(完整word版)平面向量知识点归纳(2),推荐文档
平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结平面向量是数学中常见的概念,它是一种具有大小和方向的量。
本文将对平面向量的基本知识点及经典结论进行总结,以帮助读者复习和理解。
一、基本知识点1.定义:平面向量是具有大小和方向的量,可用有向线段来表示。
通常用字母a、b、c等表示向量,用小写字母表示有向线段的长度,用大写字母表示向量的大小。
2.向量的表示方法:在平面直角坐标系中,可以用坐标表示一个向量。
设平面向量a的起点为原点O(0,0),终点为点A(x,y),则向量a的表示为a=(x,y)。
3.向量的加法:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a+b可以表示为(a,b)=(x1+x2,y1+y2)。
4.向量的数量积:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a和b的数量积为a·b=x1×x2+y1×y25.向量的模长:向量a的模长表示为,a,可通过勾股定理求得,即,a,=√(x^2+y^2)。
二、经典结论1.平面向量共线:如果有两个向量a和b,且b与a同方向或反方向,那么向量a和b共线;如果b与a不同方向,那么向量a和b不共线。
2. 平面向量定比分点:如果有两个向量a = (x1,y1)和b = (x2,y2),且存在一个实数k,使得x2 = kx1,y2 = ky1,则向量a和b的终点共线,并且b在a的延长线上(如k>1)或b在a的连线上(如0<k<1)。
3.向量共线定理:如果有三个向量a,b,c,且c=λa+μb,则向量c与向量a和b共线。
4.平面向量的线性运算:设有三个向量a,b,c,和两个实数λ、μ,那么有以下性质成立:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)λ(μa)=(λμ)a=μ(λa)=λ(μa)(乘法结合律)(4)λ(a+b)=λa+λb(分配律)(5)(λ+μ)a=λa+μa(分配律)5.向量共线的判定方法:(1)数量积:如果两个向量a和b的数量积a·b=0,则向量a和b垂直;如果a·b>0,则向量a和b夹角小于90°;如果a·b<0,则向量a和b夹角大于90°。
(完整word版)平面向量知识点总结(2),推荐文档

平面向量知识点小结一、向量的基本概念1. 向量的概念:既有大小又有方向的量,注意向量和数量的区别•向量常用有向线段来表示•注意:不能说向量就是有向线段,为什么?提示:向量可以平移•uiur r举例1已知A(1,2) , B(4,2),则把向量AB按向量5 ( 1,3)平移后得到的向量是________________ . 结果:(3,0)r2. 零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的;LUU uuu AB3. 单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是-UUt);I AB|4. 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;r 5.平行向量(也叫共线向量):方向相同或相反的非零向量a、b叫做平行向量,记作:a // b,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);, ,, uuur uur ,,④三点A、B、C共线AB、AC共线.6.相反向量:长度相等方向相反的向量叫做相反向量.5的相反向量记作 a .举例2如下列命题:(1) 若|a | | b|,则5 b .(2 )两个向量相等的充要条件是它们的起点相同,终点相同.uur uuu(3 )若AB DC,贝U ABCD是平行四边形.uuu uu u(4 )若ABCD是平行四边形,则AB DC .(5)若 a b,b c,则 a c.(6 )若a//b,b//C则a//c .其中正确的是 _. 结果:(4)( 5)二、向量的表示方法1. 几何表示:用带箭头的有向线段表示,如AB,注意起点在前,终点在后;r2. 符号表示:用一个小写的英文字母来表示,如a,b,c等;r r3. 坐标表示:在平面内建立直角坐标系,以与X轴、y轴方向相同的两个单位向量r , r为基底,则平面内的任一向量£可表示为a xi「yj (x, y),称(x, y)为向量a的坐标,a (x, y)叫做向量a的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同三、平面向量的基本定理定理设右,2同一平面内的一组基底向量,a是该平面内任一向量,则存在唯一实数对(1,2),使 a 仏.(1)定理核心:a也诂2;(2)从左向右看,是对向量a的分解,且表达式唯一;反之,是对向量a的合成.(3)向量的正交分解:当& 时,就说a洛为对向量a的正交分解.举例3 (1)若 a (1,1),b (1, 1),c ( 1,2),则 c . 结果:la -b .2 2(2)下列向量组中,能作为平面内所有向量基底的是Br r r r r r r r 1 3A. e (0,0),e2 (1, 2)B. e’( 1,2),色(5,7)C. e (3,5),e? (6,10)D. q (2, 3) , q -,-2 4uiur uur uiir r uiu r uuu r r(3)已知AD, BE分别是△ ABC的边BC,AC上的中线,且AD a,BE b ,则BC可用向量a,b表示为. 结果:2a 4b.3 3uiur uuu uur uuu uur(4)已知△ ABC中,点D在BC边上,且CD 2DB,CD rAB sAC,贝U r s 的值是. 结果:0.四、实数与向量的积实数与向量a的积是一个向量,记作a,它的长度和方向规定如下:(1)模:| ai | | iai;(2)方向:当0时,a的方向与a的方向相同,当0时,a的方向与a的方向相反,当 0时,a 0,注意:a 0.五、平面向量的数量积r r uuu r uuu r1.两个向量的夹角:对于非零向量a ,b ,作OA a ,OB b ,则把 AOB (0 为向量a ,b 的夹角. 规定:零向量与任一向量的数量积是 注:数量积是一个实数,不再是一个向量.», uiur unr举例 4( 1) △ABC 中,|AB| 3, | AC | 4,r i ri rr r r r r r r(2) 已知 a 1,1 , b 0, - , c a kb , dab , c 与 d 的夹角为 _,则 k ________________________ . 结果:1.2 2 4r r r(3) _____________________________________________ 已知靑|2, |b| 5,a b 3,则 |a b| . 结果:J23.(4) ____________________________________________________________________ 已知a,b 是两个非零向量,且iaiibi 〔a bi ,则a 与a b 的夹角为 .结果:3o o .3. 向量b 在向量a 上的投影:|b|cos ,它是一个实数,但不一定大于 0.r r r r r r12举例5已知|a| 3,|b| 5,且a b 12,则向量a 在向量b 上的投影为 ___________________ .结果:t .54. a b 的几何意义:数量积a b 等于a 的模洛|与b 在a 上的投影的积.(2) 已知△ OFQ 的面积为S ,且OF FQ 1,若1 S 色,则OF ,FQ 夹角 的取值范围是______________________ . 结果:_,一224 3(3) 已知 a (cosx,sinx ) , b (cosy,sin y ),且满足 | ka b | :3靑 kb | (其中 k 0 ). ①用k 表示a b ;②求a b 的最小值,并求此时a 与b 的夹角 的大小.结果:①a b k 1(k 0);②最小值为-,4k260o .六、向量的运算1 .几何运算1)向量加法运算法则:①平行四边形法则;②三角形法则运算形式:若AB a ,BC b ,则向量AUC 叫做a 与b 的和,即a b AUU BC AC ; 作图:略.注:平行四边形法则只适用于不共线的向量.当 o 时,a , b 同向;当 时,a , b 2.平面向量的数量积:如果两个非零向量a , 叫做a与b 的数量积(或内积或点积),记作:a反向rb;当 2时,a , b 垂直. 它们的夹角为 ,我们把数量| a II b I cosr r 即 a b i a 11 b i cos .0.uuu uiur uiur|BC| 5,贝U AB BC ____________ .5.向量数量积的性质:设两个非零向量a ,b , (1) a b a b o ;(2) 当a 、b 同向时,a b |<S| |b|,特别地, r r ra b i a 11 b i 是a 、b 同向的充要分条件; 当a 、b 反向时,ab ia 〔ibi , aS 当为锐角时,a b o ,且a 、b 不同向,a b 当为钝角时,a b o ,且a 、b 不反向;a b(3) 非零向量a , b 夹角 的计算公式:cos其夹角为,则: a 2 a a 甘〔a 〔 •厝;i b |是a 、b 反向的充要分条件;0是为锐角的必要不充分条件 0是 r ra b r |a||b|为钝角的 r b ra④必要不充分条件诂応|.举例6 ( i 已知a ( ,2)b (3 ,2),如果a 与b 的夹角为锐角,则的取值范围是_______ .结果:0且(2)向量的减法运算法则:三角形法则.亠 LUU r uiu r运算形式:若AB a ,AC b , 的终点.作图:略.注:减向量与被减向量的起点相同. uui uuu uiir举例7(1)化简:①AB BC CDuur r②CB :③0 ;uur r(2 )若正方形ABCD 的边长为1, AB a , (3) 若O 是厶ABC 所在平面内一点,且满足结果:2;线上. 结果:1;2uuu(2)已知 A(2,3), B(1,4),且 1AB (sinx,cosy),x, y (,),则 x y . 结果:_ 或 ;2 2 2 ---------------------------------------------------------------------------- 6 2(3) ______________________________________________________________________________________ 已知作用在点A(1,1)的三个力F l (3,4),F 2 (2, 5),F 3 (3,1),则合力肖胃胃胃的终点坐标是 _________________________________________________ __ 结果:(9,1).(2) 实数与向量的积:a (X 1, y 1) ( x, y).(3) 若A(x ,, y 1), B(x 2, y 2),则AB (x 2>1, y 2 y 1),即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标uur 1 uu unr uuur 11举例 9 设 A(2,3), B( 1,5),且 AC 1 AB , AD 3AB ,则 C,D 的坐标分别是 ____________________ . 结果:(1,22),( 7,9).3 3(4)平面向量数量积:a b 朋2 y 〃2.举例 10 已知向量 a (sinx,cosx),b (sin x,sin x), c ( 1,0).(1)若x,求向量a 、c 的夹角;33r r11(2 )若x [菁,才],函数f(x) a b 的最大值为1,求 的值.结果:(1)150。
平面向量知识点梳理

平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。
2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。
3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。
三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。
2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。
3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。
4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。
5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。
四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。
2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。
五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。
2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。
六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。
2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。
以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。
通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。
(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
(完整版)高中平面向量公式及知识点默写

平面向量知识点及公式默写一,基本概念1,向量的概念: 。
2,向量的表示:。
3,向量的大小:(或称模)4,零向量:,记为 ,零向量方向是 。
5,单位向量:长度为 的向量称为单位向量,一般用e 、i 1=1=6,平行向量(也称共线向量):方向 向量称为平行向量,规定零向量与任意向量 。
若a 平行于b ,则表示为a ∥b 。
7,相等向量: 称为相等向量。
若a 与b 相等,记为a =b8,相反向量: 称为相反向量。
若a 与b 是相反向量,则表示为a =b -;向量BA AB -=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB(2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+⇔=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,DB AD AB =- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: BAaCB A•aba babba +当0>λ时,a λ与a 方向 ;当0<λ时,a λ与a 方向 ;当0=λ时,=a λ当0=a 时,0=a λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C BA ,,使得0=++OC n OB m OA q ,且0=++q n m ,反之也成立。
平面向量知识点归纳
平面向量知识点归纳一、基本概念平面向量是具有大小和方向的量,通常用带箭头的字母表示,例如A→,其中→表示方向。
平面向量的大小叫做模,记作|A→|或||A||。
二、平面向量的表示平面向量可以用始点和终点坐标表示,记作A→=(A, A),其中A和A分别表示A→在x轴和y轴上的投影。
三、平面向量的运算1. 平面向量的加法平面向量A→和A→的加法定义为A→+A→=A→,其中A→的始点是A→和A→的始点的重合点,终点是A→和A→的终点的重合点。
2. 平面向量的减法平面向量A→和A→的减法定义为A→-A→=A→+(-A→),其中(-A→)表示与A→大小相等,方向相反的向量。
3. 数乘数乘是指一个实数乘以一个向量,记作AA→,其中A是实数。
数乘的结果是一个与原向量方向相同(当A>0)或相反(当A<0),长度为原向量长度的A倍的向量。
4. 平面向量的数量积平面向量A→和A→的数量积定义为A→⋅A→=|A→||A→|cosA,其中A是A→和A→之间的夹角。
5. 平面向量的向量积平面向量A→和A→的向量积定义为A→×A→=|A→||A→|sinAA,其中A是A→和A→之间的夹角,A是一个与A→和A→所在平面垂直的单位向量。
四、平面向量的性质1. 交换律和结合律平面向量的加法满足交换律和结合律,即A→+A→=A→+A→,(A→+A→)+A→=A→+(A→+A→)。
2. 数量积的性质a) A→⋅A→=A→⋅A→;b) A→⋅A→=|A→|^2,其中|A→|^2表示A→的模的平方;c) 若A→⋅A→=0,则A→和A→垂直。
3. 向量积的性质a) A→×A→=−A→×A→;b) A→×A→=A→,其中A→表示零向量;c) 若A→和A→共线,则A→×A→=A→。
五、平面向量的应用平面向量在几何、物理和工程等领域中有广泛的应用,例如:1. 平面向量可以表示物体的位移和力的大小和方向。
平面向量知识点归纳总结
平面向量是指在平面上具有大小和方向的量。
下面是平面向量的一些重要知识点的归纳总结:1.平面向量的表示:●使用箭头或小写字母加上一个横线来表示,如a→或AB。
●平面向量通常用两个有序实数(分量)表示,如a = (a₁, a₂)。
2.向量的模/长度:●向量的模/长度表示为|a|,计算公式为|a| = √(a₁²+ a₂²)。
3.向量的方向角:●向量与正x 轴之间的夹角称为方向角。
●方向角可以使用三角函数来表示,如tanθ= a₂/a₁。
4.向量的运算:●向量的加法:a + b = (a₁+ b₁, a₂+ b₂)。
●向量的减法:a - b = (a₁- b₁, a₂- b₂)。
●数乘:k * a = (k * a₁, k * a₂),其中k 为实数。
5.向量的数量积(点积):●向量a 和向量b 的数量积(点积)表示为a ·b。
●计算公式为a ·b = a₁* b₁+ a₂* b₂。
●点积满足交换律:a ·b = b ·a。
●点积的几何意义:a ·b = |a| * |b| * cosθ,其中θ为a 和b 之间的夹角。
6.向量的矢量积(叉积):●向量a 和向量b 的矢量积(叉积)表示为a ×b。
●计算公式为a ×b = (0, 0, a₁* b₂- a₂* b₁),即得到一个垂直于平面的向量。
●矢量积满足反交换律:a ×b = - (b ×a)。
●矢量积的几何意义:|a ×b| = |a| * |b| * sinθ,其中θ为a 和b 之间的夹角。
7.平行向量和共线向量:●平行向量指方向相同或相反的向量。
●共线向量指在同一直线上的向量。
●如果两个向量平行,则它们的叉积为零。
8.向量的投影:●向量a 在向量b 上的投影表示为projₐb。
●计算公式为projₐb = (|a| * |b| * cosθ) * u,其中θ为a 和b 之间的夹角,u 为b 的单位向量。
平面向量知识点总结
平面向量知识点总结平面向量是二维空间中的向量,它在数学中有着广泛的应用。
在平面向量的研究中,我们需要了解平面向量的定义、运算法则、坐标表示、线性相关与线性无关、向量的模和方向、向量的投影、平行四边形法则、平面向量的夹角、向量的数量积等内容。
本文将对这些内容进行详细的总结,以帮助读者更好地理解平面向量的相关知识。
1. 定义:平面向量是一个具有大小和方向的量。
它可以用一个有向线段来表示,也可以用它的坐标来表示。
平面向量的定义包括初始点和终点,表示为AB。
2. 运算法则:平面向量有加法和数乘两种运算方式。
向量的加法规则是将两个向量的横纵坐标分别相加,得到一个新的向量。
向量的数乘规则是将向量的横纵坐标分别与给定的实数相乘,得到一个新的向量。
3. 坐标表示:平面向量可以用坐标表示,即用其横纵坐标表示向量的位置。
设向量AB的坐标为(a, b),则向量AB的终点的坐标为(A.x + a, A.y + b),其中A.x和A.y分别为点A 的横纵坐标。
4. 线性相关与线性无关:若存在一组实数k1, k2, ... , kn,使得k1v1 + k2v2 + ... + knvn = 0,则向量组V1, V2, ... , Vn是线性相关的。
否则,向量组V1, V2, ... , Vn是线性无关的。
线性无关的向量组在平面向量的研究中具有重要的作用。
5. 向量的模和方向:向量的模表示向量的大小,即向量的长度。
向量的方向表示向量的朝向,即向量的角度。
向量的模可以用勾股定理计算,即v的模等于√(x^2 + y^2),其中x 和y分别为向量v的横纵坐标。
6. 向量的投影:向量的投影指的是一个向量在另一个向量上的投影长度。
设向量A在向量B上的投影为P,且向量A 和向量B的夹角为θ,则投影P的长度等于A在B上的模乘以cosθ。
7. 平行四边形法则:平行四边形法则是用来计算两个向量的和的规则。
根据平行四边形法则,两个向量的和等于以这两个向量为邻边的平行四边形的对角线。
平面向量知识点归纳
平面向量知识点归纳一、平面向量的基本概念平面向量是既有大小又有方向的量。
1、向量的定义既有大小又有方向的量叫做向量。
例如,力、位移、速度等都是向量。
2、向量的表示(1)几何表示:用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
(2)字母表示:通常在平面内,用小写字母 a、b、c 等来表示向量。
3、向量的模向量的大小叫做向量的模,记作|a|。
4、零向量长度为 0 的向量叫做零向量,记作 0。
零向量的方向是任意的。
5、单位向量长度等于 1 个单位的向量叫做单位向量。
6、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也叫共线向量。
规定:零向量与任意向量平行。
7、相等向量长度相等且方向相同的向量叫做相等向量。
8、相反向量长度相等且方向相反的向量叫做相反向量。
二、平面向量的线性运算1、向量加法(1)三角形法则:已知向量 a、b,在平面内任取一点 A,作 AB = a,BC = b,则向量 AC 叫做 a 与 b 的和,记作 a + b ,即 a + b =AB + BC = AC 。
(2)平行四边形法则:已知向量 a、b,以同一点 O 为起点作 OA = a,OB = b,以 OA、OB 为邻边作平行四边形 OACB,则对角线OC 就是 a 与 b 的和。
向量加法满足交换律:a + b = b + a ;结合律:(a + b) + c = a +(b + c) 。
2、向量减法(1)与向量 a 长度相等,方向相反的向量叫做 a 的相反向量,记作 a 。
(2)向量减法:已知向量 a、b,作 OA = a,OB = b,则 BA =OA OB = a b 。
3、数乘向量(1)实数λ与向量 a 的积是一个向量,记作λa ,它的长度|λa| =|λ| |a| ,它的方向:当λ > 0 时,λa 与 a 同向;当λ < 0 时,λa与 a 反向;当λ = 0 时,λa = 0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如:2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||ABAB ±);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0); ④三点A B C 、、共线⇔ AB AC 、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。
a 的相反向量是-a 。
如 下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
三.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
如 (1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(答:1322a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-=C.12(3,5),(6,10)e e == D. 1213(2,3),(,)24e e =-=-(答:B );(3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0)四.实数与向量的积:实数λ与向量a的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
五.平面向量的数量积:1.两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量a ,b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。
2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a•b ,即a •b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____ (答:1);(2)已知2,5,3a b a b ===-,则a b +等于____;(3)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)3.b 在a 上的投影为||cos b θ,它是一个实数,但不一定大于0。
如 已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______(答:512) 4.a•b 的几何意义:数量积a •b 等于a 的模||a 与b 在a 上的投影的积。
5.向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0ab a b ⊥⇔•=;②当a ,b 同向时,a •b =a b,特别地,222,aa a a a a=•==;当a 与b 反向时,a •b =-a b ;③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。
如(1)已知)2,(λλ=→a,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);六.向量的运算:1.几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b==,那么向量AC叫做a与b的和,即a b AB BC AC +=+=;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____(答:①AD ;②CB ;③0); (2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:;2.坐标运算:设1122(,),(,)a x y b x y ==,则: ①向量的加减法运算:12(a b x x ±=±,12)y y ±。
如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(答:12); (2)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是(答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。
③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
如设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是__________(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y •=+。
如已知向量a =(sinx ,cosx ), b =(sinx ,sinx ), c =(-1,0),若x =3π,求向量a 、c 的夹角; ⑤向量的模:222222||,||a x y a a x y =+==+。
如已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____ ;⑥两点间的距离:若()()1122,,,A x y B x y ,则||AB =。
七.向量的运算律:1.交换律:a bb a +=+,()()a a λμλμ=,a b b a •=•;2.结合律:()(),a b c a b c a b c a b c ++=++--=-+,()()()a b a b a b λλλ•=•=•; 3.分配律:()(),a a a a b a b λμλμλλλ+=++=+,()a b c a c b c +•=•+•。
如下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→ba ,则0=→a 或0=→b ;⑤若,a bc b ⋅=⋅则a c =;⑥22a a=;⑦2a b b aa⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。
其中正确的是_____(答:①⑥⑨)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即c b a c b a )()(•≠•,为什么?八.向量平行(共线)的充要条件://a b a bλ⇔=22()(||||)a b a b ⇔⋅=1212x y y x ⇔-=0。
如(1)若向量(,1),(4,)ax b x ==,当x =_____时a 与b 共线且方向相同(答:2);(2)已知(1,1),(4,)a b x ==,2u a b =+,2v a b =+,且//u v ,则x =______(答:4); (3)设(,12),(4,5),(10,)PA k PB PC k ===,则k =_____时,A,B,C 共线(答:-2或11)九.向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=.如(1)已知(1,2),(3,)OA OB m =-=,若OA OB ⊥,则m = (答:32);(2)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是________ (答:(1,3)或(3,-1)); (3)已知(,),n a b =向量n m ⊥,且n m =,则m 的坐标是________ (答:(,)(,)b a b a --或)。