一元一次方程解决问题1--庄阳海
江苏省连云港市灌云县陡沟中学七年级数学上册 4.3 用一元一次方程解决问题学案(无答案)(新版)新人教版

课题
4.3用一元一次方程解决问题(6)
课型课型课型
新授
课时
1
导
学
目
标
1.能利用线形示意图或柱状示意图作为建模策略,分析经济类问题中的等量关系列方程解决问题;
2.进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.
导学重点
利用线形示意图或柱状示意图分析问题中的数量关系,找出问题中的等量关系.
请学生上黑板板书过程.
请学生上黑板板书过程.
本题的关键在于读懂题目的意思,根据题目给出的条件,找出等量关系列出方程求解.
七、【反思导学总结得失】
顾客乙:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”
请你根据上面的对话,解答下面的问题:
(1)顾客乙买的两箱鸡蛋合算吗?说明理由.
(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?
预习:
对经济类的有关知识进行复习.
降价次数
第一次
第二次
第三次
销售件数
10
40
一抢而光
问(1)亏本价占原价的百分比是多少?
(2)该商品按新方案销售,相比原价全部售完,哪一种方案更盈利?
思维拓展:
售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”
顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”
导学难点
能利用线形示意图或柱状示意ห้องสมุดไป่ตู้分析问题.
教师活动内容、方式
学生活动方式、内容
七年级数学上册5.5应用一元一次方程“希望工程”义演习题课件(新版)北师大版

第一页,共13页。
1.由“和”“差”“倍”“分”“大”“小”“快”“慢”等关键词切 入某些基本公式,从变化的关系中寻求不变量,找出等量关系列方程求 解. 2.当问题中的未知量有两个或两个以上时,选择一个适当的未知量设为 未知数,如:比例调配问题. 3.总量等于(děngyú)各分和量的____.
第十页,共13页。
15.(8分)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加 工能力是:每天可以精加工6吨或粗加工16吨.现计划(jìhuà)用15天完成加工任 务,该公司应安排几天精加工,几天粗加工? 解:设应安排x天精加工,则有(15-x)天粗加工.依题意得6x+16(15-x)= 140.∴x=10. 答:10天精加工,5天粗加工
A.2x.5+5=4x.5
B.2x.5-5=4x.5
C.2x.5+5=4x.5 D.2.5x+5=4.5x
第八页,共13页。
11.某校语文、数学两个课外小组共90人,语文、数学两个小组人数之比为
5∶4,则语文组有____人,数学组5有0 ____人.
40
12.父亲今年40岁,儿子今年12岁,再过____年后1,6父亲的年龄是儿子年龄的2
解:(1)能履行合同.设甲、乙合作 x 天完成,则有(310+210)x=1,解得 x=12<15,因此两人能履行合同 (2)由(1)知,二人合作完成这项工程 的 75%需要的时间为 12×75%=9(天).剩下 6 天必须由某人做完余下 的工程,故他的工作效率为 25%÷6=214,因为310<214<210,故调走甲 合适.
第五页,共13页。
知识点3 其他(qítā)问题
6.(3 分)一项工程甲单独做需要 40 天完成,乙单独做需要 50 天完 成,甲先单独做 4 天,然后两人合作 x 天完成这项工程,则可列的 方程是( D ) A.440+40+x 50=1 B.440+40×x 50=1 C.440+5x0=1 D.440+4x0+5x0=1 7.(4 分)学校组织一次有关世博的知识竞赛,共有 20 道题,每一题 答对得 5 分,答错或不答都倒扣 1 分,小明最终得 76 分,那么他答 对了___1_6___题.
第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。
解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。
每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。
关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。
工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。
还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。
三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。
2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。
六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。
2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。
3.2.1 一元一次方程的解法(一)合并同类项(分层作业)【解析版】

3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a -1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。
北师大版(2024)数学七年级上册 5.3.2 一元一次方程应用--“盈不足”问题

所以,共有39人,15辆车.
课堂练习
2.《孙子算经》中有一道题,原文是:今有三人共车,二车空;
二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,
每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余
9个人无车可乘,问共有多少人,多少辆车?
方法二:设共有y辆车,则可列方程为3(y-2)=2y+9
已知量:每人出8钱,多3钱;每人出7钱,少4钱。
未知量:人数、物价。
等量关系:每人出8钱 x人数一多出的3钱=每人出7钱x人数+还少的4钱
。
获取新知
《九章算术》“盈不足”章第一题:今有共买物,人出八,盈三;人
出七,不足四。问:人数、物价各几何?
题目大意:几个人合伙买东西,若每人出8钱,则会多出3钱;若每人
−4
7
=
+8
9
,
课堂练习
2.《孙子算经》中有一道题,原文是:今有三人共车,二车空;
二人共车,九人步,问人与车各几何?译文为:今有若干人乘
车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最
终剩余9个人无车可乘,问共有多少人,多少辆车?
方法一:解:设共有人,则可列方程为
解得 =39
39
+2=15
、代数等多个领域,是当时世界上最先进的应用数学之一。
获取新知
探究点:盈不足问题
《九章算术》“盈不足”章第一题:今有共买物,人出八,盈三;人
出七,不足四。问:人数、物价各几何?
题目大意:几个人合伙买东西,若每人出8钱,则会多出3钱;若每人
出7 钱,则还少4钱。合伙人数、物品的价格分别是多少?
(1)问题中有哪些已知量和未知量?它们之间有怎样的等量关系?
解一元一次方程50道练习题(经典、强化、带答案)之欧阳学文创作

解一元一次方程欧阳学文 1、712=+x ; 2、825=-x ;3、7233+=+x x ;4、735-=+x x ; 解:(移项)(合并)(化系数为1)5、914211-=-x x ;6、2749+=-x x ;7、162=+x ;8、9310=-x ;解:(移项)(合并)(化系数为1)9、x x -=-324; 10、4227-=+-x x ;11、8725+=-x x ;12、32141+=-x x 解:(移项)(合并)(化系数为113、1623+=x x 14、253231+=-x x ;15、152+=--x x ; 16、23312+=--x x 解:(移项)(合并)(化系数为1).17、475.0=)++(x x ;18、2-41)=-(x ; 19、511)=-(x ; 20、212)=---(x ;解:(去括号)(移项)(合并)(化系数为1)21、)12(5111+=+x x ;22、32034)=-(-x x .23、5058=)-+(x ; 24、293)=-(x ;解:(去括号)(移项)(合并)(化系数为1)25、3-243)=+(x ;26、2-122)=-(x ; 27、443212+)=-(x x ;28、323236)=+(-x ;解:(去括号)(移项)(合并)(化系数为1)29、x x 2570152002+)=-(; 30、12123)=+(x .31、452x x =+;32、3423+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为1)33、)-()=+(3271131x x ; 34、)-()=+(131141x x ;35、142312-+=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为136、)+(-)=-(2512121x x .37、)+()=+(20411471x x ;38、)-(-)=+(731211551x x . 解:(去分母)(去括号)(移项)(合并)(化系数为139、432141=-x ; 40、83457=-x ; 41、815612+=-x x ; 42、629721-=-x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为143、1232151)=-(-x x ; 44、1615312=--+x x ;45、x x 2414271-)=+(; 解:(去分母)(去括号)(移项)(合并)(化系数为146、259300300102200103 )=-()-+(x x .47、307221159138)=-()--()--(x x x ; 解:(去分母)(去括号)(移项)(合并)(化系数为148、51413121-=+x x ;49、13.021.02.015.0=-+--x x ;50、3.01-x -5.02+x =12. 解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】(1)3=x ; (2)2=x ; (3)4=x ; (4)6=x ;(5)37=x ; (6)12=-x ; (7)4=x ; (8)32=-x .1.1、【答案】 (9)25=-x ; (10)56=x ; (11)5=-x ; (12)31=-x ; (13)1=x ; (14)32=x ; (15)35=-x ; (16)1=x .2、【答案】(17)1=x ;(18)1=-x ; (19)56=x ; (20)3=-x ; (21)4=x ; (22)9=x .2.1、【答案】(23)7=-x ; (24)23=-x ; (25)11=-x ; (26)4=-x ; (27)21=x ; (28)910=x ; (29)6=x ; (30)23=x . 3、【答案】 (31)8=x ; (32)51=x ; (33)16=-x ; (34)7=x ; (35)52=-x ;(36)3=x ; (37)28=-x ; (38)165=-x . 3.1、【答案】 (39)5=x ; (40)1413=x ; (41)1=-x ; (42)320=-x ; (43)1225=x ;(44)3=-x ; (45)87=x ; (46)216=x .4、【答案】 (47)3=x ; (48)1532=-x ; (49)1364=x ;(50)229=x .。
七年级数学上册第3章一次方程与方程组3.1一元一次方程及其解法(第1课时)课件(新版)沪科版
判断下列方程是不是一元一次方程
1、2x-1=5
√
2、4+8=12
x
3、5y-8
x
4、2a+3b=0
x
5、2x2+x=1
x
你能写出一个一元一次 方程吗?
使方程两边相等的未知数的值叫做方程的解, 也叫做方程的根。
现在你知道,什么是一元一次 方程?什么是方程的解吗?
如果将天平看成等式,从上面的演示中可以得到什 么结论?
性质1
(2)如果-8x=4,那么x=﹣
性质2
(3)如果﹣5a=﹣5b,那么a=b;
性质2
(4)如果3x=2x+1,那么x=1;
性质1
(5)如果﹣0.25=x,那么x=﹣0.25; 性质3
(6)如果x=y,y=z,那么x=z
性质4
根据等式的基本性质解下列方程,并检验
(1)5x ﹣7= 8
解:5x﹣7+7= 8+7 5x= 15 x= 3
(2)27=7+4x
解:27 ﹣7=7+4x ﹣7 20=4x 4x=20 x=5
如果刘茂江和刘瑞丰的年龄一样,那么刘瑞丰和 刘茂江的年龄一样吗?你能得到等式的什么性质?
性质3 如果a=b,那么b=a。(对称性)
如果刘茂江和刘瑞丰的年龄一样,刘瑞丰和王辉 的年龄一样,那么刘茂江和王辉的年龄有什么关 系?你又能得到等式的什么性质呢?
可用于等量代换
性质4 如果a=b,b=c,那么a=c。(传递性)
例1
2x-1=19
解:两边都加上1,得
2x=19+1
等式基本性质1
即 2x=20
两边都除以2,得
x=10
2024年新冀教版7年级上册数学教学课件 5.4 1元1次方程的应用 第4课时
4.一种牙膏出口处直径为5 mm,小明每次刷牙都挤出1 cm长的牙膏,这样一支牙膏可以用36次,该品牌牙膏推出新包装,只是将出口处直径改为6 mm,小明还是按习惯每次挤出1 cm 的牙膏,这样,这一支牙膏能用多少次?
解:设这一支牙膏能用x次.依题意,得 π×2.52×10×36=π×32×10x.解得 x=25.答:这一支牙膏能用25次.
例2 甲、乙两地相距100 km,一列慢车与一列快车同时从甲、乙两地出发,慢车每小时行驶65 km,快车每小时行驶85 km,快车行驶几小时后追上慢车?
分析:快车与慢车同时出发,即它们行驶的时间相等. 快车追上慢车,比慢车多行驶的距离即为甲、乙两地的距离. 即:快车行驶路程=慢车行驶路程+100km.
【分析】设这块麦田有x公顷,根据题意可得化肥的总数可表示为400x+800,或500x﹣300,根据化肥的总数不变可得方程.
解:设这块麦田有x公顷,根据题意, 得400x+800=500x﹣300, 解得 x=11.现有化肥数:400x+800=5 200.答:这块麦田是11公顷,现有化肥5 200千克.
解:设爸爸追上小明用了x分钟,则此题的数量关系可用线段图表示.
据题意,得 80×5+80x=180x.
答:爸爸追上小明用了4分钟.
解得 x=4.
80×5
80量关系:速度差×追及时间=追及路程其中追及时间指快者和慢者共同行驶的时间,追及路程指慢者先行驶的路程.
6.一个底面直径为16厘米的圆柱形木桶内装满水,水中淹没着一个底面直径为8厘米、高为15厘米的铁质小圆柱体.当铁质小圆柱体取出后,木桶内水面下降了多少?
[解析] 木桶内水面下降的圆柱体体积=铁质小小圆柱体体积.
专题 一元一次方程的同解、错解、参数等问题(解析版)-七年级数学上册
七年级上册数学《第三章一元一次方程》专题一元一次方程的同解、错解、参数等问题【例题1】(2022•江阴市模拟)已知x=1是方程x+2a=﹣1的解,那么a的值是()A.﹣1B.0C.1D.2【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a 的值.【解答】解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选:A.【点评】已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.【变式1-1】(2022秋•秀山县期末)已知x=1是关于x的方程6﹣(m﹣x)=5x的解,则代数式m2﹣6m+2=.【分析】根据一元一次方程的解的定义可知m的值,然后代入求值即可.【解答】解:把x=1代入6﹣(m﹣x)=5x,得6﹣(m﹣1)=5×1.解得m=2.所以m2﹣6m+2=22﹣6×2+2=﹣6.故答案为:﹣6.【点评】本题主要考查了一元一次方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式1-2】(2022秋•张家港市期中)已知x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,则3a3﹣2a2+a ﹣4的值是()A.1B.﹣1C.16D.14【分析】把x=1代入关于x的方程3x3﹣2x2+x﹣4+a=0可以求得a的值,然后把x=2代入所求的代数式进行求值.【解答】解:∵x=1是关于x的方程3x3﹣2x2+x﹣4+a=0的解,∴3﹣2+1﹣4+a=0,解得,a=2,∴3a3﹣2a2+a﹣4=3×23﹣2×22+2﹣4=14.故选:D.【点评】本题主要考查了方程解的定义,解决本题的关键在于根据方程的解的定义将x=1代入,从而转化为关于a的一元一次方程.【变式1-3】若关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,则m的值是()A.14或134B.14C.54D.−12或54【分析】解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.【解答】解:因为方程|x−12|=1,所以x−12=±1,解得x=32或x=−12,因为关于x的方程x+2=2(m﹣x)的解满足方程|x−12|=1,所以解方程x+2=2(m﹣x)得,m=3r22,当x=32时,m=134,当x=−12时,m=14.所以m的值为:134或14.故选:A.【点评】本题考查了含绝对值符号的一元一次方程,解决本题的关键是解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论.【变式1-4】(2022秋•奎屯市校级月考)已知x=4是关于x的一元一次方程﹣3m﹣x=2+3m的解,则m2020+1的值是.【分析】根据一元一元一次方程的解的定义求得m,再解决此题.【解答】解:由题意得,﹣3m﹣4=42+3.∴﹣3m﹣4=2+3m.∴﹣6m=6.∴m=﹣1.∴m2020+1=(﹣1)2020+1=1+1=2.故答案为:2.【点评】本题主要考查一元一次方程的解、有理数的乘方,熟练掌握一元一次方程的解的定义、有理数的乘方是解决本题的关键.【变式1-5】(2022秋•烟台期末)已知x=﹣1是关于x的方程2a+2=﹣1﹣bx的解.求代数式5(2a﹣b)﹣2a+b+2的值.【分析】根据方程解的定义,把x=﹣1代入关于x的方程2a+2=﹣1﹣bx,即可得出代数式5(2a﹣b)﹣2a+b+2的值.【解答】解:当x=﹣1时,2a+2=﹣1+b,即2a﹣b=﹣3,∴5(2a﹣b)﹣2a+b+2=5(2a﹣b)﹣(2a﹣b)+2=﹣15+3+2=﹣10.【点评】本题考查了一元一次方程的解,以及整式的加减,把2a﹣b作为整体,是数学中常用的整体思想.(2023春•长春期中)已知关于x的方程4x+2m=3x+1的解是x=0,试求(−2p2021−(−32)2020【变式1-6】的值.【分析】将x=0代入原方程,可求出m的值,再将m的值代入原式,即可求出结论.【解答】解:将x=0代入原方程得:2m=1,解得:m=12,∴原式=(﹣2×12)2021﹣(12−32)2020,=(﹣1)2021﹣(﹣1)2020=﹣1﹣1=﹣2.【点评】本题考查了一元一次方程的解,牢记“把方程的解代入原方程,等式左右两边相等”是解题的关键.【例题2】(2023秋•东台市期中)如果关于x的方程K43=8−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求a的值.【分析】先求出第一个方程的解,然后代入第二个方程得到关于a的一元一次方程,再根据一元一次方程的解法进行求解即可.【解答】解:解方程K43=8−r22得:x=10,由题意:4x﹣(3a+1)=6x+2a﹣1的解为x=10,代入得:4×10﹣(3a+1)=6×10+2a﹣1,解得:a=﹣4.【点评】本题考查了同解方程,同解方程就是解相同的方程,本题先求出第一个方程的解是解题的关键.【变式2-1】(2022秋•长沙期末)若关于x的方程r32−=2的解与方程x+1=m的解相同,求m的值.【分析】先解方程r32−=2可得x=4﹣m,再根据方程同解的含义可得4﹣m+1=m,再解关于m 的方程即可.【解答】解:r32−=2,去分母可得:m+3x﹣2x=4,即x=4﹣m,∵关于x的方程r32−=2的解与方程x+1=m的解相同,∴4﹣m+1=m,解得:=52.【点评】本题考查的是同解方程的含义,选择合适的方程进行变形是解本题的关键.【变式2-2】(2022秋•仙游县校级期末)如果方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,求(a ﹣3)2的值.【分析】通过解关于x的方程2K35=23x﹣2求得x的值,然后将x的值代入3a−14=3(x+a)﹣2a列出关于a的新方程,通过解该新方程即可求得a的值,再代入计算即可求解.【解答】解:由关于x的方程2K35=23x﹣2,解得x=5.25∵关于x的方程2K35=23x﹣2与3a−14=3(x+a)﹣2a的解相同,∴3a−14=3(5.25+a)﹣2a,解得a=8.∴(a﹣3)2=(8﹣3)2=25.【点评】本题考查了同解方程的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.【变式2-3】(2023春•安岳县校级期中)已知关于x的一元一次方程2r13−5K16=1.(1)求这个方程的解;(2)若这个方程的解与关于x的方程3(x+m)=﹣(x﹣1)的解相同,求m的值.【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)根据题意可知x=﹣3是方程3(x+m)=﹣(x﹣1)的解,把x=﹣3代入方程3(x+m)=﹣(x ﹣1)中得到关于m的方程,解方程即可.【解答】解:(1)2r13−5K16=1去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2)由题意得x=﹣3是方程3(x+m)=﹣(x﹣1)的解,∴3(﹣3+m)=﹣(﹣3﹣1),∴3m﹣9=4,解得=133.【点评】本题主要考查了解一元一次方程,一元一次方程的解,熟知解一元一次方程的步骤是解题的关键.【变式2-4】如果方程K43−8=−r22的解与方程4x﹣(3a+1)=6x+2a﹣1的解相同,求式子a﹣a2的值.【分析】先求得方程方程K43−8=−r22的解,然后将所求的x的值代入方程4x﹣(3a+1)=6x+2a﹣1求得a的值,最后在求代数式的值即可.【解答】解:K43−8=−r22去分母得:2(x﹣4)﹣48=﹣3(x+2)去括号得:2x﹣8﹣48=﹣3x﹣6,移项得:2x+3x=﹣6+8+48,合并同类项得:5x=50,系数化为1得:x=10.将x=10代入方程4x﹣(3a+1)=6x+2a﹣1得:40﹣(3a+1)=60+2a﹣1,去括号得:40﹣3a﹣1=60+2a﹣1,移项得:﹣3a﹣2a=60﹣1﹣40+1,合并同类项得:﹣5a=20,系数化为1得:a=﹣4.a﹣a2=﹣4﹣(﹣4)2=﹣4﹣16=﹣20.【点评】本题主要考查的是同解方程的定义、解一元一次方程、求代数式的值,求得a的值是解题的关键.【变式2-5】(2022秋•巴南区期末)已知方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),求m的值.【分析】根据方程的解相同,可得关于m的方程,根据解方程,可得答案.【解答】解:解方程3K52=5K83,3(3x﹣5)=2(5x﹣8),9x﹣15=10x﹣16,9x﹣10x=﹣16+15,x=1,∵方程3K52=5K83的解满足等式10−3(Kp2=3K4−25(3x+m),∴10−3(1−p2=3−4−25×(3+p,2m﹣30(1﹣m)﹣5(3﹣m)﹣8(3+m),2m﹣30+30m=15﹣5m﹣24﹣8m,2m+30m+8m+5m=30+15﹣24,45m=21,解得m=715.【点评】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.【变式2-6】(2022秋•利州区校级期末)已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同.(1)求m的值;(2)求代数式(﹣2m)2022−(−32)2021的值.【分析】(1)分别解出两个方程的解,根据解相同列出方程,解方程即可;(2)代入求值即可.【解答】解:(1)由4x+2m=3x+1解得:x=1﹣2m,由3x+2m=6x+1解得:x=2K13,由题知:1﹣2m=2K13,解得:m=12;(2)当m=12时,(﹣2m)2022﹣(m−32)2021=(﹣2×12)2022﹣(12−32)2021=1+1=2.【点评】本题考查了同解方程,解一元一次方程,列出关于m的方程是解题的关键.【例题3】(202秋•沂源县期末)方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,求k的值【分析】直接解方程得出x=−13,进而得出关于x的方程r2−3k﹣2=2x的解,求出答案即可.【解答】解:∵2﹣3(x+1)=0,∴解得:x=−13,∵方程2﹣3(x+1)=0的解与关于x的方程r2−3k﹣2=2x的解互为相反数,∴关于x的方程r2−3k﹣2=2x的解x=13,∴r132−3k﹣2=23,解得:k=﹣1.【点评】此题主要考查了一元一次方程的解,正确得出x的值是解题关键.【变式3-1】(2022秋•高港区校级月考)已知关于x的方程①:x+1﹣2m=﹣m的解比方程②:32(−p−2=54的解大2.求m的值以及方程②的解.【分析】用含m的式子分别表示出方程①和方程②的解,根据方程①的解比方程②的解大2列出关于m的方程,求解可得m的值,将m的值代入方程②中即可解得x的值.【解答】解:解x+1﹣2m=﹣m得:x=m﹣1,解32(−p−2=54得:=611−811,∵方程①的解比方程②的解大2,∴−1−(611−811)=2,解得:m=5,将m=5代入方程②中得:32(5−p−2=54,解得:x=2.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.【变式3-2】(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【变式3-3】(2022秋•太仓市期末)已知关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,求代数式92m﹣4n﹣1的值.【分析】分别解方程,进而用m,n分别表示出x,再结合相反数的定义得出等式,将原式变形求出答案.【解答】解:2x+10﹣3m=0,则2x=3m﹣10,解得:x=3K102,r12+2(r1)3=1,则3(x+1)+4(n+1)=6,故3x+3+4n+4=6,3x=﹣1﹣4n,解得:x=−1+43,∵关于x的一元一次方程2x+10﹣3m=0的解与关于x的一元一次方程r12+2(r1)3=1的解互为相反数,∴3K102−1+43=0,去分母得:3(3m﹣10)﹣2(1+4n)=0,则9m﹣30﹣2﹣8n=0,故9m﹣8n=32,则92m﹣4n﹣1=12(9m﹣8n)﹣1=12×32﹣1=16﹣1=15.【点评】此题主要考查了一元一次方程的解,正确解方程是解题关键.【变式3-4】(2022秋•亭湖区校级月考)已知关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,求2a﹣3的值.【分析】先分别求出两个方程的解,根据题意得出关于a的一元一次方程,再求出方程的解,最后求出答案即可.【解答】解:解方程3(x﹣2)=x﹣a得:x=6−2,解方程r2=2K3得:x=5a,∵关于x的方程3(x﹣2)=x﹣a的解比r2=2K3的解小52,∴6−2=5a−52,解得:a=1,∴2a﹣3=2×1﹣3=﹣1.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.【变式3-5】(2022秋•常州期中)已知关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,求m的值.【分析】先求出两方程的解,再由倒数的定义即可得出结论.【解答】解:解方程r12=3x﹣2得,x=1,解方程K2=x+3得,x=−53,∵关于x的方程r12=3x﹣2与K2=x+3的解互为倒数,−53×1=1,解得m=−35.【点评】本题考查的是一元一次方程的解,熟知使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解答此题的关键.【变式3-6】(2022秋•武城县期末)已知(|a|﹣1)x2﹣(a+1)x+8=0是关于x的一元一次方程.(1)求a的值,并解出上述一元一次方程;(2)若上述方程的解是方程5x﹣2k=2x解的2倍,求k的值.【分析】(1)根据一元一次方程的定义和解一元一次方程的一般步骤准确计算即可;(2)根据解析(1)得出的方程解,得出方程5x﹣2k=2x解为x=2,然后代入求出k的值即可.【解答】解:(1)由题意得:|a|﹣1=0,﹣(a+1)≠0,∴a=±1且a≠﹣1,∴a=1,将a=1代入方程得:﹣2x+8=0,解得:x=4.答:a的值是1,方程的解是x=4.(2)由题意得:x=4÷2=2,将x=2代入方程得:5×2﹣2k﹣2×2,解得:k=3.答:k的值是3.【点评】本题主要考查了解一元一次方程,方程解的定义,一元一次方程的定义,解题的关键熟练掌握解一元一次方程的方法.【例题4】(2023•平桥区校级开学)王涵同学在解关于x的一元一次方程7a+x=18时,误将+x看作﹣x,得方程的解为x=﹣4,那么原方程的解为()A.x=4B.x=2C.x=0D.x=﹣2【分析】把x=﹣4代入方程7a﹣x=18,得出方程7a+4=18,求出a的值,再代入方程,求出方程的解即可.【解答】解:把x=﹣4代入方程7a﹣x=18得:7a+4=18,解得:a=2,即原方程为14+x=18,解得:x=4.故选:A.【点评】本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.【变式4-1】(2022秋•椒江区校级期中)小明解方程2K15+1=r2,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并求出方程的正确解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:2K15+1=K12,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【变式4-2】(2022秋•前郭县期末)某同学在解关于y的方程3K4−5K76=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y=10.(1)求a的值;(2)求方程正确的解.【分析】(1)根据题意得3(3y﹣a)﹣2(5y﹣7a)=1,将y=10代入方程即可求a的值;(2)当a=1代入原方程再求解即可.【解答】解:(1)该同学去分母时方程右边的1忘记乘12,则原方程变为3(3y﹣a)﹣2(5y﹣7a)=1,∵方程的解为y=10,代入得3(30﹣a)﹣2(50﹣7a)=1.解得a=1.(2)将a=1代入方程3K4−5K76=1,得3K14−5K76=1,解得y=﹣1,即原方程的解为y=﹣1.【点评】本题考查一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.【变式4-3】(2023•秦皇岛一模)米老鼠在解方程2K13=r2−1的过程中,去分母时方程右边的﹣1忘记乘6,因而求得的解为x=2.(1)请你帮助米老鼠求出a的值;(2)正确地解这个方程.【分析】(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得出2×(2×2﹣1)=3(2+a)﹣1,再求出方程的解即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)把x=2代入方程2(2x﹣1)=3(x+a)﹣1得:2×(2×2﹣1)=3(2+a)﹣1,解得:a=13;(2)方程为2K13=r132−1,2(2x﹣1)=3(x+13)﹣6,4x﹣2=3x+1﹣6,4x﹣3x=1﹣6+2,x=﹣3.【点评】本题考查了一元一次方程的解和解一元一次方程,注意:使方程左右两边相等的未知数的值,叫方程的解.【变式4-4】(2022秋•道里区校级月考)小明同学在解方程2K13=r3−2,去分母时,方程右边的﹣2没有乘3,因而求得方程的解为x=3.试求a的值,并正确地解出方程.【分析】先根据题意,得x=3是方程2x﹣1=x+a﹣2的解,然后根据方程解的定义将x=2代入这个方程,从而求出a的值;再把所求得的a的值代入原方程,最后解一元一次方程即可.【解答】解:依题意,x=3是方程2x﹣1=x+a﹣2的解,∴2×3﹣1=3+a﹣2,∴a=4.∴原方程为2K13=r43−2,解方程,得2x﹣1=x+4﹣6,解得x=﹣1.故a=4,原方程的正确的解是x=﹣1.【点评】本题考查了一元一次方程的解和解一元一次方程的知识,解题的关键是掌握相关的定义和解一元一次方程的一般步骤.【变式4-5】小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【变式4-6】(2022秋•大余县期末)聪聪在对方程r33−B−16=5−2①去分母时,错误地得到了方程:2(x+3)﹣mx﹣1=3(5﹣x)②,因而求得的解是=52.(1)求m的值;(2)求原方程的解.【分析】(1)将x=52代入方程②,整理即可求出m的值,(2)将m的值代入方程①即可求出正确的解.【解答】(1)把x=52代入2(x+3)﹣mx﹣1=3(5﹣x)中,得:2×(52+3)−52m﹣1=3×(5−52),解得:m=1.(2)当m=1时原方程为r33−K16=5−2,2(x+3)﹣(x﹣1)=3(5﹣x),4x=8,x=2.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【例题5】(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个?()A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得=12r2,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.【变式5-1】已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为.【分析】根据方程的解是正整数,可得5的约数.【解答】解:由kx=5﹣x,得x=5r1.由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于k的方程是解题关键.【变式5-2】已知关于x的一元一次方程mx﹣1=2(x+32)的解是正整数,则整数m的值为.【分析】根据方程的解是正整数,可得4的约数,根据4的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx﹣1=2(x+32),得x=4K2,因为关于x的方程mx﹣1=2(x+32)的解是正整数,得m﹣2=1,m﹣2=2,或m﹣2=4.解得m=3,m=4,或m=6.故答案为:3或4或6.【点评】本题考查了一元一次方程的解,利用方程的解是正整数得出关于m的方程是解题关键.【变式5-3】(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.【变式5-4】(2022秋•邗江区校级期末)若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值.【分析】首先解方程表示出x的值,然后根据解为正整数求解即可.【解答】解:2ax=(a+1)x+6,移项得:2ax﹣(a+1)x=6,合并同类项得:(a﹣1)x=6,系数化为1得:=6K1,∵关于x的方程2ax=(a+1)x+6的解为正整数,∴=6K1为正整数,∴a﹣1=1或a﹣1=2或a﹣1=3或a﹣1=6∴a=2或a=3或a=4或a=7.【点评】本题主要考查方程的解和解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.【变式5-5】设m为整数,且关于x的一元一次方程(m﹣5)x+m﹣3=0.(1)当m=2时,求方程的解;(2)若该方程有整数解,求m的值.【分析】(1)把m=2代入原方程,得到关于x得一元一次方程,解之即可,(2)根据“m≠5,该方程有整数解,且m是整数”,结合一元一次方程的解题步骤,得到关于m的几个一元一次方程,解之即可.【解答】解:(1)当m=2时,原方程为﹣3x﹣1=0,解得,=−13,(2)当m≠5时,方程有解,=3−K5=−1−2K5,∵方程有整数解,且m是整数,∴m﹣5=±1,m﹣5=±2,解得,m=6或m=4或m=7或m=3.【点评】本题考查了一元一次方程的解和一元一次方程的定义,解题的关键:(1)正确掌握一元一次方程的解题步骤,(2)正确掌握一元一次方程的定义和一元一次方程的解题步骤.【变式5-6】(2022秋•西城区校级期中)已知关于x的方程−2−B6=3−2有非负整数解,求整数a。
人教版七年级上册数学解一元一次方程(一)第1课时课件
方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的 每一份为x,然后用含 x 的代数式表示各数量,根据等量关系,列 方程求解.
三、运用新知
例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···.其中某三个相邻数的和是-1701,这三个数各是多少?
二、合作交流,探究新知
思考:上述解方程中的“合并”起了什么作用?
解方程中“合并”起了化简作用,把含有未知数的项合 并为一项,从而到达把方程转化为ax = b的情势,其中a, b 是 常数,“合并”的根据是利用分配律.
三、运用新知
例1 解下列方程:(1) 2x 5 x 6 8 ;
2
解:合并同类项,得
提示:本题中已知黑、白皮块数目比为 3 : 5,可设黑色皮块有 3x 个,则白色皮块有 5x 个,然后利用相等关系“黑色皮块数+白色 皮块数=32” 列方程.
三、运用新知
解:设黑色皮块有 3x 个,则白色皮块有 5x 个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个).
答:计划生产Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台 ,Ⅲ型洗衣机21000台.
五、归纳小结
1. 解形如“ax + bx + ···+ mx = p” 的一元一次方程的步骤. 2. 用方程解决实际问题的步骤.
再见
1. 下列方程合并同类项正确的是 ( D )
A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x 1 10 x 1 =1 时,去分母正确的是( 3 6
A.4x+1-10x+1=1 C.2(2x+1)-(10x+1)=6
B.4x+2-10x-1=1 D.2(2x+1)-10x+1=6 )
7.若方程 mx﹣3m=x﹣3 有无穷多解,则 m= (
11
中国教育培训领军品牌 A. 0 A.a=b B. 1 B.a>b C. 2 C.a<b D. 3 ( ( B.无解 D.无解或无数个解 ) ) D.a≠b 8.如果(a﹣b)x=︱a﹣b︱的解是 x=﹣1,那么 9.如果 a=0,那么 ax=b 的解的情况是 A.有且只有一个解 C.有无数个解
8
中国教育培训领军品牌 5.比赛积分问题 例 5.某企业对应聘人员进行英语考试,试题由 50 道选择题组成,评分标准规定:每道题的答案选对得 3 分,不选得 0 分,选错倒扣 1 分。已知某人有 5 道题未作,得了 103 分,则这个人选错了几道题。
举一反三 1、某学校七年级 8 个班进行足球友谊赛,采用胜一场得 3 分,平一场得 1 分,负一场得 0 分的记分制。 某班与其他 7 个队各赛 1 场后,以不败的战绩积 17 分,那么该班共胜了几场比赛?
2 ; x
② 0.3x 1 ;
③
x 5x 1 ; ④ x2 4 x 3 ; 2
( D.5 ( ) . ) .
⑤ x 6 ;⑥ x 2 y 0 .其中一元一次方程的个数是 A.2 B.3 C .4
2.已知关于 x 的方程 a x 5 (2a 1) x 的解是 x 1 ,则 a 的值是 A.-5 B.-6 ) C.-7
二、填空题
1,某试卷由 26 道题组成,答对一题得 8 分,答错一题倒扣 5 分。今有一考生虽然做了全部的 26 道题, 但所得总分为零,他做对的题有 题。
2.已知关于 x 的方程 2x+a=0 的解比方程 3x-a=0 的解大 5,则 a=_______. 3.方程 4.将方程
x 2 m 1 x 4 与方程 ( x 16) 6 的解相同,则 m 的值为______. 3 2
例 1、两个班组工人,按计划本月应共生产 680 个零件,实际第一组超额 20%、第二组超额 15%完成 了本月任务,因此比原计划多生产 118 个零件。问本月原计划每组各生产多少个零件?
举一反三
3
中国教育培训领军品牌 1、课外数学小组的女同学原来占全组人数的 ,后来又有 4 个女同学加入,就占全组人数的 外数学小组原来有多少个同学. ,问课
2、整理一批图书,由一个人做要 40 小时完成。现计划由一部分人先做 4 小时,再增加 2 人和他们一 起做 8 小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。
3.已知:我市出租车收费标准如下:乘车里程不超过 2 公里的一律收费 2 元;乘车里程超过 2 公里的, 除了收费 2 元外超过部分按每公里 1.4 元计费. (1)如果有人乘出租车行驶了 x 公里(x>2),那么他应付多少车费?(列代数式,不化简)(8 分) (2)某游客乘出租车从客运中心到三星堆,付了车费 10.4 元,试估算从客运中心到三星堆大约有多 少公里?
3.将连续的奇数 1,3,5,7,9„,排成如下的数表: (1)十字框中的五个数的平均数与 15 有什么关系? (2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于 315 吗?若能,请求 出这五个数;若不能,请说明理由.
1 3 5 7 9
11 13 21 23 31 33
15 17 19 25 27 29 35 37 39
6.工程问题 工作量=工作效率³工作时间
完成某项任务的各工作量的和=总工作量=1
7.储蓄问题 (1)利润=
每个期数内的利息 ³100% 本金
(2)利息=本金³利率³期数.
8. 年龄问题 其基本数量关系:大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等
典型例题 1、(倍数问题) 增长量=原有量³增长率 现在量=原有量+增长量
3.(数字问题) 一般可设个位数字为 a,十位数字为 b,百位数字为 c. 十位数可表示为 10b+a,百位数可表示为 100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
例 3.小华在日历上任意找出一个数,发现它连同上、下、左、右的共 5 个数的和为 85,请求出小华找 的数。
7.调配问题 例 7.某厂一车间有 64 人,二车间有 56 人。现因工作需要,要求第一车间人数是第二车间人数的一半。 问需从第一车间调多少人到第二车间?
举一反三 1.甲队人数是乙队人数的 2 倍,从甲队调 12 人到乙队后,甲队剩下来的人数是原乙队人数的一半还多 15 人。求甲、乙两队原有人数各多少人?
4
中国教育培训领军品牌 4.已知购买甲种物品比乙种物品贵 5 元, 某人用款 300 元买到甲种物品 10 件和乙种物品若干件, 这时, 它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多 5 件,问甲、乙物品每件各是多 少元?
5、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是 3:4,乙和丙的比是 2:3。若乙每 天所生产的件数比甲和丙两人的和少 945 件,问每个工人各生产多少件?
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式:V=底面积³高=S²h= r2h
②长方体的体积:V=长³宽³高=abc 3.数字问题 一般可设个位数字为 a,十位数字为 b,百位数字为 c. 十位数可表示为 10b+a,百位数可表示为 100c+10b+a.
0 .3 x 1 4 x 8 - = 1 分母中的小数转化成整数的方程为 . 0 .5 0.02 1 5,6x-8 与 7-x 互为相反数,则 x+ =_________ x 6,根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将 由现在的 2 小时 18 分钟缩短为 36 分钟,其速度每小时将提高 260km,求提速后的火车速度.(精确到 1km/h)
②长方体的体积:V=长³宽³高=abc 例 2、长方体甲的长、宽、高分别为 260mm,150mm,325mm,长方体乙的底面积为 130³130mm2,又知 甲的体积是乙的体积的 2.5 倍,求乙的高?
举一反三 1.在一只底面直径为 30 厘米,高为 8 厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为 10 厘米的圆柱形空容器里,圆柱形容器中的水有多高?
4.年龄问题 其基本数量关系:大小两个年龄差不会变。 这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等 例 4.甲比乙大 15 岁,5 年前甲的年龄是乙的年龄的两倍,乙现在的年龄是多少?
举一反三 1.小华的爸爸现在的年龄比小华大 25 岁,8 年后小华爸爸的年龄是小华的 3 倍多 5 岁,求小华现在的 年龄
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
4.市场经济问题(打折销售问题) (1)商品利润=商品售价-商品成本价 (2)商品利润率=
商品利润 ³100% 商品成本价
(3)商品销售额=商品销售价³商品销售量 (4)商品的销售利润=(销售价-成本价)³销 售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打 8 折出售,即按原标价的 80%出 售. b x a
1
中国教育培训领军品牌 5.解关于 x 的方程:b(a+x)-a=(2b+1)x+ab (a≠0)
知识梳理 一元一次方程的应用 列一元一次方程解应用题的一般步骤: “审、找、列、解、答” (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的未 知数 (2)找:找出能够表示题意的相等关系 (3)列:根据相等关系列出方程 (4)解:解方程,求出未知数的值 (5)答:在对求出的解做出是否合理的判断基础之上,写出答案 1.和、差、倍、分问题 增长量=原有量³增长率 2.等积变形问题 现在量=原有量+增长量
6、今年某校积极组织捐款支援灾区,某班 55 名同学共捐款 500 元,捐款情况如下表: 捐款(元) 5 8 10 12 人数 6 ■ ■ 7 表中有两处看不清楚,请你帮助确定表中数据。
5
中国教育培训领军品牌 2.(等积变形问题)
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式:V=底面积³高=S²h= r2h
2.甲、乙两车间各有工人若干,如果从乙车间调 100 人到甲车间,那么甲车间的人数是乙车间剩余人 数的 6 倍;如果从甲车间调 100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
10
中国教育培训领军品牌 师生小结
亲爱的同学们,对于今天的课你有什么收获呢?
课后作业
一、选择题
1. 已知下列方程:① x 2
2.将棱长为 20cm 的正方体铁块锻造成一个长为 100cm,宽为 5cm 的长方体铁块,求长方体铁块的高度。
ቤተ መጻሕፍቲ ባይዱ
3.将棱长为 20cm 的正方体铁块没入盛水量筒中,已知量筒底面积为 12cm2,问量筒中水面升高了多少 cm?
6
中国教育培训领军品牌 4.如图所示,两个长方形重叠部分的面积相当于大长方形面积的六分之一,相当于小长方形面积的四 分之一,阴影部分的面积为 224cm2,求重叠部分面积。
2
; .
=
(2)-3x= 3-4x
(3)-3(x+1)=9
(4)12-(2x-4)= -(x-7)
4.解方程
y 1 y2 3 2 5 x 2 2x 3 (2) 1 4 6 x9 x2 x2 (3) x 1 11 3 2 x 0.12 0.03 x (4) 1 0.3 0.02 (1) y