高级中学高中数学 §213分层抽样学案 新人教A版必修3
2015高中数学2.1.3分层抽样学案新人教A版必修3

2015高中数学 2.1.3分层抽样学案新人教A版必修3【学习目标】1、理解分层抽样的概念,掌握其实施步骤;2、掌握分层抽样与简单随机抽样和系统抽样的区别与联系,问题:假设某地区有高中生2400人,初中生10900人,小学生11000人,此地区教育部门为了了解本地区中小学生的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查。
你认为应当怎样抽取样本?(1)总体个数,样本容量分别是多少?(2)能否在24300名学生中随机抽取243名学生?为什么?(3)能否在三个学段中平均抽取?(4)三个学段中个体有较大差别,应如何提高样本的代表性?(5)如何确定各学段所要抽取的人数?1.分层抽样的定义一般地,在抽样时,将总体分成的层,然后按照,从各层_________地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持与的一致性,这对提高样本的代表性非常重要.当总体是由的几个部分组成时,往往选用分层抽样的方法.【课堂跟踪训练】1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25B.15,15,15C.10,5,30D.15,10,202、某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品总数之和是()A.4B.5C.6D.73、某企业共有3 200名职工,其中中、青、老年职工的比例为5:3:2,从所有职工中抽取一个样本容量为400的样本,采用分层抽样方法,中、青、老年职工应分别抽取、、人4、一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上有95人。
人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。
二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。
三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。
2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。
2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。
2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。
3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。
4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。
4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。
5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。
四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。
2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。
五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。
六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。
但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。
高中数学 213分层抽样教案1 新人教A版必修3 教案

2.1.3 分层抽样整体设计教学分析教材从“了解某地区中小学生的近视情况及其形成原因”的探究中引入的概念.在探究过程中,应该引导学生体会:调查者是利用事先掌握的各种信息对总体进行分层,这可以保证每一层一定有个体被抽到,从而使得样本具有更好的代表性.为了达到此目的,教材利用右栏问题“你认为哪些因素可能影响到学生的视力?设计抽样方法时,需要考虑这些因素吗?”来引导学生思考,在教学中要充分注意这一点.教材在探究初中和小学的抽样个数时,在右栏提出问题“想一想,为什么要这样取各个学段的个体数?”用意是向学生强调:含有个体多的层,在样本中的代表也应该多,即样本在该层的个体数也应该多.这样的样本才具有更好的代表性.三维目标1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.重点难点教学重点:分层抽样的概念及其步骤.教学难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.课时安排1课时教学过程导入新课思路1中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.推进新课新知探究提出问题(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?(2)想一想为什么这样取各个学段的个体数?(3)请归纳分层抽样的定义.(4)请归纳分层抽样的步骤.(5)分层抽样时如何分层?其适用于什么样的总体?讨论结果:(1)分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.(4)分层抽样的步骤:①分层:按某种特征将总体分成若干部分(层);②按抽样比确定每层抽取个体的个数;③各层分别按简单随机抽样的方法抽取样本;④综合每层抽样,组成样本.(5)分层抽样又称类型抽样,应用分层抽样应遵循以下要求:①分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.②分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.③当总体个体差异明显时,采用分层抽样.应用示例例1 一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本. 解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为51500100=,则在不到35岁的职工中抽125×51=25人;在35岁至49岁的职工中抽280×51=56人;在50岁以上的职工中抽95×51=19人.(3)在各层分别按抽签法或随机数表法抽取样本. (4)综合每层抽样,组成样本.点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层. 变式训练1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×5322++=40;200×5323++=60;200×5325++=100.解:用分层抽样来抽取样本,步骤是: (1)分层:按区将20 000名高中生分成三层.(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100. (3)在各层分别按随机数表法抽取样本. (4)综合每层抽样,组成样本.2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本. 答案:D例2 某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7 分析:抽样比为2030104020+++=51,则抽取的植物油类种数是10×51=2,则抽取的果蔬类食品种数是20×51=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6. 答案:C点评:如果A 、B 、C 三层含有的个体数目分别是x 、y 、z,在A 、B 、C 三层应抽取的个体数目分别是m 、n 、p,那么有x∶y∶z=m∶n∶p;如果总体有N 个个体,所抽取的样本容量为n,某层所含个体数目为a,在该层抽取的样本数目为b,那么有abN n =. 变式训练1.(2007浙江高考,文13)某校有学生2 000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为______________. 分析:抽样比为1012000200=,样本中高三学生的人数为500×101=50. 答案:502.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( ) A.30人,30人,30人 B.30人,45人,15人 C.20人,30人,10人 D.30人,50人,10人分析:抽样比是120118005400360090=++,则应在这三校分别抽取学生:1201×3 600=30人,1201×5 400=45人,1201×1 800=15人. 答案:B 知能训练1.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( ) ①简单随机抽样 ②系统抽样 ③分层抽样A.②③B.①③C.③D.①②③分析:由于各家庭有明显差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法. 答案:D2.某地区有300家商店,其中大型商店有30家 ,中型商店有75家,小型商店有195家.为了掌握各商店的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型商店数是______________. 答案:53.某校500名学生中,O 型血有200人,A 型血有125人,B 型血有125人,AB 型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?分析:由于研究血型与色弱的关系,按血型分层,用分层抽样抽取样本.利用抽样比确定抽取各种血型的人数.解:用分层抽样抽取样本.∵50250020=,即抽样比为502. ∴200×502=8,125×502=5,50×502=2.故O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人. 抽样步骤:①确定抽样比502; ②按比例分配各层所要抽取的个体数,O 型血抽8人,A 型血抽5人,B 型血抽5人,AB 型血抽2人; ③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本. 拓展提升某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样 分析:如果按分层抽样时,在一年级抽取108×27010=4人,在二、三年级各抽取81×27010=3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样. 答案:D点评:根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取出的样本号码没有规律性;利用分层抽样抽取出的样本号码有规律性,即在每一层抽取的号码个数m 等于该层所含个体数目与抽样比的积,并且应该恰有m 个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n-1)k .其中,n 为样本容量,l 是第一组中的号码,k 为分段间隔=总体容量/样本容量.课堂小结本节课学习了分层抽样的定义及其实施步骤.作业习题2.1A组5.设计感想本节课重视从学生的生活经验和已有知识中学习数学和理解数学.首先为教材内容选择生活背景,让学生体验数学问题来源于生活实际;其次,大胆调用学生熟知的生活经验,使数学学习变得易于理解掌握;第三,善于联系生活实际有机改编教材习题,让学生在实践活动中理解掌握知识,变“学了做”为“做中学”.。
人教A版高中数学必修三 2-1-3 分层抽样 学案 精品

§2.1.3分层抽样、三种抽样方法的联系一、学习目标1.能够熟练说出三种抽样方法,并且会根据不同情况判断使用哪一种;2. 能够熟练说出分层抽样的概念能够判断使用分层抽样的条件;二、预习课本,自主掌握:1.常用的抽样方法有:;;。
2.最常用的简单随机抽样方法有两种:;。
3.分层抽样的概念:一般地,在抽样时,将总体分成,然后,从抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样。
4.当总体是由组成时,往往选用分层抽样的方法。
5.分层抽样时,每个个体被抽到的机会是。
6.在抽样方法中,如果总体的个数较少时,一般采用,总体中个体较多的的时候,宜采用,总体由差异明显的几部分组成,应采用。
7. 简单随机抽样、系统抽样、分层抽样的联系和区别三、基础自测:1.1.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为() A.30 B.25 C.20 D.152.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法3.某校为了了解高三年级学生的视力状况,按男生和女生分层抽样,从全部600名学生中抽取60名进行检查,在抽取的学生中有男生36名,则高三年级中共有__________名女生.4.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌.现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌数是7,则n=________.答案:1.C设样本中松树苗的数量为x,由15030000=x4000,得x=20.2.B①因为抽取的销售点与地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本容量都比较少,适合采用简单随机抽样法.3.24060060×36=360(名),∴女生有600-360=240(名).4.20根据分层抽样规则有n100=735,则n=20.四、合作、探究、展示:题型一:分层抽样的概念例1. (1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适()A.系统抽样法B.简单随机抽样法C.分层抽样法D.随机数法(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B .每层可以不等可能抽样C .所有层按同一抽样比等可能抽样D .所有层抽个体数量相同[解析] (1)总体由差异明显的三部分构成,应选用分层抽样.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.[答案] (1)C (2)C题型二:分层抽样的步骤:(1)分层:按某种特征(一定的标准)将总体进行分层;(2)按比例确定每层抽取个体的个数,即确定各层容量;(3)各层分别按简单随机抽样或系统抽样的方法抽取。(4)综合每层抽样,组成样本。例2. 某企业共有3200名职工,其中,老、中、青职工的比为5:3:2,从所有职工中抽取一个样本容量为400的样本,采用哪种抽样方法更合理?并求出老、中、青职工的人数。
人教A版高中数学必修三 2.1.3《分层抽样》教案

人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。
为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。
你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。
高中数学人教A版必修必修三第二章2-1-3分层抽样学案

第二章统计§2.1随机抽样2.1.3分层抽样【学习目标】1.正确理解分层抽样的概念.(重点)2.掌握分层抽样的一般步骤.(重点)3.会区分简单随机抽样、系统抽样和分层抽样,并会选择适当正确的方法进行抽样.(难点) 【课前预习】1、分层抽样的概念:一般地,在抽样时,将总体分成____的层,然后按一定的比例,从各层独立地_ __,将各层取出的个体合在一起作为样本,这种抽样的方法叫做_______.2、分层抽样的特点:(1)适用于总体是由有明显差别的几部分组成时的情况;(2)分层抽样对各个个体来说被抽取的可能性_______.3、分层抽样的优点:(1)样本具有较强的代表性;(2)在各层抽样时,可灵活地选用不同的抽样方法.4、分层抽样的步骤:(1)将总体按一定的标准分层;(2)计算各层的个体数与总体的个体数的比;(3)按各层个体数占总体的个体数的比确定各层应抽取的样本容量;(4)在每一层进行抽样(各层可以按简单随机抽样或系统抽样的方法抽取)5、三种抽样方法的比较:,化为简单.分层抽样在简单随机.3.【预习自测】判断:(正确的打“√”,错误的打“×”)(1)因为分层抽样在不同层内进行,所以不同层的个体被抽到的可能性不一样.( )(2)分层抽样中,为确保公平性,在每层都应用同一抽样方法.( )(3)分层抽样所有层抽同样多容量的样本,是等可能抽样.( )【课内探究】类型一分层抽样的基本概念1.如果采用分层抽样,从个体数为N的总体中抽取一个容量为n的样本,那么每个个体被抽到的可能性为2.下列问题中,最适合用分层抽样抽取样本的是( )A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1000名工人中,抽取100名调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量类型二分层抽样各层中样本容量的计算1.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,62.(2012·四川高考)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为( )A.101B.808C.1 212D.2 012类型三三种抽样的综合应用1.某城区有农民、工人、知识分子家庭共计2 000户,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,以调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,下列抽取样本的方法最合理的是.①简单随机抽样; ②系统抽样; ③分层抽样; ④先从老年人中剔除1人再用分层抽样. 【当堂检测】1.下列属于分层抽样特点的是( )A.从总体中逐个抽取B.将总体分成几层,分层进行抽取C.将总体分成几部分,按事先确定的规则在各部分抽取D.将总体随意分成几部分,然后再进行随机抽取2.某地区为了了解居民的家庭生活状况,先把居民按所在的行业分为几类,然后每个行业抽的居民家庭进行调查,这种抽样是( )A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样3.某公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是( )A.5B.10C.15D.204.某学校共有师生2 400人,现用分层抽样方法,从所有师生中抽取一个容量为160的样本.已知从学生中抽取的人数为150,那么该学校的教师人数是________.。
人教A版高中数学必修三1.2.2《分层抽样》导学案
自主学习课本P12,并回答:
1、分层抽样的概念:将总体按其分成若干类型,然后在每个类型中随机抽取一定的样本.这样 的抽样方法称为分层抽样
2、分层抽样的步骤为:
3、每层如何抽取样本?如何计算每层抽取样本个数?
作业
布置
精讲互动
例1某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解 政府机构改革意见,要 从中抽取一个容量为20的 样本,试确定用何种方法抽取,请具体说明过程,并说明 抽取的公平合理性。
【解】
例2某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体健康状况,需要从他们中间抽取一个容量为36的样本,应怎样进行抽样?
达标训练
1.某 公司生产三种型号的轿车,产量分别为1200辆、6000辆、2000辆。为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车应分别抽取______、______和_____辆。
2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工样》导学案
学习
目标
1.正确理解分层抽样;
2. 掌握分层抽样的一般步骤;
3.正确理解分层抽样、系统抽样、简单随机抽样的区别和联系,并且选择适当正确的方法进行抽样.
重点难点
1.掌握分层抽样的特点和一般步骤;
2.根据实际情况选择正确的抽样方法.
学习
过程
与方
法
高中数学 2.1.3分层抽样教案 新人教a版必修3
2.1.3分层抽样
授课时间
教
学
目
标
知识与技能
A层:(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
B层:灵活应用分层抽样抽取样本。
过程与方法
通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
情感、态度与价值观
通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的的世界观与价值观。
布置作业
学生做练习(分层)
可以互相讨论
反思小结
学生根据自身的能力做A、B组题(A组题是必做,B组题是选做)
通过师生共同探讨对话,深化对分层抽样概念及要遵循的原则的理解,加深对分层抽样过程的理解,利于知识的系统化、条理化。
引导学生运用分层抽样,加深理解分层抽样的步骤及优点,巩固知识的掌握。
小结是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力。
课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,利于拓展学生的自主发展的空间
教学反思
从现实生活中的问题出发,引起学生兴趣。问题设计层层递进,难度呈现梯度,可以满足不同水平学生需要。通过组织讨论,培养学生自主探究,合作交流的能力,培养学生概括归纳能力。同时该过程运用了从具体到抽象的方法,为给出分层抽样的定义做准备。
教学过程
教师活动
学生活动
设计意图
新课概念总结
指导无法独自完成的学生
应用分层抽样抽取样本
教学难点
确定各层的入样个体数目
高一数学人教A版必修3教案2.1.3分层抽样
一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高中数学教案2.1.3《分层抽样》(新课标人教A版必修三)
课题:用样本的频率分布估计总体分布(一)
第______课时总序第______个教案
课型:新授课编写时间:____年___月___日执行时间:___年___月___日
教学目标:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布.
指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.
二、讲授新课:
1、教学频率分布直方图的作法:
①引例:确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?为了了较为合理地确定出这个标准,需要做哪些工作?
分析:因为被调查的总体有很明显的差异,所以要使用分层抽样,找到样本容量与总体个数的比例,再和每个层的个体数相乘,得到的样本数量之和就是应抽取的人数.
解:因为要抽取1%,所以样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24,初中应抽取人数为10900*1/100=109,小学应抽取人数为11000*1/100=110
一、复习准备:
1、提问:一般在什么条件下使用系统抽样?系统抽样都有那些步骤?当分段间隔不是整数的时候怎么办?
2、试设计从高一学生804人中抽取40人进行调查的抽样方案.
变式:学校高一学生800人,高二640人,高三560人,从全校抽取100人,如何抽样?
3、引入:当对总体情况不是很了解的情况下用系统抽样,样本的代表性可能会很差,比如抽取的可能都是男生,或都是女生.而且有时一些问题农村和城市,老人和孩子等都有很大的差异,当总体存在很大的差异时,我们怎么办呢,今天我们来学习第三种抽样方法分层抽样.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省新宾满族自治县高级中学高中数学 §2.1.3分层抽样学案 新人教A 版
必修3
一、课前准备
(预习教材53页,找出疑惑之处)
阅读教材完成下列问题:
1.什么情况下进行分层抽样?应遵循什么要求?步骤有哪些?
2.对于简单随机抽样、系统抽样、分层抽样你能找出哪些异同? 二、新课导学
创设情境
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小
学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
三、自主学习
(一)分层抽样的定义
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个
体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。
(二)分层抽样的步骤:
探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A 、每层等可能抽样
B 、每层不等可能抽样
C 、所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n 样本,那么每个个体被抽到的可能性为
( ) A.N 1 B.n 1 C.N n D.N n
三、典型例题
例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为 ( )
A.15,5,25
B.15,15,15
C.10,5,30
D.15,10,20
例2 一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的
样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方
法?并写出具体过程。
(三)、简单随机抽样、系统抽样、分层抽样的比较
类别共同点各自特点联系适用范围简单随机抽样
系统抽样
分层抽样。