D 对应P ,A 对应C ,B 对应M ,当D 在AB 上时23AD BD +为最小值,所以23AD BD +=2223AC CD ⎛⎫+ ⎪⎝⎭ = 224410433⎛⎫+= ⎪⎝⎭ 【详解】解()1:,MP PD k MP kPD =∴=∴,PC kPD PC MP ∴+=+,当PC kPD +取最小值时,PC MP +有最小值,即,,C P M 三点共线时有最小值,利用勾股定理得()2222222.CM OC OM m kr m k r =+=+=+ ()223AD BD +的最小值为4103, 提示:4AC m ==,2433CD kr ==,23AD BD ∴+的最小值为224410433⎛⎫+= ⎪⎝⎭. 【点睛】此题主要考查了新定义的理解与应用,快速准确的掌握新定义并能举一反三是解题的关键.课后专项训练1.(2022·福建南平九年级期中)如图,在Rt△ABC 中,△ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作△C ,P 为△C 上一动点,连接AP 、BP ,则13AP +BP 的最小值为( )A .2.B .3C .5D .2【答案】D【分析】作辅助线构造相似三角形,进而找到P 在何时会使得13AP +BP 有最小值,进而得到答案. 【详解】解:如图,连接CP ,作PE 交AC 于点E ,使CPE PAC ∠=∠△=PCE ACP ∠∠ △PCE △APC △ △PC EP AC AP = △9,3AC PC == △13EP AP = △13AP BP EP BP +=+,当B 、P 、E 三点共线,即P 运动P '时有最小值EB△EC PC PC AC = △1EC = △2252EB EC CB =+= △13AP BP +的最小值为52 故选:D .【点睛】本题考查相似三角形,解直角三角形;懂得依题意作辅助线构造相似三角形是解题的关键.2.(2022·江苏·无锡市九年级期中)如图,△O与y轴、x轴的正半轴分别相交于点M、点N,△O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接P A,PB,则3P A+PB的最小值为___.【答案】85【分析】如图,在y轴上取一点C(0,9),连接PC, 根据13OA APOP PC==,△AOP是公共角,可得△AOP△△POC,得PC=3P A,当B,C,P三点共线时,3P A+PB的值最小为BC,利用勾股定理求出BC的长即可得答案.【详解】如图,在y轴上取一点C(0,9),连接PC,△△O半径为3,点A(0,1),点B(2,0),△OP=3,OA=1,OB=2,OC=9,△1=3OA OPOP OC=,△AOP是公共角,△△AOP△△POC,△PC=3P A,△3P A+PB=PC+PB,△当B,C,P三点共线时,3P A+PB最小值为BC,△BC =22OC OB +=2292+=85,△3P A +PB 的最小值为85.故答案为:85【点睛】本题主要考查相似三角形的判定与性质及最小值问题,正确理解C 、P 、B 三点在同一条直线上时3P A +PB 有最小值,熟练掌握相似三角形的判定定理是解题关键.3.(2022·陕西·三模)如图,在四边形ABCD 中, 3AB =260AC BAC ACD =∠=∠=︒,,设•AD k BD =,则k 的最小值为 ___________.21##12-【分析】如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.由ABE MBD ∽,推出232,903BE AB BAE M DB MB ===∠=∠=︒,设BD m =,则2BE m =,由勾股定理求得DF ,根据两点之间线段最短可得AD 的最小值,进而根据•AD k BD =,即可求解.【详解】解:如图,过点C 作CJ AB ⊥于点J ,过点B 作BM DC ⊥交DC 的延长线于点M ,在AB 的上方构造Rt ABE △,使得ABE MBD ∽,取BE 的中点F ,连接AF DF ,.在Rt ACJ 中,260AC CAJ =∠=︒,,△sin 603CJ AC =⋅︒=,△60ACD BAC ∠=∠=︒,△AB CD ∥, △BM CD CJ AB ⊥⊥,,△四边形BJCM 是矩形,△3BM CJ ==,90MBJ ∠=︒,△ABE MBD ∽,△232,903BE AB BAE M DB MB ===∠=∠=︒,△设BD m =,则2BE m =, △EF FB =,△12AF BE m ==,△ABE MBD ∠=∠,△90EBD ABM ∠=∠=︒,△222DF BF BD m =+=, △2AD DF AF m m ≥-=-,△AD 的最小值为2m m -,△AD kBD =,△k 是最小值为221m m m-=-.故答案为:21-. 【点睛】本题考查轴对称问题,勾股定理,相似三角形的性质等知识,解题的关键是相似构造相似三角形解决问题.4.(2022·湖北武汉·模拟预测)【新知探究】新定义:平面内两定点 A , B ,所有满足PA PB= k ( k 为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”,【问题解决】如图,在△ABC 中,CB = 4 ,AB= 2AC ,则△ABC 面积的最大值为_____.【答案】16 3【分析】以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,证出△APC△△BPA,列出比例式可得BP=2AP,CP=12AP,从而求出AP、BP和CP,即可求出点A的运动轨迹,最后找出距离BC最远的A点的位置即可求出结论.【详解】解:以A为顶点,AC为边,在△ABC外部作△CAP=△ABC,AP与BC的延长线交于点P,△△APC=△BPA,AB= 2AC△△APC△△BPA,△12AP CP ACBP AP AB===△BP=2AP,CP=12AP△BP-CP=BC=4△2AP-12AP=4解得:AP=83△BP=163,CP=43,即点P为定点△点A的轨迹为以点P为圆心,83为半径的圆上,如下图所示,过点P作BC的垂线,交圆P于点A1,此时A1到BC的距离最大,即△ABC的面积最大S△A1BC=12BC·A1P=12×4×83=163即△ABC面积的最大值为163故答案为:163.【点睛】此题考查的是相似三角形的判定及性质、确定点的运动轨迹和求三角形的面积,掌握相似三角形的判定及性质、圆的定义和三角形的面积公式是解决此题的关键.5.(2022·浙江·九年级期中)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+PB的最小值为.【解答】解:如图,在CB上取一点F,使得CF=,连接PF,AF.∵∠DCE=90°,DE=4,DP=PE,∴PC=DE=2,∵=,=,∴=,∵∠PCF=∠BCP,∴△PCF∽△BCP,∴==,∴PF=PB,∴P A+PB=P A+PF,∵P A+PF≥AF,AF===,∴P A+PB≥,∴P A+PB的最小值为,故答案为.6.(2022·江苏·苏州九年级阶段练习)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在CG的最小值为_____.边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+12【答案】5【分析】因为DG=12EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI△△CDG,从而得出GI=12CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt△DEF中,G是EF的中点,△DG=122EF=,△点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,△DIDG=DGCD=12,△△GDI=△CDG,△△GDI△△CDG,△IG DICG DG==12,△IG=12CG,△BG+12CG=BG+IG≥BI,△当B、G、I共线时,BG+12CG最小=BI,在Rt△BCI中,CI=3,BC=4,△BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点G的运动轨迹是解题的关键.7.(2022·山西·九年级专题练习)如图,在ABC 中,90,2B AB CB ∠=︒==,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则2PA PC 的最小值是___________.【答案】5 【分析】作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,根据切线的性质得BH 为△B 的半径,再根据等腰直角三角形的性质得到BH 12=AC 2=,接着证明△BPD △△BCP 得到PD 22=PC ,所以P A 22+PC =P A +PD ,而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),从而计算出AD 得到P A 22PC +的最小值. 【详解】解:作BH △AC 于H ,取BC 的中点D ,连接PD ,如图,△AC 为切线,△BH 为△B 的半径,△△ABC =90°,AB =CB =2,△AC 2=BA =22,△BH 12=AC 2=,△BP 2=, △22PB BC =,1222BD BP ==,而△PBD =△CBP ,△△BPD △△BCP , △22PD PB PC BC ==,△PD 22=PC ,△P A 22+PC =P A +PD , 而P A +PD ≥AD (当且仅当A 、P 、D 共线时取等号),而AD 22215=+=,△P A +PD 的最小值为5,即P A 22PC +的最小值为5.故答案为:5.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决问题的关键是利用相似比确定线段PD22PC.也考查了等腰直角三角形的性质.8.(2022·湖北·九年级专题练习)如图,已知正方形ABCD的边长为4,△B的半径为2,点P是△B上的一个动点,则PD﹣12PC的最大值为_____.【答案】5【详解】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=5.详解: 在BC上取一点G,使得BG=1,如图,△221PBBG==,422BCPB==,△PB BCBG PB=,△△PBG=△PBC,△△PBG△△CBP,△12PG BGPC PB==,△PG=12PC,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=2243+=5.故答案为5点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.9.(2022·北京·九年级专题练习)如图,边长为4的正方形,内切圆记为△O,P是△O2P A +PB的最小值为________.【答案】25【分析】2P A+PB=2(P A+22PB),利用相似三角形构造22PB即可解答.【详解】解:设△O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,△OI =IB =2,△222OP OI ==,2222OB OP == ,△OP OB OI OP = ,△O 是公共角,△△BOP △△POI , △22PI OI PB OP ==,△PI =22PB ,△AP +22PB =AP +PI , △当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE △AB 于E , △△ABO =45°,△IE =BE =22BI =1,△AE =AB −BE =3, △AI =223110+=,△AP +22PB 最小值=AI =10, △2P A +PB =2(P A +22PB ),△2P A +PB 的最小值是2AI =21025⨯=.故答案是25. 【点睛】本题是“阿氏圆”问题,解决问题的关键是构造相似三角形.10.(2022·山东·九年级专题练习)如图,在Rt ABC 中,90ACB ∠=︒,4CB =,6CA =,圆C 半径为2,P 为圆上一动点,连接,2,1A A P P P P B B +最小值__________.13BP AP +最小值__________.【答案】37;2373.【分析】如图,连接CP,在CB上取点D,使CD=1,连结AD,可证△PCD△△BCP.可得PD=12BP,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,由CD=1,CA=6,根据勾股定理AD=2216+=37即可;在AC上取CE=23,△PCE△△ACP.可得PE=13AP,当点B,P,E在同一条直线时,BP+13AP的值最小,在Rt△BCE中,由CE=23,CB=4,根据勾股定理BE=2222374=33⎛⎫+⎪⎝⎭即可.【详解】解:如图,连接CP,在CB上取点D,使CD=1,连结AD,△CP=2,BC=4,△CD121=,CP242CPBC==,△CD1=CP2CPBC=,又△△PCD=△BCP,△△PCD△△BCP.△12PDBP=,△PD=12BP,△AP+12BP=AP+PD,当点A,P,D在同一条直线时,AP+12BP的值最小,在Rt△ACD中,△CD=1,CA=6,△AD=2216+=37,△AP+12BP的最小值为37.故答案为:37在AC上取CE=23,连接CP,PE△21213==,2363CE CP CP AB ==△13CE CP CP AB == 又△△PCE =△ACP ,△△PCE △△ACP .△13PE AP =,△PE =13AP ,△BP +13AP =BP +PE , 当点B ,P ,E 在同一条直线时,BP +13AP 的值最小, 在Rt △BCE 中,△CE =23,CB =4,△BD =2222374=33⎛⎫+ ⎪⎝⎭, △BP +13AP 的最小值为2373.故答案为:2373. 【点睛】本题考查圆的性质,构造相似三角形解决比例问题,勾股定理,掌握圆的性质,相似三角形的判定与性质,勾股定理,关键是引辅助线准确作出图形是解题关键.11.(2022·重庆·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +23PC 的最小值为__,PD ﹣23PC 的最大值为__. (2)如图2,已知菱形ABCD 的边长为4,△B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD +12PC 的最小值为__,PD ﹣12PC 的最大值为__.【答案】 106 106 37 37【分析】(1)如图3中,在BC 上取一点G ,使得4BG =,先证明PBG CBP ,得到23PG PC =,所以32PD PC PD PG +=+,而PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC +的最小值,32PD PC PD PG -=-,而PD PG DG -≤(当且仅当G 、P 、D 共线时取等号),从而计算出DG 得到23PD PC -的最大值; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,解法同(1).【详解】(1)如图3中,在BC 上取一点G ,使得4BG =,6342PB BG ==,9362BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,23PG BG PC PB ∴==, 23PG PC ∴=,32PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为2259106DG =+=,32PD PC +的最小值为106,32PD PC PD PG DG -=-≤, 23PD PC ∴-的最大值为106,故答案为:106,106; (2)如图4中,在BC 上取一点G ,使得1BG =,作DF BC ⊥交于点F ,221PB BG ==,422BC PB ==,PBG PBC ∠=∠, PBG CBP ∴,12PG BG PC PB ∴==,12PG PC ∴=,12PD PC PD PG ∴+=+, PD PG DG +≥(当且仅当G 、P 、D 共线时取等号),PD PG ∴+的最小值为DG , 12PD PC ∴+的最小值为DG , 在Rt CDF 中,60DCF ∠=︒,4CD =,sin 6023DF CD ∴=⋅︒=,2CF =,在Rt GDF 中,22(23)537DG =+=,12PD PC ∴+的最小值为37, 12PD PC PD PG DG -=-≤,12PD PC ∴-的最大值为37,故答案为:37,37. 【点睛】本题考查圆的综合题、正方形的性质、菱形的性质、相似三角形的判定与性质,解决问题的关键是学会构建相似三角形解决问题.12.(2022·江苏淮安·九年级期中)问题提出:如图1,在等边△ABC 中,AB =12,△C 半径为6,P 为圆上一动点,连结AP ,BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=3,则有CDCP=CPCB=12,又△△PCD=△BCP,△△PCD△△BCP,△PDBP=12,△PD=12BP,△AP+12BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+12BP的最小值为.(2)自主探索:如图1,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,13AP+PC的最小值为.(3)拓展延伸:如图2,扇形COD中,O为圆心,△COD=120°,OC=4,OA=2,OB=3,点P是CD上一点,求2PA+PB的最小值,画出示意图并写出求解过程.【答案】(1)AP+12BP的最小值为313;(2)13AP+PC的值最小值为52;(3)2PA+PB的最小值为97,见解析.【分析】(1)由等边三角形的性质可得CF=6,AF=63,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由PB1BFAB3BP==,可证△ABP△△PBF,可得PF=13AP,即13AP+PC=PF+PC,则当点F,点P,点C三点共线时,13AP+PC的值最小,由勾股定理可求13AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB△OD于点M,由OA1OPOP2OF==,可得△AOP△△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【详解】解:(1)解:(1)如图1,连结AD,过点A作AF△CB于点F,△AP+12BP=AP+PD,要使AP+12BP最小,△AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+12BP最小值为AD,△AC=12,AF△BC,△ACB=60°△CF=6,AF=63△DF=CF-CD=6-3=3△AD=22AF DF+=313△AP+12BP的最小值为313(2)如图,在AB上截取BF=1,连接PF,PC,△AB=9,PB=3,BF=1△PB1BFAB3BP==,且△ABP=△ABP,△△ABP△△PBF,△FP BP1AP AB3==△PF=13AP△13AP+PC=PF+PC,△当点F,点P,点C三点共线时,13AP+PC的值最小,△CF=22BF BC +=149+=52△13AP+PC 的值最小值为52,(3)如图,延长OC ,使CF=4,连接BF ,OP ,PF ,过点F 作FB△OD 于点M , △OC=4,FC=4,△FO=8,且OP=4,OA=2, △OA 1OPOP 2OF==,且△AOP=△AOP△△AOP△△POF △AP OA 1PF OF 2==△PF=2AP△2PA+PB=PF+PB , △当点F ,点P ,点B 三点共线时,2AP+PB 的值最小, △△COD=120°,△△FOM=60°,且FO=8,FM△OM △OM=4,FM=43△MB=OM+OB=4+3=7△FB=22FM MB +=97△2PA+PB 的最小值为97.【点睛】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.13.(2022·湖北·九年级专题练习)(1)如图1,已知正方形ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +24PD PC +的最小值,12PD PC -的最大值.(2)如图2,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,求23PD PC+的最小值,23PD PC -的最大值,2PC PD 的最小值.(3)如图3,已知菱形ABCD 的边长为4,=60B ∠︒,圆B 的半径为2,点P 是圆B 上的一个动点,求12PD PC +的最小值和12PD PC -的最大值.3PC 的最小值【答案】见详解【分析】(1)如图1中,在BC 上取一点G ,使得BG=1.由△PBG△△CBP ,推出12PG BG PC PB ==,推出PG=12PC ,推出PD+12PC=DP+PG ,由DP+PG≥DG ,当D 、G 、P 共线时,PD+12PC 的值最小,最小值为DG=2243+=5.由PD-12PC=PD-PG≤DG ,当点P 在DG 的延长线上时,PD-12PC 的值最大(如图2中),最大值为DG=5;可以把24PD PC +转化为4(24PD PC +),这样只需求出24PD PC +的最小值,问题即可解决。

阿波罗尼斯问题详细解答

阿波罗尼斯问题详细解答

――――――阿波罗尼斯问题详细解答1目序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录 内 阿波罗尼斯是一个什么样的人? 什么是阿波罗尼斯问题? 阿波罗尼斯问题有多少个子问题? 怎样作一条线段的垂直平分线? 怎样过线段上一点作该线段的垂线? 怎样过圆上一点作该圆的切线? 怎样作两个圆的公切线? 什么叫反演变换? 怎样作反演圆内一点的反演点? 怎样作反演圆外一点的反演点? 怎样作一条直线的反演图形? 怎样作一个圆的反演图形? 容录页码 03 03 03 03 04 04 05 06 06 06 07 08 10 10 10 11 11 13 13 14 16 17 17 18 19 22 26 31 35 41 47 55 69怎样才能让一条直线经过反演变换后保持不变? 怎样才能让一个圆经过反演变换后保持不变? 怎样作线段 a、b 的比例中项 c? 什么叫圆的幂?怎样作出圆的幂? 什么是圆的根轴(或等幂轴)?怎样作出圆的根轴? 什么是圆的根心?怎样作出圆的根心? 什么叫相(位)似中心?怎样作出相(位)似中心? 什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点? 什么叫两圆周的共同幂? 什么叫相似轴?怎样作出相似轴? 阿波罗尼斯问题之一:点点点 阿波罗尼斯问题之二:线线线 阿波罗尼斯问题之三:点线线 阿波罗尼斯问题之四:点点线 阿波罗尼斯问题之五:点点圆 阿波罗尼斯问题之六:点圆圆 阿波罗尼斯问题之七:点线圆 阿波罗尼斯问题之八:线圆圆 阿波罗尼斯问题之九:线线圆 阿波罗尼斯问题之十:圆圆圆 米勒问题和米勒定理2第 01 个问题: 阿波罗尼斯是一个什么样的人? 个问题: 阿波罗尼斯是一个什么样的人? 阿波罗尼斯,Apollonius,有时也翻译为“阿波罗尼奥斯” ,古希腊大数学家,生活在公 元前 260 年到公元前 190 年,著有《论相切》和《圆锥曲线》 。

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

专题:阿氏圆与线段和最值问题(含答案)

专题:阿氏圆与线段和最值问题(含答案)

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。

完整版阿氏圆问题归纳

完整版阿氏圆问题归纳

阿氏圆题型的解题方法和技巧以阿氏圆〔阿波罗尼斯圆〕为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要 .阿氏圆定理〔全称:阿波罗尼斯圆定理〕,具体的描述:一动点P到两定点A、B的距离之比等于定比n〔丰1〕,那么P点的轨迹,是以定比n内分和外分定线段AB的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB 〔k丰1〕P点的运动轨迹是圆或者圆弧的题型.PA+kPB,〔k丰1〕P点的运动轨迹是圆或圆弧的题型阿氏圆根本解法:构造母子三角形相似【问题】在平面直角坐标系xOy中,在x轴、y轴分别有点C〔m, 0〕 , D〔0, n〕.点P是平面内一动点,且OP=r,求PC+kPD勺最小值.阿氏圆一般解题步骤:第一步:确定动点的运动轨迹〔圆〕,以点.为圆心、r为半径画圆;〔假设圆已经画出那么可省略这一步〕第二步:连接动点至圆心0〔将系数不为1的线段的固定端点与圆心相连接〕,即连接OR OD第三步:计算出所连接的这两条线段OR OD长度;第四步:计算这两条线段长度的比k;第五步:在OD上取点M,使得OM:OP=OP:OD=k第六步:连接CM与圆.交点即为点P.此时CMgP所求的最小值.一…,括号外边,将其中一条线段的系数化成;,再构造△相似进行计算】习题【旋转隐圆】如图,在Rt A ABC中,/ ACB=90 , D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),假设AC=4, BC=3那么在旋转过程中,线段C咔度的取值范围是.1.Rt △ ABC中,/ ACB=90 , AC=4 BC=3 点.为^ ABC内一动点,满足CD=2 贝U AD+2 BD3 的最小值为.2.如图,菱形ABCD勺边长为2,锐角大小为60° , O A与BC相切于点E,在O A上任取一-3……点P,贝U PB+业3 PD的最小值为2【旅转隐圆】第1鞭第2题3.如图,菱形ABCD勺边长为4, / B=60° ,圆B的半径为2, P为圆B上一动点,贝U PD+11 PC的最小值为.24.如图,点A, B在O.上,OA=OB=12,OA OB点C是OA的中点,点D在OB上,OD=10.动.,, …1…点P在③.上,贝U PC+— PD的最小值为.25.如图,等边△ ABC的边长为6,内切圆记为.O P是圆上动点,求2PB+PC勺最小值.第3题第4题第5题6.如图,边长为4的正方形,内切圆记为③ O, P是圆上的动点,求J2PA+PB勺最小值.7.如图,边长为4的正方形,点P 是正方形内部任意一点,且BP=2那么PD+1PC的最小值2为; <2 PD+4PC勺最小值为.8.在平面直角坐标系xOy中,A(2 , 0) , B(0,2) , C(4, 0), D(3, 2) , ?是左AOB7卜部的第象限内一动点,且/ BPA=135 ,贝U 2PD+PC勺最小值是.10.如图,在 Rt△ ABC 中,/ A=30° , AC=8,以 C 为圆心,⑴试判断O C 与AB 的位置关系,并说明理由;⑵点F 是③C 上一动点,点 D 在AC 上且CD=2试说明△ FCL^A ACF 1 ……EF+— FA 的最小值.211.(1)如图1,正方形 ABCD 勺边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,求PD+1 PC 的最小值和PD-1PC 的最大值;22⑵如图2,正方形 ABCD 勺边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那 ,2,, 一…2…,…么PD+—PC 的最小值为 , PD-—PC 的最大值为 .3 3⑶如图3,菱形 ABCD 勺边长为4, Z B=60° ,圆B 的半径为2,点P 是圆B 上的一个 动点,那么PD+1PC 的最小值为 , PD-1PC 的最大值为 .22ZABC=60 , O A 的半径为6, P 是O A 上的动点, 连接PB PC,4为半径作O C.9,在^ ABC 中,AB=& BC=8那么3PC+2PB 勺最小值为⑶ 点E 是AB 上任意一点,在(2)的情况下,试求出B•••PD=1BP, ••• AP+1 BP=AP+PD221……,请你完成余下的思考,并直接写出答案:AP+—BP 的最小值为 .2⑵自主探索:在“问题提出〞的条件不变的情况下,-AP+BP 的最小值为 .3⑶ 拓展延伸:扇形 COW, / COD=90 , OC=6 OA=3 OB=5,点P 是弧CD 上一点,求 2PA+PB 的最小值.【二次函数结合阿氏圆题型】13.如图1,抛物线y=ax2+(a+3)x+3 (a丰0)与x 轴交于点 A (4, 0),与y 轴交于点B,在 x 轴上有一动点E (m 0) ( 0v rnK 4),过点E 作x 轴的垂线交直线 AB 于点N,交抛物线 于点P,过点P 作P 机AB 于点M⑴求a 的值和直线AB 的函数表达式;⑵设△ PMN!勺周长为 C1, △ AEN 的周长为 C2, 假设C6,求m 的值; C25⑶如图2,在(2)条件下,将线段 OE 绕点O 逆时针旋转得到 OE',旋转角为a ( 0° Va V90° ),连接E' A 、E' B,求 E' A+2E' B 的最小值.3问题背景:如图1,在^ ABC中,BC=4, AB=2AC问题初探:请写出任意一对满足条件的AB与AC的值:AB=问题再探:如图2,在AC右侧作/ CADW B,交BC的延长线于点问题解决:求△ ABC的面积的最大值.,AC=D,求CD的长.1.小明的数学探究小组进行了系列探究活动.类比定义:类比等腰三角形给出如下定义:有一组邻边相等的凸四边形叫做邻等四边形.探索理解:⑴如图1,A、B C在格点(小正方形的顶点)上,请你协助小明用两种不同的方法画出格点D,连接DA DC 使四边形ABCC^邻等四边形;r_r T-r -i r ~r~r ~r _r _i尝试体验:⑵如图2,邻等四边形ABCW, AD=CD Z ABC=120 , / ADC=60 , AB=2, BC=1,求四边形ABCD勺面积.解决应用:⑶如图3,邻等四边形ABCW, AD=CD Z ABC=75 , Z ADC=60 , BD=4小明爸爸所在的工厂,需要裁取某种四边形的材料板,这个材料板的形状恰巧是符合如图3条件的邻等四边形, 要求尽可能节约.你能求出这种四边形面积的最小值吗如果能,请求出此时四边形ABCE®积的最小值;如果不能,请说明理由.2.我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形〞.(1)如图1,在四边形ABC/,添加一个条件使得四边形ABCD是“等邻边四边形〞.请写出你添加的一个条件.⑵如图2,等邻边四边形ABCg, AB=AD Z BAD% BCD=90 , AG BD为对角线,AC^2AR试探究BC, BD的数量关系.(3)如图3,等邻边四边形ABC" AB=AD AC=2, / BAD=^ BCD=60 ,求等邻边四边形ABCD 面积的最小值.S'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样作出三个圆的根心? 如果三个圆存在根心,则运用前面第 17 个问题的方法,先作出三条根轴,再作出其交 点即可;当然,实际操作时,只需作出两条根轴。 第 19 个问题: 什么叫相似中心?怎样作出相似中心? 设选定一点 S 和一个数 k,将任一点 M 与点 S 连成直线,在此直线上沿 SM 的方向或 相反的方向截取一线段 SM`,使得 SM`/SM=k,则所得的点 M`为点 M 的位似点,点 S 称为 位.似.中.心.或.相.似.中.心.,数 k 称为位似比或相似系数,若 SM 与 SM`同向,则位似称为正的。 若 SM 与 SM`反向,则位似称为反的。如下图:
反演圆的交占满)不动,其它的点都变动了位置。 (2)不通过反演极的直线:分两类情况 ①直线与反演圆相离: 过反演极 O 作直线 L 的垂线,设垂足为 A,作出点 A 关于圆周 O 的反点 A`,则直线 L
的反形为一个圆,一个以线段 OA`为直径的圆;具体见下图:
②直线与反演圆相切:以反演极 O 和切点 A 为直径的一个圆
什么叫相似轴?怎样作出相似轴?
阿波罗尼斯问题之一:点点点
阿波罗尼斯问题之二:线线线
阿波罗尼斯问题之三:点线线
阿波罗尼斯问题之四:点点线
阿波罗尼斯问题之五:点点圆
阿波罗尼斯问题之六:点圆圆
阿波罗尼斯问题之七:点线圆
阿波罗尼斯问题之八:线圆圆
阿波罗尼斯问题之九:线线圆
阿波罗尼斯问题之十:圆圆圆
米勒问题和米勒定理
――――――阿波罗尼斯问题详细解答
湖南省沅江市第一中学 王习波
1
序号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 附录




阿波罗尼斯是一个什么样的人?
其中,垂直于 OP 的弦 AB 被称作过点 P 的最小弦。 第 17 个问题: 什么是圆的根轴(或等幂轴)?怎样作出圆的根轴? 所谓圆的根轴就是到两定圆的幂相等的动点的轨迹,可以证明该轨迹为一条直线,所以 称之为两定圆的根轴或等幂轴。 请注意,根轴是与两个圆相关联的概念,一个圆无所谓根轴。 怎样作出圆的根轴? ①若两圆相离,则我们可以作出它的四条公切线,这四条公切线的中点到这两个圆的幂 都相等,又已知根轴是一条直线,所以取其中两个的中点就可以作出这条根轴。
②若点 P 在圆 O 之上,ρ(P)= PO2-r2 =0,依然是切线段 PQ 的平方(正因为是切 线段长度的平方,所以叫幂),只不过线段 PQ 已经退化为一个点,线段长变为零。 ③若点 P 在圆 O 之内,则过点 P 作圆 O 的弦 AB,使得 OP 垂直于弦 AB,则 AP2= BP2= ρ(P)= r2-PO2,其大小是垂直于 OP 的弦的一半的平方,如下图:
5
③两圆内切时,其外公切线可以仿照作出,不赘述。
说明:①两圆内含(但不内切)时,没有公切线; ②两圆内切时,只有一条外公切线; ③两圆相交时,只有两条外公切线。 ④两圆外切时,有一条内公切线,两条外公切线,共 3 条; ⑤两圆相离时,有外公切线两条、内公切线两条,共 4 条。
第 08 个问题: 什么叫反演变换? 中文名称:反演;英文名称:inversion 二维平面上的反演以一个特定的反演圆为基础:圆心 O 为反演中心,圆半径为常数 k,
把点 P 反演为点 P'就是使得 OP×OP' = k2 (即 k 为 OP 和 OP'的几何平均). 如点 P 在圆上,反演后仍是它自身。
第 09 个问题: 怎样作反演圆内一点的反演点? 如点 P 在圆内:连结 OP,过点 P 作直线垂直于 OP,直线与圆的交点处的切线的交点就
是点 P'. 第 10Fra bibliotek个问题: 怎样作反演圆外一点的反演点? 如点 P 在圆外可这样作:过点 P 作圆的切线(两条),两个切点相连与 OP 连线交点就
③不通过反演极并且与反演圆相切的圆周:其反形为圆 O 内的一个圆,如下图:
9
作法:过反演极 O 和圆 I 的圆心 I 作一条直线 OI,直线 OI 交圆 I 于点 A、B 两点;作 出点 A 的反演点 A`,点 A`和点 A 重合;作出点 B 的反演点 B`;以线段 A`B`为直径作圆 I`, 则圆 I`就是圆 I 关于反演圆 O 的反形。
②不通过反演极并且与反演圆相离的圆周:其反形为在圆 O 内的一个圆,如下图:
8
作法:过反演极 O 和圆 I 的圆心 I 作一条直线 OI,直线 OI 交圆 I 于点 A、B 两点;作 出点 A 的反演点 A`,作出点 B 的反演点 B`;以线段 A`B`为直径作圆 I`,则圆 I`就是圆 I 关于反演圆 O 的反形。
12
又 PQ 垂直于两圆的连心线,从而可知直线 PQ 就是所求作根轴。 说明:此法可运用到所有两圆(直线、点)的情况。 ⑥两同心圆无根轴。 第 18 个问题: 什么是圆的根心?怎样作出圆的根心? 所谓圆的根心,是相对三个圆来说的。给定平面上三个圆,如果其中任意两个圆都有一
条根轴,则容易证明,这三条根轴交于一点或相互平行。当三条根轴交于一点 P 时,点 P 称为这三个圆的根心或等幂心(点 P 对于三个圆的幂都相等)。因而,上述事实称为根心定 理。
什么是阿波罗尼斯问题?
阿波罗尼斯问题有多少个子问题?
怎样作一条线段的垂直平分线?
怎样过线段上一点作该线段的垂线?
怎样过圆上一点作该圆的切线?
怎样作两个圆的公切线?
什么叫反演变换?
怎样作反演圆内一点的反演点?
怎样作反演圆外一点的反演点?
怎样作一条直线的反演图形?
怎样作一个圆的反演图形?
怎样才能让一条直线经过反演变换后保持不变?
10
第 16 个问题: 什么叫圆的幂?怎样作出圆的幂? 所谓圆的幂,具体是指一个点相对于一个圆的幂。设Γ是平面上一个圆心为 O、半径为 r 的圆,对于平面上任一点 P,令ρ(P)=PO2-r2,则称ρ(P)为点 P 对于圆Γ的幂。
① 若点 P 在圆 O 之外,则过点 P 作圆 O 的切线,记切点为 Q,则 PQ2=ρ(P)=PO2 -r2,如下图:
说明: 这里实际上解决了另一个问题:如何过圆 O1 外一点 O2 作圆 O1 的切线 O2D、O2E。
②两圆内公切线的具体作法:如下图 ⑥ 作圆 M,其半径为两圆圆心所确定的线段的一半, ⑦ 作内公切线时,以大圆的圆心为圆心、R+r 为半径作圆 O; ⑧ 设圆 O 与圆 M 的交点为 D、E,连接 DO2、EO2; ⑨ 设射线 O1D 和圆 O1 交于点 F,以 DF、DO2 为两条边作平行四边形 FDO2H,则 直线 FH 为两圆的一条内公切线, ⑩ 同理,可作出另一条内公切线 GI
第 06 个问题: 怎样过圆上一点作该圆的切线? 如下图:连接圆心 O 和圆上该点 A,于是问题转化为:过点 A 作线段 OA 的垂线。
4
第 07 个问题: 怎样作两个圆的公切线?
①两圆外公切线的具体作法:如上图 ① 作圆 M,其半径为两圆圆心所确定的线段 O1O2 的一半,或者这么说:以线段 O1O2 为直径作一个圆。 ② 作外公切线时,以大圆的圆心为圆心、R-r 为半径作圆 O; ③ 设圆 O 与圆 M 的交点为 D、E,连接 DO2、EO2; ④ 设射线 O1D 和圆 O1 交于点 G,以 DG、DO2 为两条边作平行四边形 GDO2F,则 直线 GF 为两圆的一条外公切线, ⑤ 同理,可作出另一条外公切线 HI
怎样才能让一个圆经过反演变换后保持不变?
怎样作线段 a、b 的比例中项 c?
什么叫圆的幂?怎样作出圆的幂?
什么是圆的根轴(或等幂轴)?怎样作出圆的根轴?
什么是圆的根心?怎样作出圆的根心?
什么叫相(位)似中心?怎样作出相(位)似中心?
什么叫相(位)似点?什么叫正相(位)似点?什么叫逆相似点?
什么叫两圆周的共同幂?
11
又由于根轴总是垂直于两圆的连心线,所以只要作出一条外公切线即可作出两圆的根轴 如下图:
②若两圆相外切,则我们可以作出它的三条公切线,内公切线和外公切线的交点(即两 外公切线段的中点)就确定了这两个圆的根轴。
③若两圆相交,则两个交点所确定的直线就是这两个圆的根轴。 ④若两圆相内切,则唯一的这条外公切线就是这两个圆的根轴。 ⑤若两圆内含,则根轴在大圆外,如下图:
④不通过反演极并且与反演圆相交的圆周:其反形为与圆 O 相交的一个圆,作法类似 于前:
⑤不通过反演极在反演圆内的圆周:其反形为在圆 O 外的一个圆,作法类似于前,其 图类似②图。
第 13 个问题: 怎样才能让一条直线经过反演变换后保持不变? 在直线 L 上取一点 O,以它为圆心任作一圆,这样以圆 O 为反演圆的反演变换将直线 L 变成自身。 第 14 个问题: 怎样才能让一个圆经过反演变换后保持不变? 在圆 O 上任取一点 A,作直线 AB 垂直 OA,在 AB 上任取一点 P 作圆心,PA 为半径 作圆,则以圆 P 为反演圆的变换将圆 O 变成自身。 第 15 个问题: 怎样作线段 a、b 的比例中项 c?
7
③直线与反演圆相交:过反演极 O 和两个交点 A、B 的一个圆
第 12 个问题: 怎样作一个圆的反演图形? ①通过反演极的圆周:它的反形是一条直线,如下图:
作法:过反演极 O 和圆 I 的圆心 I 作一条直线 OI,直线 OI 交圆 I 于点 A、O 两点;作 出点 A 的反演点 A`;过点 A`作一条直线 L 垂直于直线 OI,直线 L 就是圆 I 关于反演圆 O 的反形。
6
是点 P'. 另法:以点 P 为圆心、PO 为半径作圆 P,设圆 P 交圆 O 于 A、B 两点,分别以 A、
B 两点,以 OA、OB 为半径作圆,圆 A 和圆 B 交于点 O 和另一点,该点就是 P`。 图形省略了,请您自己画图体验。 第 11 个问题: 怎样作一条直线的反演图形? (1)通过反演极的直线:经过反演变换后与原直线生命,但直线上只有两个点(直线与
相关文档
最新文档