分式的性质
分式的基本性质

“同号得正,异号得负” 分式符号变换有依据么?是什么呢?
两个整式相除所得的分式的符号法则与有理 数除法的符号法则相类似,也遵循“同号得 正,异号得负”.
x x x 解( 1 ) 2 2 2 1 x ( x 1) x 1
y y ( y y) y y (2) 2 2 2 y y y y y y
B×M = A÷M B÷M (M是不等于0的整式)
为什么所乘(或除)的 整式不能为0呢?
分式的基本性质与分数的基本性质 最大区别是什么?
分数的基本性质中的分子分母都是数。
分式基本性质式子中的A,B,M表示的 是整式 ,且M≠0。但M是一个含有字 母的代数式,由于字母的取值可以是 任意的,所以就有等于零的可能性 。 所以,要特别注意M ≠0
例 1、 填空(要注意隐含条件)
b ab (1) a a 2
(2)
1 2 2 2 2 a b a 2b 2 ab 2a 2b
a 1 1 、 2b 2a b
填空(要注意分析题目中的隐 含条件噢!)
3ac 3a 2 、 4b 4bc 2 a-b a b
3a 1、将 a b中的a、b都变为原来的2倍, y
而y缩小到原来的一半,则分式的值( C ) A. 不变 B. 扩大2倍 C. 扩大4倍 D.是原 来的一半
小结与收获
分式的分子与分母都乘(或除以)同一个不等 于零的整式,分式的值不变,即:
A A M AM B BM BM
不改变分式的值,把下列各式的 分子与分母的各项系数都化为整数。
1 0 .2 x y 2 1 、 1 1 x 3 4
答案:
1 1 x y 3 5 2、 1 2x y 6
5.2分式的基本性质

(1) 0.01x 0.5 0.3x 0.04
2a 3 b
(2)
2 2ab
3
当系数是小数时:一般情况下,分式的分子、分母都乘
以10的倍数。
当系数是分数时:分式的分子、分母都乘以每一项系数 的分母的最小公倍数;
分式基本性质应用(3)约分
4a3b2 (2a3bc)
9 x 2 2x 2 6x
(2)(9a2 6ab b2)
解:1原式= 4x2 9
3 2x
2x 32x 3
= 3 2x
(92a2原b 式b=3)9. a92 a26babb3 3a b2
=
b 3a b3a b
b2
2x 3
3a b 3a b
1把两个多项式相除表示成分式形式2把分子分母分别进行因式分解3约分用最简分式或整式表示所求的商
银湖中学 刘少丰
分式的基本性质:
分式的分子与分母都乘以或除以同一个不等于零 的整式,分式的值不变.
A AM , A AM B BM B BM
(M 是不等于0的整式)
分式基本性质应用(1)处理符号
x2 2xy
3x2 y2 40 y2
9
4 3
y
2
2
4 3
y
3
4 3
y
2
y2
40
y
3 16 y2 8 y2 93 3 16 y2 y2
9
39 y2 39
9
分式基本性质应用(5)多项式相除
课本P120 例3 计算:
(1)(4x2 9) (3 2x).
分式的基本性质

再见
2.当 x 取何值时,下列分式的值为零。
x2 3x 2 (1) ( x 2)
我们已经知道:
2 3 16 36
= =
25 3 5
=
10 15
;
4 9
16 4 36 4
=
这是根据分数的基本性质:
分数的分子与分母都乘以或除以同 一个不等于零的数,分数的值不变.
分式 分数的基本性质 分式 分数的分子与分 母都乘以(或除以)同一个不等于零的 整式 数 , 分式 分数的值不变.
2
归纳:
分式的约分:把一个分式的分子和分母的公 因式约去,这种变形称为分式的约分。
最简分式:分子和分母没有公因式的分式叫 最简分式。
(化简分式时,通常要使结果成为 最简分式或者整式)
补充练习:
b 5 ab 1、已知 ,则 的值是( ) a 13 ab 2 3 9 4 A. B. C. D. 3 2 4 9
x y z 2、已知 0, 求代数式 2 3 4 2x y z 的值. x yz
3、已知x 3 1, y 3 1, 求 x 2 xy y 的值. 2 2 x y
2 2
1﹑分式的基本性质。 2﹑分式基本性质的应用。 3﹑化简分式,通常要使结果 成为最简分式或者整式。
阶一席窗 下杯间外 辰未花日 牌尽影光 又笙坐弹 报歌前指 时送移过
1.分式的概念
①分子分母都是整式 ②分母中含有字母 ③分母不能为零
2. 分式无意义的条件:分母等于零
分式有意义的条件:分母不等于零 分式的值为零的条件:分子等于零且 分母不等于零
1.求使下列分式有意义的 x 的取值范围.
2x 2 x 3x 4
分式的基本概念及性质

分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。
分式的基本性质——通分

2x3 y 2 z 12 x3 y 4 z
1
2x2z
4x2 y3 12x3 y 4 z
6xy 4 12 x3 y 4 z
1、8 , 4 , y 的最简公分母是: 42x3
3x 7x2 2x3
8 8 •14x2
112 x 2
3x 3x •14x2 42x3
4 4 • 6x 24x
2、通分的关键是确定最简公分母,包括 系数、因式和因式的指数;分母是多项式 的要先分解因式;
3 、分式通分的依据是分式的基本性质, 每一步变形综合性都较强,计算时要步步 细心;
4、分式通分的基本步骤:
(1)、将各分母分解因式(没有拉倒)
(2)、寻找最简公分母(方法要记牢)
(3)、根据分式的基本性质,把各分式的分 子分母乘以同一个整式,化异分母为最简 公分母。(分子运算很重要)
(1)将各个分式的分母分解因式;(2)取 各分母系数的最小公倍数(3)凡是出现的
所有字母或因式都要取;(4)相同字母 (或含字母的式子)的幂取指数最大的; (5)将上述所得系数的最小公倍数与各字 母(或因式)的最高次幂全都乘起来,就
得到了最简公分母
解:(2)最简公分母是 (x 5)(x 5)
2x x5
2x(x 5) (x 5)( x 5)
2x2 x2
10 x 25
3x x5
3x(x 5) (x 5)( x 5)
3x2 x2
15 x 25
(3) 1 与 x x2 4 4 2x
解:(2)最简公分母是 2(x 2)(x 2)
和分数通分类似,把几个异分母的分式化成与原 来的分式相等的同分母的分式叫做分式的通分。
(1)求分式
2
分式的基本性质

解分式方程 $\frac{x}{2} - \frac{3x}{4} = 1$
解
将方程两边同时乘以4,得 $2x + 3 = 7$,解得 $x = 2$。
解
将方程两边同时乘以4,得 $2x - 3x = 4$,解得程的步骤 • 整理方程:将方程中的分式转化为整式,通过通分、约分等方式简化方程。 • 确定未知数的值或取值范围:根据简化后的方程,确定未知数的值或取值范围。 • 检验:将求得的未知数的值代入原方程进行检验,确保方程的根的正确性。 • 注意事项 • 在解分式方程时,需要注意方程的化简和约分,避免出现计算错误。 • 在求出未知数的值或取值范围后,需要进行检验,确保根的正确性。 • 当方程的根的个数多于1个时,需要注意解的取舍,确保得到正确的解。
分式除法是指一个分式除以另一 个分式。在进行分式除法时,需 要将除数的分子和分母颠倒,然 后将颠倒后的除数与被除数相乘 。
分式的运算性质应用举例
求解分式方程
通过使用代入消元法或加减消元法,可以将分式方程转化为整式方程,从而求解出未知数的值。
简化分式
通过使用分式的加法、减法、乘法和除法,可以将一个复杂的分式简化成一个简单的分式。
分数的定义可以扩展到复数范围, 但在高中数学中通常只涉及有理数 分式的讨论。
分式的形式
1 2
最简分式
分子和分母没有公共因子,且分子和分母的最 高次数相同。
真分式
分子和分母都是多项式,且分子和分母的次数 不同。
3
假分式
分子和分母的次数相同,或分子和分母有公共 因子。
分式的基本性质
分式的值不等于零
分式的值是分子与分母相除的结果,当分母为零时,分式 的值不存在,即分式不等于零。
分式的基本性质

分式性质应用1
例:1:
ab ( 2a b ( ) ) (1) , 2 2 2 ab a b a a b
x xy x y x ( ) (2) 2 , 2 x ( x 2 x x 2 )
2
观察
×
a
×
a b (a 2 ab ) (1) 2 ab a b
分式性质应用2
不改变分式的值,使下列分子与分 母都不含“-”号 2x 3a 10m 2x 3a 10m , , , , 5y 7b 3n 5y 7b 3n
有什么发现? 变号的规则是怎样 的?
a a b b
a a a a b b b b a a a a b b b b
分母: ab
a
2b a
a b (a 2 2a b (2ab b 2) ab ) , (1) 2 2 2 ab a b a a b
÷x
2
×
b
x xy x y x ( 1) (2) 2 , 2 x ( x 2 x x 2 x) ÷x
八年级
上册
15.1 分式 基本性质
• 学习目标: 1.了解分式的基本性质,体会类比的思想方法. 2.掌握分式的约分,了解最简分式的概念. • 学习重点: 分式的基本性质和分式的约分.
问题1、什么是分式?
果除式B中含有字母,那么称
A 整式A除以整式B,可以表示成 B 的形式。如 A
为分式,
其中A称为分式的分子,B为分式的分母。 问题2、在分式的概念中我们尤其要注意什么? 对于任意一个分式,分母都不能为零。 问题3、当x取什么值时,下列分式有意义:
分式的分子、分母和分式本身的 符号,同时改变其中任意两个,分式 的值不变。
分式的基本性质分式的变形

1 2 a a (1) ( 2 ) 1 a a1 2 a a2 ( 3) 2 1 a
练习
不改变分式的值,使下列各式的分子与 分母的最高次项系数是正数,然后再约分
1- a - a ⑴ 2 3 1+a - a
⑶
2
x +1 ⑵ 2 1- x
1- a - 2 a - a +3
2
结
分式性质应用
(2a -
解:原式 =
2 ( a + b) ? 6 3
2
b) ? 6
12a 9b 4a 6b
巩固练习
y 的 x和 y 都扩大两倍,则分式的值( B ) 1.若把分式 x+y
A.扩大两倍 C.缩小两倍 B.不变 D.缩小四倍
xy 2.若把分式 中的 x+y 的值( A ).
A.扩大3倍 C.扩大4倍
12 xy 的最简公分母是
的最简公分母
2 ;
是
1 2x , , (3)分式 最简公分母 2 2 2 6 x 3 x x 4 2 x 4 ) 2 ( 是 12 x ( x + 2) ( x - 2) ;
10a b c
x
2 2 2
4a 3c 5b , 2 , 2 2 5b c 10a b - 2ac
;
分式性质应用
不改变分式的值,把下列各式的分 子与分母的各项系数都化为整数。
0.01x 0.5 ( 1) 0.3xБайду номын сангаас 0.04
(0.01x 0.5) 100 解:原式 (0.3 x 0.04) 100
x 50 30 x 4
3 2a - b 2 ( 2) 2 a +b 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的性质
一、分式的定义
(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.
(2)因为0不能做除数,所以分式的分母不能为0.
(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.
(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.
二、分式有意义的条件
(1)分式有意义的条件是分母不等于零.
(2)分式无意义的条件是分母等于零.
(3)分式的值为正数的条件是分子、分母同号.
(4)分式的值为负数的条件是分子、分母异号.
三、分式的值为零的条件
分式值为零的条件是分子等于零且分母不等于零.
注意:“分母不为零”这个条件不能少.
四、分式的值
分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
五、分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
六、最简分式
最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.
七、约分
(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
(2)确定公因式要分为系数、字母、字母的指数来分别确定.
①分式约分的结果可能是最简分式,也可能是整式.
②当分子与分母含有负号时,一般把负号提到分式本身的前面.
③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.
(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。