精品2019年中考数学同步复习 第三章 函数 第二节 一次函数的图象与性质训练
第三章函数(测试)(原卷版)-2025年中考数学一轮复习讲练测(全国通用)

第三章函数(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【新考法】从图象中获取信息2.甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少3.在函数y=√x+3中,自变量x的取值范围是()xA.x≥3B.x≥﹣3C.x≥3且x≠0D.x≥﹣3且x≠04.如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E−O−F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s ,当点P 运动到点F 时,两点同时停止运动,设运动时间为ts ,连接BP,PQ ,△BPQ 的面积为Scm 2,下列图像能正确反映出S 与t 的函数关系的是( )A .B .C .D .5.【创新题】直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ).A .0个B .1个C .2个D .1个或2个6.在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n(a <m <0)的图象如图所示,小星根据图象得到如下结论:⊥在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;⊥方程组{y −ax =b y −mx =n的解为{x =−3y =2; ⊥方程mx +n =0的解为x =2;⊥当x =0时,ax +b =−1.其中结论正确的个数是( )A .1B .2C .3D .4【新考法】 反比例函数与几何综合的图像过点C,则k的值为()A.4B.﹣4C.﹣3D.3(x>0)的图像上,以OA为一边作等腰直角三角形OAB,其中8.【创新题】如图,点A在反比例函数y=2x⊥OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.√2C.2√2D.49.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.10.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:⊥2a +b <0;⊥当x >1时,y 随x 的增大而增大;⊥关于x 的方程ax 2+bx +(b +c)=0有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .3二.填空题(共6小题,满分18分,每小题3分)11.如图,点A 的坐标为(1,3),点B 在x 轴上,把ΔOAB 沿x 轴向右平移到ΔECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .12.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额-总成本).13.【原创题】把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件: .14.若点A(1,y 1),B(−2,y 2),C(−3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系为 .15.已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组{3x −y =1kx −y =0的解是 .【新考法】 二次函数与几何综合16.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x−2)2(0≤x≤3)的图象(抛物线中的是矩形OABC,则b=.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.(m≠0,x>0)的图像交于点A(2,n),与18.如图,一次函数y=kx+2(k≠0)的图像与反比例函数y=mxy轴交于点B,与x轴交于点C(−4,0).(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?21.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.【创新题】已知函数y=−x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.23.如图,点A(a,2)在反比例函数y=4x 的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=kx的解析式;(3)点D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.24.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.25.如图(1),二次函数y=−x2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,3),直线l经过B、C两点.(1)求该二次函数的表达式及其图像的顶点坐标;(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图像相交于点M,再过点M作y轴的垂线与该MN时,求点P的横坐标;二次函数的图像相交于另一点N,当PM=12(3)如图(2),点C关于x轴的对称点为点D,点P为线段BC上的一个动点,连接AP,点Q为线段AP上一点,且AQ=3PQ,连接DQ,当3AP+4DQ的值最小时,直接写出DQ的长.。
中考数学复习之一次函数的图象与性质(含答案)

中考数学复习之一次函数的图象与性质(含答案)1.一个正比例函数的图象经过点(2,-1),则它的表达式为 ( )A. y =-2xB. y =2xC. y =-12xD. y =12x 2.若b >0,则一次函数y =-x +b 的图象大致是 ( )3.一次函数y =x +2的图象与y 轴的交点坐标为( )A. (0,2)B. (0,-2)C. (2,0)D. (-2,0)4. 将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. y =2x -4B. y =2x +4C. y =2x +2D. y =2x -2 5.等腰三角形底角与顶角之间的函数关系是( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数 6.如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为 ( )A. x >-2B. x <-2C. x >4D. x <47. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)8.如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )A. -5B. 32C. 52 D. 79. 点A (x 1,y 1),B (x 2,y 2)在一次函数y =12x +b 的图象上,且x 1>x 2,则y 1与y 2的大小关系是_____________.10.已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为_____________.11. 如图,一次函数l 1∶y =k 1x +b 1与l 2∶y =k 2x +b 2的图象交于P 点,则方程组⎩⎨⎧y =k 1x +b 1y =k 2x +b 2的解为_____________.12.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.13. 如图,在平面直角坐标系中,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为 ( )A. (-5,2)B. (-3,5)C. (-2,2)D. (-3,2)14. 如图,在平面直角坐标系中,点A (0,4)、B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________.15.如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.16.问题:探究函数y=|x|-2的图象与性质.小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(3)如图,在平面直角坐标系xOy中,描出以上表中各对应值为坐标的点,并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为________;②已知直线y1=12x-12与函数y=|x|-2的图象交于C、D两点,当y1≥y时x的取值范围是_____________.17.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是__________(写出一个即可).18.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则该函数的解析式为_______________.参考答案:1-4 CCAA 5-8 BACC 9. y 1>y 2 10. (12,12) 11. ⎩⎨⎧x =-1y =-212. 解:(1)∵点C 的横坐标为1,且在y =3x 的图象上,∴C 点坐标为(1,3),将A 、C 点的坐标代入y =kx +b , 得⎩⎨⎧6=-2k +b 3=k +b ,解得⎩⎨⎧k =-1b =4; (2)由(1)知直线AC 的函数解析式为y =-x +4,当y =0时,解得x =4, ∴B 点坐标为(4,0),即OB =4, ∴S △BOC =12×4×3=6,∴S △COD =13×6=2,△COD 边OD 上的高为C 点的横坐标1, 则S △COD =12×1×|y D |=2,∴|y D |=4,∵点D 在y 轴负半轴上,∴y D =-4,故D 点的坐标为(0,-4). 13. A14. y =-12x +3215. 解:(1)∵直线y =-x +3过点A (5,m ),∴m =-5+3=-2, ∴点A 的坐标为(5,-2), 由平移可得点C 的坐标为C (3,2), 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,∵点C (3,2)在直线CD 上,∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4; (2)∵直线y =-x +3与y 轴的交点为B , ∴点B 的坐标为(0,3),∵直线CD 的解析式为y =2x -4, 令y =0,则x =2,∴直线CD 与x 轴的交点为(2,0);设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b 1, ∴3=2×0+b 1,解得b 1=3,∴此时直线CD 的解析式为y =2x +3, 令y =0,则x =-32,∴平移后的直线CD 与x 轴的交点为(-32,0),∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为-32≤x ≤2. 16. 解:(2)①1;②-10;(3)该函数的图象如解图;①-2;②-1≤x ≤3. 17. -1(答案不唯一) 18. y =-23x +53。
中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时1 一次函数的图象与性质

(6)若该一次函数的图象与直线 y=2x 平行,将该一次函数图象先向下平 移 3 个单位长度,再向右平移 2 个单位长度后图象的函数解析式为__y== 2xx++1_1_; (7)若该一次函数的图象与 x 轴交于点 A(4,0),与 y 轴交于点 B,则△AOB 的面积为__4488__;
2.如图,已知直线 y=kx+b 经过点 A(5,0),B(1,4)
重难点 2:一次函数的图象与方程(组)、不等式 的关系
如图,直线 y=-12x+b 与 x 轴、y 轴分别交 于点 A、点 B,与函数 y=kx 的图象交于点 M(1, 2).直接写出 k,b 的值和不等式 0≤-12x+b≤kx 的解集.
【思路点拨】把 M 点的坐标分别代入 y=kx 和 y=-12x+b 可求出 k,b 的值,再确定 A 点的坐标,然后利用函数图象写出不等式 0≤-12x+b≤kx 的解集.
的直线 l2交于点 C(1,m),与 x 轴交于点 B. (1)求直线 l2 的解析式; (2)点 M 在直线 l1上,MN∥y 轴,交直线 l2 于点 N,若 MN =AB,求点 M 的坐标.
【思路点拨】(1)把点 C 的坐标代入 y=x+3,求出 m 的值,然后利用待 定系数法求出直线 l2的解析式;(2)由已知条件得出 M,N 两点的横坐标, 利用两点间距离公式求出点 M 的坐标.
(B )
A.kb>0 B.kb<0
C.k+b>0 D.k+b<0
2.(2018·贵阳第 9 题 3 分)一次函数 y=kx-1 的图象经过点 P,且 y 的
值随 x 值的增大而增大,则点 P 的坐标可以为
( C)
A.(-5,3) B.(1,-3)
C.(2,2) D.(5,-1)
中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
2024年中考数学总复习考点梳理第三章第二节一次函数的图象与性质

第二节 一次函数的图象与性质
返回目录
考情及趋势分析
考情分析
年份 题号 题型 分值 题干条件 考查知识点 结合知识点 溯源教材 教材改编维度
AB交直线y=x 正比例函数
解答题(
正方形、图
2023 23
12 于点E,AC交直 图象上点的
/
/
三)
形旋转
线y=x于点N 坐标特征
一次函数图象与
一次函数图
解答题(
1 教材改编题课前测 2 教材知识逐点过 3 广东近6年真题
第二节 一次函数的图象与性质
返回目录
广东近6年考情及趋势分析
命题点1 一次函数的图象与性质 (6年4考,常与反比例函数、二次函数结合考查) 课标要求 1.能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0) 探索并理解k>0和k<0时,图象的变化情况; 2.理解正比例函数.
①BO=3,②BC=CD
2019 23(2) 解答题(三) 2
y=kx+b
(-1,4),(4,n)
2018 23(1) 解答题(三) 2
y=x+m
C(0,-3)
【考情总结】1.考查方法:均考查待定系数法确定解析式;
2.考查特点:除2018年考查代入一点来自标外,其余年份均考查代入两点坐标.
结合知识点 /
第二节 一次函数的图象与性质
返回目录
考情及趋势分析
考情分析
年份 题号
题型
分值 函数解析式
已知条件
2023 16(2) 解答题(一) 5
y=kx+b
(0,1),(2,5)
2021 21(2) 解答题(二) 5
y=kx+b
①P(1,m),②PA=2AB
中考数学复习第三单元函数及其图象 课时训练一次函数的图象与性质
课时训练(十)一次函数的图象与性质(限时:40分钟)|夯实基础|1.对于正比例函数y=-2x,当自变量x的值增加1时,函数y的值增加()A.-2B.2C.-D.2.[2019·扬州]若点P在一次函数y=-x+4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限4.[2019·梧州]直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x-2C.y=3x+2D.y=3x-15.[2019·大庆]正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是()图K10-16.[2019·荆门]如果函数y=kx+b(k,b是常数)的图象不经过第二象限,那么k,b应满足的条件是 ()A.k≥0且b≤0B.k>0且b≤0C.k≥0且b<0D.k>0且b<07.[2019·苏州]若一次函数y=kx+b(k,b为常数,且k≠0)的图象过点A(0,-1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>18.在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.[2018·贵阳] 一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标为()A.(-5,3)B.(1,-3)C.(2,2)D.(5,-1)10.[2019·聊城]如图K10-2,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为 ()图K10-2A.(2,2)B.,C.,D.(3,3)11.[2019·天津]直线y=2x-1与x轴的交点坐标为.12.[2018·眉山] 已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为.13.[2018·邵阳] 如图K10-3所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x= .图K10-314.[2019·鄂州]在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,-3)到直线y=-x+的距离为.15.[2019·滨州]如图K10-4,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.图K10-416.[2017·杭州] 在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当-2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m-n=4,求点P的坐标.17.[2017·连云港] 如图K10-5,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D,C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.图K10-5|拓展提升|18.[2019·江西] 如图K10-6,在平面直角坐标系中,点A,B的坐标分别为-,0,,1,连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.图K10-619.[2019·北京节选] 在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y=-k交于点C.(1)求直线l与y轴的交点坐标.(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.当k=2时,结合函数图象,求区域W内的整点个数.【参考答案】1.A2.C[解析]∵-1<0,4>0,∴一次函数y=-x+4的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=-x+4的图象上,∴点P一定不在第三象限.故选C.3.D4.D[解析]直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1-2=3x-1.故选D.5.A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.6.A[解析]y=kx+b(k,b是常数)的图象不经过第二象限,当k=0,b≤0时成立;当k>0,b≤0时成立.综上所述,k≥0,b≤0.故选A.7.D[解析]如图所示:不等式kx+b>1的解集为x>1.故选D.8.D[解析]因为直线y=4x+1只经过第一、二、三象限,所以其与直线y=-x+b的交点不可能在第四象限.故选D.9.C[解析]∵一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,∴k>0.由y=kx-1得k=.分别将选项中坐标代入该式,只有当(2,2)时k==>0.10.C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=x+2,解方程组得∴P,.故选C.11.,012.y1>y2[解析]∵一次函数图象经过第二、四象限,∴k<0,y随x的增大而减小,∴当x1<x2时,y1>y2.13.2[解析]考查一元一次方程与一次函数的关系,即关于x的方程ax+b=0的解就是一次函数y=ax+b的图象与x轴交点(2,0)的横坐标2.14.[解析]∵y=-x+,∴2x+3y-5=0,∴点P(3,-3)到直线y=-x+的距离为:=.故答案为.15.x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.16.解:(1)由题意知y=kx+2,∵图象过点(1,0),∴0=k+2,解得k=-2,∴y=-2x+2.当x=-2时,y=6.当x=3时,y=-4.∵k=-2<0,∴函数值y随x的增大而减小,∴-4≤y<6.(2)根据题意知--解得-∴点P的坐标为(2,-2).17.解:(1)因为OB=4,且点B在y轴正半轴上, 所以点B的坐标为(0,4).设直线AB的函数关系式为y=kx+b,将点A(-2,0),B(0,4)的坐标分别代入,得-解得所以直线AB的函数关系式为y=2x+4.(2)设OB=m,因为△ABD的面积是5,所以AD·OB=5.所以(m+2)m=5,即m2+2m-10=0.解得m=-1+或-1-(舍去).因为∠BOD=90°,所以点B的运动路径长为×2π×(-1+)=-π.18.解:(1)如图所示,作BD⊥x轴于点D,∵点A,B的坐标分别为-,0,,1,∴AD=--=,BD=1,∴AB===2,tan∠BAD===, ∴∠BAD=30°.∵△ABC是等边三角形,∴∠BAC=60°,AC=AB=2,∴∠CAD=∠BAD+∠BAC=30°+60°=90°,∴点C的坐标为-,2.(2)设线段BC所在直线的解析式为y=kx+b,∵点C,B的坐标分别为-,2,,1,∴-解得-∴线段BC所在直线的解析式为y=-x+.19.解:(1)令x=0,则y=1,∴直线l与y轴交点坐标为(0,1).(2)当k=2时,直线l:y=2x+1,把x=2代入直线l,则y=5,∴A(2,5).把y=-2代入直线l得:-2=2x+1,∴x=-,∴B-,-2,C(2,-2),∴区域W内的整点有(0,-1),(0,0),(1,-1),(1,0),(1,1),(1,2)共6个点.。
2019年中考数学总复习第三单元函数及其图像课时训练11一次函数的图像与性质练习
课时训练(十一)一次函数的图像与性质(限时:30分钟)|夯实基础|1.一次函数y=-2x+1的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.[2018·深圳]把函数y=x的图像向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)3.[2018·遵义]如图K11-1,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()图K11-1A.x>2B.x<2C.x≥2D.x≤24.[2018·陕西]如图K11-2,在矩形AOBC中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的值为()图K11-2A.-B.C.-2D.25.[2018·宜宾]已知点A是直线y=x+1上一点,其横坐标为-,若点B与点A关于y轴对称,则点B的坐标为.6.[2018·连云港]如图K11-3,一次函数y=kx+b的图像与x轴,y轴分别相交于A,B两点,☉O经过A,B两点,已知AB=2,则的值为.图K11-37.[2017·十堰]如图K11-4,直线y=kx和y=ax+4交于A(1,k),则不等式组kx-6<ax+4<kx的解集为.图K11-48.[2018·扬州]如图K11-5,在等腰直角三角形ABO中,∠A=90°,点B的坐标为(0,2),若直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,则m的值为.9.如图K11-6,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.图K11-610.如图K11-7,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.11.[2017·泰州]平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图像上,并说明理由;(2)如图K11-8,一次函数y=-x+3的图像与x轴、y轴分别相交于点A,B,若点P在△AOB的内部,求m的取值范围.图K11-8|拓展提升|12.[2018·陕西]若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)13.[2018·滨州]如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x-[x]的图像为()图K11-914.[2018·河北]如图K11-10,直角坐标系xOy中,一次函数y=-x+5的图像l1分别与x,y轴交于A,B两点,正比例函数的图像l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC-S△BOC的值;(3)一次函数y=kx+1的图像为l3,且l1,l2,l3不能围成三角形,直接写出k的值.图K11-1015.[2018·张家界]阅读理解题.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0(A 2+B 2≠0)的距离公式为:d=.例如,求点P (1,3)到直线4x+3y-3=0的距离. 解:由直线4x+3y-3=0知:A=4,B=3,C=-3.所以P (1,3)到直线4x+3y-3=0的距离为:d==2.根据以上材料,解决下列问题:(1)求点P 1(0,0)到直线3x-4y-5=0的距离; (2)若点P 2(1,0)到直线x+y+C=0的距离为,求实数C 的值.参考答案1.C2.D3.B4.A5.,[解析]把x=-代入y=x+1得:y=,∴点A 的坐标为-,,∵点B 和点A 关于y 轴对称,∴B ,,故答案为,.6.-[解析] ∵OA=OB ,∴∠OBA=45°,在Rt △OAB 中,OA=AB ·sin45°=2×=,即点A (,0),同理可得点B(0,),∵一次函数y=kx+b的图像经过点A,B,∴解得:=-.7.1<x<[解析]将A(1,k)代入y=ax+4得a+4=k,将a+4=k代入不等式组kx-6<ax+4<kx中得(a+4)x-6<ax+4<(a+4)x,解不等式(a+4)x-6<ax+4,得x<,解不等式ax+4<(a+4)x,得x>1,所以不等式组的解集是1<x<.8.[解析]如图:∵y=mx+m=m(x+1),∴函数y=mx+m的图像一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,解得∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴=×,解得:m=或m=(舍去),故答案为.9.解:(1)P2(3,3).(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),∵点P1(2,1),P2(3,3)在直线l上,∴解得∴直线l所表示的一次函数的表达式为y=2x-3.(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∵当x=6时,y=2×6-3=9,∴点P3在直线l上.10.解:(1)∵点B在直线l2上,∴4=2m,∴m=2.设l1的表达式为y=kx+b,由A,B两点均在直线l1上得到解得∴直线l1的表达式为y=x+3.(2)由图可知,C,D(n,2n),因为点C在点D的上方,所以+3>2n,解得n<2.11.解:(1)把x=m+1代入y=x-2,得y=m-1,故点P在一次函数y=x-2的图像上.(2)解方程组得易知直线y=x-2与x轴的交点为(2,0),因为点P在△AOB的内部,所以2<m+1<,解得1<m<.12.B[解析]设直线l1的解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4,联立可解得:∴交点坐标为(2,0),故选择B.13.A14.解:(1)将点C的坐标代入l1的解析式,得-m+5=4,解得m=2.∴C的坐标为(2,4).设l2的解析式为y=ax.将点C的坐标代入得4=2a,解得a=2, ∴l2的解析式为y=2x.(2)对于y=-x+5,当x=0时,y=5,∴B(0,5).当y=0时,x=10,∴A(10,0).∴S△AOC=×10×4=20,S△BOC=×5×2=5,∴S△AOC-S△BOC=20-5=15.(3)∵l1,l2,l3不能围成三角形,∴l1∥l3或l2∥l3或l3过点C.当l3过点C时,4=2k+1,∴k=,∴k的值为-或2或.15.解:(1)根据题意,得d==1.(2)根据题意,得=,即|C+1|=2.∴C+1=±2.解得C1=1,C2=-3.。
中考数学 考点系统复习 第三章 函数 第二节 一次函数 课时2 一次函数的实际应用
(RJ 八下 P99 习题 T11 改编)某市为了鼓励居民节约用水,采用分段 计费的方法按月计算每户家庭的水费,月用水量不超过 20 立方米时,按 2 元/立方米计费;月用水量超过 20 立方米时,超过部分按 2.6 元/立方 米计费.设某户家庭用水量为 x 立方米时,所交水费为 y 元.
解:(1)设去年 A 型车每辆售价 x 元,则今年售价每辆为(x-200)元,由 题意得 80 x000=80 00x0-(12-0010%), 解得 x=2 000. 经检验,x=2 000 是原方程的解. 答:去年 A 型车每辆售价为 2 000 元.
(2)设今年新进 A 型车 a 辆,则 B 型车(60-a)辆,获利 y 元,由题意得 y=(1 800-1 500)a+(2 400-1 800)(60-a). ∴y=-300a+36 000. ∵B 型车的进货数量不超过 A 型车数量的两倍, ∴60-a≤2a,∴a≥20. ∵y=-300a+36 000.∴k=-300<0, ∴y 随 a 的增大而减小.∴a=20 时,y 有最大值, ∴B 型车的数量为 60-20=40(辆). 答:当新进 A 型车 20 辆,B 型车 40 辆时,这批车获利最大.
(1)写出 y 与 x 之间的函数表达式;
解:由题意可得,当 0≤x≤20 时,y=2x, 当 x>20 时,y=20×2+(x-20)×2.6=2.6x-12,
2x(0≤x≤20), 综上可得,y=2.6x-第二季度交纳水费的情况如下: 月份 四月份 五月份
交费金额 30 元 34 元 小明家这个季度共用水多少立方米?
解:(1)设乙食材每千克进价为 a 元,则甲食材每千克进价为 2a 元,由 题意得820a-2a0=1,解得 a=20.经检验,a=20 是原方程的解,且符合题 意. ∴2a=40 元.答:甲、乙两种食材每千克进价分别为 40 元、20 元.
【中考数学考点复习】第二节一次函数的图象与性质课件
拓展训练
8.已知正比例函数 y=kx(k≠0)的图象过点(2,3),把正比例函数 y= k x (k ≠0) 的 图 象 平 移 , 使 它 过 点(1 , - 1) , 则 平 移 后 的 函 数 图 象 大 致 是 ( D)
一 平移前表
次
达式
函
平移方向(m>0)
平移后表达式
数
向左平移m个单位长度 y=k(x m )+b
图
直线
向右平移m个单位长度 y=k(x m )+b
象
的 y=kx+b 向上平移m个单位长度 y=kx+b m
平
(k≠0)
移
向下平移m个单位长度 y=kx+b m
口诀
横坐标左加 右减
等号右边整 体上加下减
4.一次函数 y=(2m-1)x+2 的值随 x 值的增大而增大,则常数 m 的取 1
值范围为 m>2 . 5.已知一次函数 y=(k-3)x+1 的图象经过第一、二、四象限,则 k 的 取值范围是 k<3 .
6.在平面直角坐标系中,已知一次函数 y=2x+1 的图象经过 P1(x1,y1), P2(x2,y2)两点,若 x1<x2,则 y1 < y2.
.
第 12 题图
一次函数表达式的确定
13.(2021 甘肃省卷)将直线 y=5x 向下平移 2 个单位长度,所得直线的表
达式为( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2)
D.y=5(x-2)
14.已知一次函数y=kx+b的图象经过M(0,2),N(1,3)两点,则k,b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函 数
第二节 一次函数的图象与性质
姓名:________ 班级:________ 用时:______分钟
1.若k≠0,b >0,则y =kx +b 的图象可能是( )
2.(2019·易错题)直线y =3x 向下平移1个单位长度再向左平移2个单位长度,得到的直线是( ) A .y =3(x +2)+1 B .y =3(x -2)+1 C .y =3(x +2)-1 D .y =3(x -2)-1
3.(2017·泰安中考)已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是( )
A .k<2,m >0
B .k<2,m<0
C .k >2,m >0
D .k<0,m<0
4.(2018·南通中考)函数y =-x 的图象与函数y =x +1的图象的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5.(2018·陕西中考)如图,在矩形AOBC 中,A(-2,0),B(0,1).若正比例函数y =kx 的图象经过点C ,则k 的值为( )
A .-1
2
B.12
C .-2
D .2
6.(2019·原创题)一次函数y =x +6的图象与坐标轴的交点坐标为____________________________.
7.(2018·眉山中考)已知点A(x 1,y 1),B(x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为______________.
8.(2018·邵阳中考)如图所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是__________.
9.(2019·改编题)一次函数y =kx +b 的图象与两坐标轴围成的三角形的面积是16,且过点(0,4),求此一次函数的表达式.
10.(2018·娄底中考)将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )
A .y =2x -4
B .y =2x +4
C .y =2x +2
D .y =2x -2
11.(2019·创新题)已知一系列直线y =a k x +b(a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子a i -a j
x i -x j (1≤i≤k,1≤j≤k,i≠j),下列一定
正确的是( )
A .大于1
B .大于0
C .小于-1
D .小于0
12.(2018·连云港中考)如图,一次函数y =kx +b 的图象与x 轴、y 轴分别相交于A ,B 两点,⊙O经过A ,B 两点,已知AB =2,则k
b
的值为________.
13.(2018·长春中考)如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,3),(n ,3),若直线y =2x 与线段AB 有公共点,则n 的值可以为____________________.(写出一个即可)
14.(2018·重庆中考B 卷)如图,在平面直角坐标系中,直线l 1:y =1
2x 与直线l 2交点A 的横坐标为2,将直线l 1
沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2.直线l 2与y 轴交于点D. (1)求直线l 2的表达式; (2)求△BDC 的面积.
15.(2018·河北中考)如图,直角坐标系xOy 中,一次函数y =-1
2x +5的图象l 1分别与x ,y 轴交于A ,B 两点,
正比例函数的图象l 2与l 1交于点C(m ,4). (1)求m 的值及l 2的表达式; (2)求S △AOC -S △BOC 的值;
(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.
16.(2019·改编题)一次函数y =kx +b 的图象是一条直线,而y =kx +b 经过恒等变形可化为直线的另一种表达形式:Ax +By +C =0(A ,B ,C 是常数,且A ,B 不同时为0).如图1,点P(m ,n)到直线l :Ax +By +C =0的距离(d)
计算公式是:d =|A·m+B·n+C|A 2+B 2
.如图2,已知直线y =-4
3x -4与x 轴交于点A ,与y 轴交于点B ,点M(3,2),连接MA ,MB ,求△MAB 的面积.
参考答案
【基础训练】
1.C 2.C 3.A 4.B 5.A
6.(0,6)和(-6,0) 7.y 1>y 2 8.x =2
9.解:设坐标原点为O ,一次函数图象与x 轴交于点B.
∵一次函数的图象y =kx +b 与两坐标轴围成的三角形的面积是16, ∴1
2OB×4=16,解得OB =8,∴B(8,0)或B(-8,0). ①当y =kx +b 的图象过点(0,4),(8,0)时,则
⎩⎪⎨⎪⎧8k +b =0,b =4,解得⎩⎪
⎨
⎪⎧k =-1
2,b =4,
∴一次函数的表达式为y =-1
2
x +4.
②当y =kx +b 的图象过点(0,4),(-8,0)时,则
⎩⎪⎨⎪⎧-8k +b =0,
b =4,解得⎩⎪
⎨⎪⎧k =1
2,b =4,
∴一次函数的表达式为y =1
2
x +4.
综上所述,一次函数的表达式为y =12x +4或y =-1
2x +4.
【拔高训练】 10.A 11.B 12.-
2
2
13.2(答案不唯一) 14.解:(1)把x =2代入y =1
2x 得y =1,
∴点A 的坐标为(2,1).
∵将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3, ∴直线l 3的表达式为y =1
2x -4.
将y =-2代入y =1
2x -4得x =4,
∴点C 的坐标为(4,-2).
设直线l 2的表达式为y =kx +b. ∵直线l 2过A(2,1),C(4,-2),
∴⎩⎪⎨⎪⎧2k +b =1,4k +b =-2,解得⎩⎪
⎨
⎪⎧k =-3
2,b =4,
∴直线l 2的表达式为y =-3
2x +4.
(2)∵直线l 2的表达式为y =-3
2x +4,
∴x=0时,y =4,∴D(0,4). ∵l 3的表达式为y =1
2
x -4,
∴x=0时,y =-4,∴B(0,-4),∴BD=8, ∴S △BDC =1
2
×8×4=16.
15.解:(1)把C(m ,4)代入一次函数y =-1
2x +5可得
4=-1
2
m +5,解得m =2,∴C(2,4).
设l 2的表达式为y =ax ,则4=2a ,解得a =2, ∴l 2的表达式为y =2x.
(2)如图,过C 作CD⊥AO 于点D ,CE⊥BO 于点E ,则CD =4,CE =2. ∵y=-1
2x +5,令x =0,则y =5;
令y =0,则x =10,
∴A(10,0),B(0,5),∴AO=10,BO =5, ∴S △AOC -S △BOC =12×10×4-1
2
×5×2=20-5=15.
(3)k 的值为32或2或-1
2.
【培优训练】
16.解:由题意得A(-3,0),B(0,-4),则OA =3,OB =4, 由勾股定理得AB =5.
如图,过点M 作ME⊥AB 于点E ,则ME =d. y =-4
3x -4可化为4x +3y +12=0,
由上述距离公式得
d =|4×3+3×2+12|32+42
=305=6, 即ME =6,∴S △MAB =1
2×5×6=15.。