建筑能耗管理系统
建筑能耗监测系统_能耗监控系统_能耗管理系统

玥驰智能SmartEnergy能耗监测系统架构
能耗监测管理系统以服务器、智能采集网关、末端仪表为硬件支撑,通过工业现场总线、光纤网络或无线4G网络等组网方式,对建筑的能源消耗量的实时采集和分类分项管理,系统具备智能化、网络化、开放性、高稳定性等优势,
系统方案
根据现场配电房或强电间内的智能电表的配备实际情况,将电表通过RS485屏蔽双绞线接至能耗采集网关,然后通过弱电局域网网络传输至能耗专用服务器。
能耗监测系统软件可按分类能耗进行支路信息表查询,将水、电、气、冷热量等能源自动折算成标准煤,并通过图标直观展示能源消耗量,用户可自行设置能耗计量的点位名称和表具位置,方便通过报表界面调取建筑各用能区域的能耗统计报表,及时发下不合理用现象。
系统根据公共建筑能耗分类分型导则要求,将建筑耗电分为照明插座用电、空调用电、动力用电和特殊用电,并且可按建筑、区域、房间等细分项进行统计,已曲线图、饼图、柱状图等多种方式进行能耗展示。
系统可对重点用能区域进行定量能耗对比分析,便于管理人员制定能源绩效考核制度,真正实现行为节能,同时系统可对各用能点位建立仪表台账,方便管理人员明晰建筑内部的能源消耗去向,为用能设备的维护保养提供数据支撑。
针对暂时无法自动采集的监测仪表如老式燃气表、老式指针电表或机械式水表等,系统提供了人工录入功能,管理人员可自定义录入日期和统计周期,便于全面掌握建筑能耗水平。
建筑能耗监测与管理系统的设计

建筑能耗监测与管理系统的设计随着全球能源危机的日益严峻,建筑能耗的管理和监测变得愈发重要。
建筑能耗监测与管理系统的设计成为了一个热门话题。
本文将探讨该系统的设计原则、功能以及未来的发展趋势。
一、设计原则建筑能耗监测与管理系统的设计应遵循以下原则:1. 数据采集与分析:系统应能够准确地采集建筑物的能耗数据,并进行实时分析。
通过对数据的分析,可以了解建筑物的能耗情况,从而制定相应的节能措施。
2. 多功能性:系统应具备多种功能,包括能耗监测、能源管理、设备控制等。
通过集成多种功能,可以实现全面的能耗管理。
3. 实时监测与反馈:系统应能够实时监测建筑物的能耗情况,并及时反馈给用户。
这样,用户可以及时了解建筑物的能耗情况,做出相应的调整。
4. 用户友好性:系统应具备良好的用户界面,方便用户操作和管理。
用户可以通过系统界面查看能耗数据、制定节能计划等。
二、功能建筑能耗监测与管理系统应具备以下功能:1. 能耗监测:系统应能够实时监测建筑物的能耗情况,包括电力、水、气等能耗指标。
通过数据采集和分析,可以了解能耗的变化趋势,及时发现异常情况。
2. 能源管理:系统应能够对建筑物的能源进行管理,包括能源的采购、分配和使用等。
通过对能源的管理,可以实现能源的高效利用,降低能耗成本。
3. 设备控制:系统应能够对建筑物的设备进行控制,包括照明、空调、暖气等设备。
通过对设备的控制,可以实现能耗的调节和优化。
4. 节能建议:系统应能够根据建筑物的能耗情况,提供相应的节能建议。
通过节能建议,可以帮助用户制定合理的节能计划,降低能耗。
三、未来发展趋势建筑能耗监测与管理系统在未来将会有更多的发展趋势:1. 智能化:随着人工智能技术的发展,建筑能耗监测与管理系统将会更加智能化。
系统可以通过学习和分析数据,自动调整设备的能耗,实现最佳的能耗效果。
2. 云端服务:建筑能耗监测与管理系统将会越来越多地采用云端服务。
通过云端服务,可以实现数据的实时共享和远程管理,方便用户随时随地进行能耗监测和管理。
TKD-EMS建筑能耗计量监测管理系统

TKD-EMS建筑能耗计量监测管理系统Tikind Building Energy Measurement Monitoring and Management System解决方案------------------------------------------------------------------------------------------------------------------------------------------目录第一章前言 (4)第二章系统概述 (6)2.1能源逐级管理思想 (7)2.2提倡行为节能与管理节能 (7)第三章公司简介 (8)第四章系统总体方案描述 (9)4.1系统结构 (9)4.2系统整体设计依据及原则 (10)4.3、系统技术特点 (11)4.3.1模块化设计 (12)4.3.2系统集成 (12)4.3.3网络化存储和跨网络平台访问 (12)4.3.4实时监测 (13)4.3.5应用方式简单 (13)4.3.6安全性高 (13)第五章系统组成及产品介绍 (13)5.1能耗监控中心 (13)5.1.1计算机硬件系统 (14)5.1.2计算机软件系统 (20)5.2能耗采集管理设备 (26)5.2.1能耗分项管理器TKD2000 (26)5.2.2能耗区域管理器TKD3000 (29)第六章项目需求 (30)第七章方案设计 (31)第八章质量保证 (31)8.1项目管理组织机构 (31)8.2 项目管理计划 (33)8.3 工程进度计划表 (34)8.4 施工工艺 (36)------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------8.5 工程技术要点 (37)8.6 质量与交货期保证承诺 (38)第九章 技术服务承诺 (39)9.1 技术培训 (39)9.2 售后服务 (40)第十章 配置清单及造价 (40)第十一章 部分典型案例 (40)------------------------------------------------------------------------------------------------------------------------------------------第一章 前言随着我国经济社会的发展和环境资源压力越来越大,节能减排形势严峻。
建筑能耗监管系统方案

建筑能耗监管系统方案建筑能耗监管系统是为了提高建筑能源利用的效率和节约能源而设计的一种系统。
随着人们对于能源的需求不断增加以及能源日益紧缺,建筑能耗监管系统的重要性也日益彰显。
本文将就建筑能耗监管系统的方案进行详细阐述。
首先,建筑能耗监管系统可以实现对建筑能源的实时监控。
通过安装传感器及仪表设备,可以实时监测建筑的能耗情况,包括电力、燃气、水等资源的使用情况。
传感器监测到的数据将通过网络传输到监控中心,通过数据分析以及综合评估,可以及时发现并解决建筑能耗问题,以实现能源的高效利用。
同时,借助于数据的分析和统计功能,可以对建筑的能耗进行长期监测和分析,找出能源的使用规律和低效能耗的原因,以便做出相应的调整和措施。
其次,建筑能耗监管系统可以实现对建筑设备的智能控制。
通过集成各类设备的数据,可以对建筑内的各类设备进行集中控制,实现设备的智能化管理。
例如,通过对空调系统进行智能控制,可以根据建筑内部的实际情况和人员的需求,自动调节室内温度和湿度,节约能源的同时提供舒适的室内环境。
另外,还可以对照明系统进行智能控制,根据建筑的实际照明需求和室内光照情况,自动调整照明设备的亮度和开启时间,以减少能耗。
再次,建筑能耗监管系统还可以实现能源的节约和利用。
一方面,通过对建筑内部各类设备的能效监测和能耗分析,可以找出能效较低的设备,并进行相应的能效改造,提高设备的能源利用效率。
另一方面,建筑能耗监管系统可以结合可再生能源的利用,如太阳能、风能等,通过监测建筑附近的自然资源,以及合理配置并利用这些资源,提高建筑的自给能力,减少对传统能源的依赖,降低能源消耗。
最后,建筑能耗监管系统还可以提供能耗数据的实时显示和可视化。
通过监管系统建立的数据仪表盘,可以直观地显示建筑的能耗情况,使建筑的能耗状况一目了然。
同时,系统还可以生成详细的数据报告和分析图表,可以为建筑能耗的管理和决策提供科学依据。
总之,建筑能耗监管系统是提高建筑能源利用效率和节约能源的一种重要工具。
基于物联网技术的智能建筑能耗管理系统设计与实现

基于物联网技术的智能建筑能耗管理系统设计与实现随着物联网技术的迅猛发展,智能建筑逐渐成为未来城市发展的重要方向。
智能化建筑能够利用物联网技术和传感器等设备,实现对建筑的智能监控和管理,以提高能源利用效率,降低能耗,实现可持续发展。
本文将介绍基于物联网技术的智能建筑能耗管理系统的设计与实现。
一、系统功能设计1. 实时数据监测与采集智能建筑能耗管理系统需要通过传感器等设备实时监测建筑的能耗情况,并将数据采集到系统中。
监测的数据包括电力、照明、空调、供水等能源消耗情况,以及室内环境的温度、湿度等数据。
2. 功能分析与能耗预测系统通过对历史数据的分析,结合当前的能耗数据,进行能耗预测,根据不同时间段和季节的能耗特点,提供合理的能源供给方案,以降低能耗。
3. 能源控制与优化策略系统可以根据实时数据和能耗预测结果,对建筑内的设备进行控制,优化能源的使用。
例如,根据室内温度和人员数量自动调节空调温度和风速,控制灯光亮度和开关。
通过智能化的能源控制,实现能源的高效利用。
4. 远程监控与操作智能建筑能耗管理系统支持远程监控和操作,用户可以通过手机App或者web界面实时查看能耗情况和设备运行状态,远程控制建筑内的设备。
这样,用户可以随时随地对建筑能耗进行调整和优化,提高能源利用率。
二、系统设计与实现1. 硬件设计在智能建筑能耗管理系统中,硬件组成主要包括传感器、控制器和通信模块。
传感器用于实时监测建筑内的能耗情况和环境参数,控制器负责对设备进行控制,通信模块用于将传感器采集的数据传输到系统中。
2. 软件设计系统的软件设计主要包括前端界面设计、后端数据处理与分析以及通信协议设计等。
前端界面设计需要实现用户友好的界面,提供能耗监测、设备控制和能耗预测等功能。
用户可以通过界面进行对建筑能耗的实时监控和远程操作。
后端数据处理与分析是整个系统的核心,需要对采集到的能耗数据进行存储和分析。
存储使用数据库,例如MySQL进行数据存储,通过建立数据模型和算法,实现能耗预测和优化策略。
建筑能耗能效管理系统解决方案

汇报人: 日期:
目 录
• 建筑能耗能效管理概述 • 建筑能耗能效管理系统介绍 • 能耗能效管理解决方案 • 建筑能耗能效管理系统实施与运营 • 建筑能耗能效管理系统应用案例 • 总结与展望
01
建筑能耗能效管理概述
能耗能效管理定义
能耗管理
指通过一系列技术手段和管理措 施,对建筑能源消耗进行全面监 控、分析和优化,以降低建筑能 耗,提高能源利用效率。
安全性保障
采用严格的数据加密和访问控制技术,确保 系统和数据的安全可靠。
03
能耗能效管理解决方案
设备级能耗管理
01
02
03
智能化控制
通过引入智能化控制技术 ,实现对建筑物内各类设 备的实时监控和精准控制 ,降低设备能耗。
高效设备选用
优先选用具有高效能耗指 标的设备,如高效电机、 节能灯具等,以减少设备 本身的能源消耗。
能效管理
指通过提升设备效率、优化运行 策略等方式,提高建筑的整体能 源利用效率,减少能源浪费。
建筑能耗现状
高能耗建筑普遍
当前,许多建筑存在能源利用效率低 下,能耗偏高的问题,导致资源浪费 和环境污染。
能源结构不合理
建筑能耗中,传统化石能源占比较大 ,可再生能源应用不足,能源结构亟 待优化。
能耗能效管理的意义
能源基础设施建设与优化
根据园区能源监测数据和能效分析结果,优化能 源基础设施规划布局,推动可再生能源应用,提 高园区整体能源利用效率。
06
总结与展望
能耗能效管理系统总结
01 02
系统功能
建筑能耗能效管理系统能够实现对建筑能源消耗的实时监测、分析和优 化,帮助建筑管理者了解建筑的能源使用情况,提高能源利用效率,降 低运营成本。
建筑能耗综合管理系统

1.建筑能耗综合管理系统10.1.建筑能耗综合管理系统的技术要求建筑能耗综合管理系统为建筑智能化系统的核心,应支持智能化集成数控整合平台技术架构,结合计算机技术、网络技术、通信技术、自动控制技术,对建筑(或建筑群)内所有智能化、安防及能耗设备进行全面有效的监控和管理,丰富建筑的综合使用功能和提高物业管理的效率,确保建筑群内所有相关设备处于高效、节能、最佳运行状态,从而为建筑内工作人员提供一个安全、舒适、便捷、高效的工作环境。
1、设计原则系统设计应遵循“将不同功能的建筑智能化系统,通过统一的信息平台实现集成,以形成具有信息汇集、资源共享及优化管理等综合功能的系统”的总体设计原则。
集成模式:应采用分布式集成模式,即三层集成模式:设备层系统集成、控制层系统集成、应用层系统集成。
设计思路:应遵守“总体规划、分步实施”和“从上而下设计、从下往上实施”的原则,对被集成的子系统提出设计要求和接口协议界面要求,采用的接口互联通信协议应是国际或国家标准接口协议(如OPC、BACNET、MODBUS、LONWORKS、API、TCP/IP、RS485/232、ODBC等)。
建筑能耗综合管理平台须支持B/S和C/S架构同时在同一软件平台上运行。
整个系统包含楼宇自控系统、智能照明系统、有毒气体探测系统、中低压配电管理系统,各子系统在特定要求下可以完全独立运行、相互联动,根据需求开发系统之间的联动逻辑关系达到各系统机电设备处于高效、节能、最佳运行状态。
具体要求如下:1)先进性:系统必须是一个完全开放的系统,通过开发的数据接口标准与各个子系统进行通讯,以是各个子系统之间具备“可互操作性”。
系统可以通过大厦内部局域网Intranet以浏览的方式实现对整个大楼的各种机电设备监控和管理操作。
系统设计应完全遵守国际主流标准以及相关工业标准。
要求采用主流技术、产品,保证所选系统在先进性方面的可延续性。
2)可扩展性:系统软件功能采用模块化设计方法,模块完全根据用户的实际需要和管理模式来进行编制。
建筑能耗管理系统调试方案

建筑能耗管理系统调试方案建筑能耗管理系统(Building Energy Management System,简称BEMS)是指通过采用各种传感器、控制装置、通讯装置、数据库等技术手段,实现对建筑能耗进行实时监测、智能控制以及数据分析,从而提高建筑能源利用效率,减少能耗,保障建筑安全和环境舒适。
调试方案是指在BEMS系统建设、安装与运行过程中所执行的一系列操作,以确保系统能够稳定运行并发挥出最佳效果。
下面将详细介绍一个基于建筑能耗管理系统的调试方案。
1.系统安装与接线首先,需要安装好BEMS系统的硬件设备,包括传感器、控制装置、通讯装置等。
调试人员需要仔细检查各个设备是否正确安装并接线准确无误。
在接线过程中,应特别注意设备之间的连接方式和信号传输稳定性,避免出现接线错误或松动导致的故障。
2.系统配置与参数设置BEMS系统需要根据建筑特点进行相应的配置与参数设置。
调试人员应根据建筑的布局、能耗需求、设备类型等因素,合理设置系统的各种参数,如温度传感器的灵敏度、控制策略的优先级等。
此外,还需要进行系统的时钟校准,确保系统的时间准确无误。
3.数据采集与监测BEMS系统的核心功能是实时监测建筑能耗,对此,调试人员需要检查各个传感器的工作情况,确保数据采集的准确性。
同时,还需要编写相关的程序代码,实现数据的采集、传输与存储功能。
调试人员还需进行实时监测,确保系统能够及时准确地响应各种数据变化。
4.控制与调节BEMS系统能够根据建筑能耗情况进行智能控制与调节,以达到节能减排的目的。
为此,调试人员需要编写相应的控制算法,并进行测试与调试。
在调试过程中,应特别注意控制策略的合理性与有效性,及时进行参数调整和优化。
5.系统集成与通讯BEMS系统通常需要与其他楼宇自控系统或建筑管理系统进行集成与通讯。
为此,调试人员需要进行相关接口的配置与设定,确保系统之间能够正常交换数据,并实现联动控制。
此外,还需进行通讯网络的调试,保证系统之间的连接稳定可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建筑能耗管理系统
随着人们对环境保护的日益重视,建筑能耗管理系统成为了一个备
受关注的话题。
建筑能耗管理系统可以帮助我们实现建筑能源的合理
使用,减少能源浪费。
下面就让我们一同探索建筑能耗管理系统的内
涵和优势。
建筑能耗管理系统是一种通过各种设备和技术手段来监控和管理建
筑物的能源使用的系统。
它通过传感器、电表以及其他监测设备来收
集大量关于建筑能源使用的数据,然后将这些数据分析并反馈给用户,帮助他们了解建筑物的能源消耗情况,并提出节能建议。
首先,建筑能耗管理系统可以帮助我们实现节能减排的目标。
通过
及时监控和控制建筑物的能源使用情况,系统可以帮助我们找到能源
的浪费和低效使用的问题,并提供相应的解决方案。
例如,系统可以
根据建筑物的使用情况自动调整空调和照明设备的运行时间和功率,
使其更加合理高效地使用能源。
这不仅可以降低能源成本,还可以减
少对环境的污染。
其次,建筑能耗管理系统可以提高建筑的舒适性和人员的生产力。
通过实时监测和控制建筑物的温度、湿度、光照等环境因素,系统可
以根据人们的需求调整建筑物的环境条件。
例如,在人员稀少或不需
要使用的区域,系统可以自动调整空调和照明设备的运行状态,节约
能源。
而在需要使用的区域,系统可以根据人员的活动情况来调整环
境条件,提供更加舒适的工作和生活环境。
这不仅可以提高人们的工
作效率和生活质量,还可以减少因环境不适引起的健康问题。
另外,建筑能耗管理系统还可以改善建筑物的维护和管理效率。
通
过实时监测和分析建筑物的设备运行情况,系统可以提前发现设备故
障和异常,避免因故障造成的能源浪费和设备损坏。
同时,系统还可
以进行设备的远程控制和调整,减少人工巡检和维护的工作量。
这不
仅可以降低维护成本,还可以提高设备的可靠性和安全性。
除此之外,建筑能耗管理系统还可以为政府监管和能源评级提供数
据支持。
系统可以根据实时监测的数据生成能源使用报告和统计数据,帮助政府了解建筑物的能源消耗情况,制定相应的政策和措施。
同时,系统还可以帮助建筑物获得相关的能源评级,提高其市场竞争力。
总之,建筑能耗管理系统在提高能源使用效率、减少能源浪费、改
善建筑物环境和提高管理效率等方面发挥了重要作用。
随着技术的不
断进步和应用范围的扩大,建筑能耗管理系统将会在未来得到更加广
泛的应用,并为我们创造更加可持续的建筑环境。