图解主板供电回路
《主板供电电路》PPT课件

C117 0.1UF /Y5V/50V
1 2
R198 0
R181 10M
C259 1000PF
晶振 32.768khz
C114 18PF
双针CMOS跳线 CLR_CMOS
主板开机引导过程
1、插上电源线,机箱内的ATX电源加电, 加电后,ATX电源开始输出待机工作电压 (vSB5V)。这时实时时钟开始工作,向 CMOS电路和开机电路发送32.768KHz的 实时时钟信号。
EC117 220UF
CMOS 电池
R196 1k
R1128
SLP_S3
R430 8.2k
南桥芯片
R1129
FWB82801FB
ICH6
INTVERMEN
RTCRST
PWRBTN RTCX1 RTCX2
R18
C113
390k
18PF
R195 0
1
3
2
三端稳压二极管
R194 200k
C116 1UF /Y5V/50V
7、在CPU开始工作后,首先需要进行自检,即开始 读取POST自检程序,而自检程序在BIOS中存放,所 以CPU通过前端总线的A0-A31地址线发送寻址信号 寻找自检程序。在发送寻址信号前,先要检查前端总 线是否被占用,CPU会检测DBSY(总线忙信号引脚) 是否为低电平。低电平为空闲,高电平为忙。
2、按下电脑开关的瞬间,电源开关向南桥 芯片或I/O芯片发出开机的触发信号,触发 开机电路工作,此时电源接头的第14引脚 变成低电平,ATX电源开始工作。
3、ATX电源开始工作后,电源接头的各个 引脚向主板的各大系统和各个硬件输出相 应的电压。
4、所有供电输出无误后的100-500ms后, ATX电源会由第8引脚向主板发送出3V-5V 的PowerGood信号,此信号分别提供给 CPU、北桥和南桥,其中进入南桥的 PowerGood信号作用在内部的复位模块上, 另外,PowerGood信号经过南桥连接到系 统的时钟芯片的RST端,作为RST信号(复 位信号)。
(完整版)主板供电电路图解说明

主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
主板电源接口详解(图解)

计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。
启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。
楼上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。
主板电源接口图解20-PIN ATX主板电源接口4-PIN“D”型电源接口主板20针电源插口及电压:在主板上看:编号输出电压编号输出电压1 3.3V 11 3.3V2 3.3V 12 -12V 3地 13地4 5V 14 PS-ON 5地 15地6 5V 16地7地 17地8 PW+OK 18 -5V9 5V-SB 19 5V10 12V 20 5V在电源上看编号输出电压编号输出电压20 5V 10 12V 19 5V 9 5V-SB 18 -5V 8 PW+OK 17地 7地16地 6 5V15地 5地14 PS-ON 4 5V13地 3地12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量另附:24 PIN ATX电源电压对照表ATX电源几组输出电压的用途+3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。
而在AT/PSII电源上没有这一路输出。
以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU 的电压降到了3.3V以下,为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板变换后用于驱动CPU、内存等电路。
+5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。
+12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。
在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。
图解主板的供电原理(电脑维修必备)

现在的大多数主板的供电都使用PWM(Pulse Width Modul ati on 脉冲带宽调制)方法进行,主要是由MOSFET管、PWM芯片、扼流线圈和滤波电容等部分完成。
图1.浩鑫MN31主机板的电源部分,PWM芯片位于左边输入线圈的左部(见下图)图2.电源管理芯片RT9241,可以精确的平衡各相电流,以维持功率组件的热均衡PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路用的是PWM IC。
那么电源控制IC是如何控制CPU工作电压的?在主板启动时,主板BIOS将CPU所提供的VID0-VID3信号送到PWM芯片的D0-D3端,如果主板BIOS具有可设定CPU 电压的功能,主板会按时设定的电压与VID的对应关系产生新的VID信号并送到PWM芯片,PWM根据VID的设定并通过DAC电压将其转换为基准电压,再经过场效应管轮流导通和关闭,将能量通过电感线圈送到CPU,最后再经过调节电路使用输出电压与设定电压值相当。
目前绝大多数主板将5V或12V电压降到1.05~1.825V或1.30/1.80~3.5V都使用PWM方法,PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路都用PWM IC,下面对组成元件作一说明:1.MOSFET管(Metallic Oxide Semiconductor Field Effect Tran sis tor 金属-氧化物-半导体场效应晶体管,简称为MOSFET管)目前应用的较多的是以二氧化硅为绝缘层的栅型场效应管。
MOSFET有增强型和耗尽型两种,每一种又有N沟道和P沟道之分。
以N沟道增强型MOSFET为例,它是以P行硅为衬底,在衬底一侧(称为衬底表面)上用杂质扩散的方法形成两个高掺杂的N+区,分别作为源极(S)和漏极(D)。
计算机主板各供电电路图解

计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
(完整版)主板供电电路图解说明

主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
图解主板电线接法(电源开关重启等)
钥匙开机其实并不神秘还记不记得你第一次见到装电脑的时候,JS将CPU、内存、显卡等插在主板上,然后从兜里掏出自己的钥匙(或者是随便找颗螺丝)在主板边上轻轻一碰,电脑就运转起来了的情景吗?是不是感到很惊讶(笔者第一次见到的时候反正很惊讶)!面对一个全新的主板,JS总是不用看任何说明书,就能在1、2分钟之内将主板上密密麻麻的跳线连接好,是不是觉得他是高手?呵呵,看完今天的文章,你将会觉得这并不值得一提,并且只要你稍微记一下,就能完全记住,达到不看说明书搞定主板所有跳线的秘密。
这个叫做真正的跳线首先我们来更正一个概念性的问题,实际上主板上那一排排需要连线的插针并不叫做“跳线”,因为它们根本达不”到跳线的功能。
真正的跳线是两根/三根插针,上面有一个小小的“跳线冒”那种才应该叫做“跳线”,它能起到硬件改变设置、频率等的作用;而与机箱连线的那些插针根本起不到这个作用,所以真正意义上它们应该叫做面板连接插针,不过由于和“跳线”从外观上区别不大,所以我们也就经常管它们叫做“跳线”。
看完本文,连接这一大把的线都会变得非常轻松至于到底是谁第一次管面板连接插针叫做“跳线”的人,相信谁也确定不了。
不过既然都这么叫了,大家也都习惯了,我们也就不追究这些,所以在本文里,我们姑且管面板连接插针叫做跳线吧。
轻松识别各连接线的定义为了更加方便理解,我们先从机箱里的连接线说起。
一般来说,机箱里的连接线上都采用了文字来对每组连接线的定义进行了标注,但是怎么识别这些标注,这是我们要解决的第一个问题。
实际上,这些线上的标注都是相关英文的缩写,并不难记。
下面我们来一个一个的认识(每张图片下方是相关介绍)!电源开关:POWER SW英文全称:Power Swicth可能用名:POWER、POWER SWITCH、ON/OFF、POWER SETUP、PWR等功能定义:机箱前面的开机按钮复位/重启开关:RESET SW英文全称:Reset Swicth可能用名:RESET、Reset Swicth、Reset Setup、RST等功能定义:机箱前面的复位按钮电源指示灯:+/-可能用名:POWER LED、PLED、PWR LED、SYS LED等硬盘状态指示灯:HDD LED英文全称:Hard disk drive light emitting diode 可能用名:HD LED报警器:SPEAKER可能用名:SPK功能定义:主板工作异常报警器这个不用说,连接前置USB接口的,一般都是一个整体音频连接线:AUDIO可能用名:FP AUDIO功能定义:机箱前置音频看完以上简单的图文介绍以后,大家一定已经认识机箱上的这些连线的定义了,其实真的很简单,就是几个非常非常简单英文的缩写。
主板上CPU核心供电电路的简单示意图
主板上CPU核心供电电路的简单示意图说明电脑主板供电电路原理(维修系列二)下图(1)下图(2)主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
电脑主板CPU供电电路原理图解
电脑主板CPI 供电电路原理图解.多相供电模块的优点1. 可以提供更大的电流,单相供电最大能提供25A 的电流,相对现在主流的处 理器来说,单相供电无法提供足够可靠的动力, 所以现在主板的供电电路设计都 采用了两相甚至多相的设计,比如 K7、K8多采用三相供电系统,而LGA755的 Pentium 系列多采用四相供电系统。
2. 可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3. 利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控 制芯片(PWM 芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证 了日后升级新处理器的时候的优势。
.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容 组成;输出部分同样也由一个电感线圈和一个组成; 控制部分则由一个PW 控制 芯片和两个场效应管(MOS-FE )组成(如图1)。
0丁1艸 ------ 1 中国旭日电器輸入气分I::控制部分中国旭日电器符栋梁CPU 供电外,还要给其它设备的供电,如果做成 单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路XX 而成的,它可以提供N 倍的电流。
小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,输出部分 i« IVcor^其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM^片:PWM 卩 Pulse Width Modulation (脉冲宽度调制),该芯 片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1. 一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的 个数无关。
#电脑主板供电电路原理图解
电脑主板供电电路原理图解一、多相供电模块的优点:1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二、完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识:场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其使用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三、判断方法:1.一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数和电容的个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主板供电回路知多少
主板,作为计算机其他配件的载体,其作用自然不必多说,而判别主板的质量和做工的好坏,往往都不能局限于某些特性,用料、扩展性、供电电路等成了我们最常见到的字眼,而供电电路部分一直是一个热点,我们经常会听到主板供电回路的相数、电容、电感线圈和场效应管等这些关键词,可对这神秘的供电电路部分,你又
知道多少呢?
供电电路的工作原理
CPU核心随着制造工艺的提高,核心电压也越来越低。
我们用的ATX电源供给主板的12V和5V的直流电不能直接给CPU供电,所以需要通过一定的电路转换来把高直流电压变成低直流电压给CPU的供电。
CPU电压越来越低,而功耗却有逐年增长的趋势,最新的P4EE功耗已超过100W,根据简单的功率=电压×电流,可以估算出需要近70A的电流通过,这么强的电流,对电路是一个很大的考验。
因此许多最新的主板都采用了四相供电回路。
图1:许多最新的主板都采用了四相供电回路
从电路工作原理上来讲,电源做的越简单越好,单相电路元器件最少。
从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。
所以供电电路越简单,越能减少出问题的概率。
但是主板除了要承受大功率的CPU外,还要承受显卡等其它设备的功耗,做成单相电路需要采用大功率的MOS-FET 管,发热量会很恐怖,而且花费的成本也不是小数目。
所以,大部分厂商都采用多相供电回路。
图2:开关电源供电方式的原理图
我们平时用的主板基本都用开关电源供电方式,其原理图如图2。
ATX电源提供的12V电压通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM 控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形。
然后,经过第二级LC电路滤波形成所需要的CPU核心电压Vcore。
这其实就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。
由于场效应管工作在开关状态,导通时的内阻和截止时的电流很小,所以自身耗电量很小。
图3:两相供电电路的示意图
单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图3就是一个两相供电的示意图,其实就是两个单相电路的并联,因此它可以提供双倍的电流。
但这个2倍只是纯理论,实际情况还考虑如开关元件性能、导体电阻、供电效率(发热越大效率越低)。
那么采用两相供电的电路就可能无法满足CPU的需要,所以又出现了三相甚至更多相供电电路。
不过这也带来了主
板布线复杂化,布线设计不很合理影响稳定性等问题。
图4:三相供电电路的示意图
三相供电就是三个单相电路并联而成的,因此理论上可以提供3倍的电流。
图4是一个典型的3相供电电路,它和两相供电的原理是一致的,其实就是三个单相电路
并联。
如何区分两相和三相供电回路
有些用户很关心怎么从主板上看出到底是两相还是三相供电回路。
一般的读者可能会说通过在CPU插槽附近的供电电路有多少电感线圈来判断。
这种说法有它的道理,
但不太全面。
笔者这里提供更加合理的方法供大家借鉴。
1.根据元器件的数量来分辨。
图5:典型的三相供电电路
首先,我们要找到主板CPU插槽附近的供电电路,图5是一个典型的三相供电电路。
一般来说,一个线圈、两个场效应管和一个电容构成一相电路。
图中上面三个是
电容,中间是场效应管,下面三个是线圈。
图6:典型的两相供电电路
图6是一个典型的两相供电电路,可以看到左边有两个电容,一个竖的线圈(这个其实是一级电感)及左右各2个场效应管,共有4个场效应管。
因此,判定供电回路为几相与电容的个数无关,如果看到一个电感加上两个场效应管就可以认为是一相。
2相供电回路则是2个电感加上4个场效应管,3相供电回路则是3个电感加上6个场效应管。
依次类推,4相也就是4个电感加上8个场效应管,现在你明白怎么区别了么?
另外,很多情况下第一级电感线圈也做在附近,所以一般也有“线圈数目减一等于相数”的说法。
从上面两个例子里面我们都看到多出一个电感。
2.根据PWM控制芯片来分辨。
图7:Richtek RT9241芯片
图8:网站查询到Richtek RT9241芯片的资料
PWM芯片的功能在出厂的时候都已经确定,可以根据主板使用的PWM控制芯片的型号来分辨。
比如常见的Richtek RT9241芯片。
上Richtek的查询产品页面,可以看到RT9241是一个两相的控制芯片,当然不可能用这块芯片做出三相的供电电路来的。
图9:Richtek RT9237芯片
图10:Intersil的HIP6301芯片
Richtek RT9237就是一个2-4相的控制芯片,再通过观察元器件数量,可以判断是否为三相供电回路。
图10是另外一个常见品牌的芯片,Intersil的HIP6301芯片,在Intersil网站上可以查到它是一块支持4相供电的控制芯片,所以很多三相甚至四相供电的主板都使用它。
选购策略
具体两相好还是三相好呢?这并不能一概而论!关键在于电路的设计是否合理!一个合理的电路设计应该考虑诸多因素,比如信号的稳定性、干扰、散热等等。
比如说:如果一个三相回路的设计仅仅只是为了实现大功率的电流转换分配,而忽视了电源的稳定性,因此产生了副作用的大幅度纹波干扰等情况,那它必然是个失败的设计!两相回路的电路设计也是如此!所以,一个电路的设计成功与否,完全是能够体现出工程师功力深浅的。
三相供电回路的好处很多,第一,可以提供更大的电流;第二,可以降低供电电路的温度,因为电流多了一路分流,每个器件的发热量自然减少了。
三相电路可以非常精确地平衡各相供电电路输出的电流,以维持各功率组件的热平衡,在器件发热这项上三相供电具有优势;第三,利用三相供电获得的核心电压信号也比两相的来得稳定。
三相供电的缺点则是在成本上要高一些,而且对布线设计、散热的要求也更高。
同样设计下的三相供电理论上优于两相供电,而且一般三相供电的控制芯片总是优于两相供电的控制芯片,在功能上也是如此。
这样一来在很大程度上保证日后升级新处理器的时候有优势。
不过,我们没有必要怀疑两相供电的稳定性,因为一款产品出厂的时候必定经过多次测试,不可能因为供电模块使用两相而导致不稳定,否则这就是严重的失误。
华硕很多主板一直坚持采用两相供电,就充分印证了这一点。
只要稳定,只要设计合理,没有理由拒绝两相供电的产品。
笔者想说的是不要盲目相信三相供电的炒作广告,也不要盲目相信所谓两相更稳定的说法,我们选购主板的时候还是应该更关注品牌,关注口碑。
而且,供电电路只
是主板上的小小部分而已,整块主板的运行情况并不由它决定。
那么为什么市场上Intel架构的主板大多使用三相以上的供电,而AMD平台的主板使用两相供电回路的较多呢?我们选择不同处理器的时候对供电部分的关注是否也
有区别呢?笔者特意找来一些处理器电流的参考值。
图11:一些主流处理器的电流表
首先是奔腾4的数据。
可以看到Prescott核心的CPU,最大电流竟然达到了恐怖的91A。
而AMD的CPU就要好些,BARTON核心的Athlon XP3000+最大电流也就45A,3200+的最大电流是46.5A,Athlon64的最大电流为57.8A。
所以,如果单相电流能够达到25A,那么两相供电完全可以适用于所有的Athlon XP处理器。
所以我们看到一些AMD平台的主板会使用两相供电,因为这就已经可以满足系统的需求了。
我们为Athlon XP选择搭配的主板时,可以放心使用两相供电回路的主板。
反观奔腾4处理器,超过70A的最大电流没有三相供电是不能保证的,所以最新支持800MHz的主板一般总是三相供电回路,甚至是四相供电回路。
而如果你想以后升级到3.2GHz 以上的Prescott处理器,那么还是选用四相供电回路的主板吧,91A的电流实在太可怕了。
总结与展望
随着处理器的功耗和电流不断攀升,两相供电即将走到生命的尽头。
三相供电成为标配,而且已经出现很多采用四相供电回路的主板了。
如果你买来电脑为了超频,
那么还是选择更强劲的供电模块吧,就像应该选择更强劲的散热系统一样。