信息论与编码理论第二章习题答案(王育民)

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论与编码第二章课后习题答案

信息论与编码第二章课后习题答案

因此,必须称的次数为
因此,至少需称 3 次。
I1 = log 24 ≈ 2.9 次 I 2 log 3
【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。
【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之
和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?
= − p1 log p1 − p2 log p2 − K − pL−1 log pL−1 − pL log pL + pL log pL
− q1 log q1 − q2 log q2 − K − qm log qm
= − p1 log p1 − p2 log p2 − K − pL−1 log pL−1 − pL log pL + (q1 + q2 + q3 + L + qm ) log pL
H ( X ) − H (X ′) = ( p1 − ε ) log( p1 − ε ) + ( p2 + ε ) log( p2 + ε ) − p1 log p1 − p2 log p2

f
(x)
=
( p1

x) log( p1

x) +
( p2
+
x) log( p2
+
x)

x ∈ 0,
A
已落入,B
落入的格可能有
47
个,条件概率
P(b j
|
ai )
均为
1 47
。平均自信息量为
48 47
∑ ∑ H (B | A) = −

最新信息论与编码习题参考答案

最新信息论与编码习题参考答案

第二章习题参考答案2-1解:同时掷两个正常的骰子,这两个事件是相互独立的,所以两骰子面朝上点数的状态共有6×6=36种,其中任一状态的分布都是等概的,出现的概率为1/36。

(1)设“3和5同时出现”为事件A ,则A 的发生有两种情况:甲3乙5,甲5乙3。

因此事件A 发生的概率为p(A)=(1/36)*2=1/18 故事件A 的自信息量为I(A)=-log 2p(A)=log 218=4.17 bit(2)设“两个1同时出现”为事件B ,则B 的发生只有一种情况:甲1乙1。

因此事件B 发生的概率为p(B)=1/36 故事件B 的自信息量为I(B)=-log 2p(B)=log 236=5.17 bit (3) 两个点数的排列如下:因为各种组合无序,所以共有21种组合: 其中11,22,33,44,55,66的概率是3616161=⨯其他15个组合的概率是18161612=⨯⨯ symbol bit x p x p X H ii i / 337.4181log 18115361log 3616)(log )()(=⎪⎭⎫ ⎝⎛⨯+⨯-=-=∑(4) 参考上面的两个点数的排列,可以得出两个点数求和的概率分布:symbolbit x p x p X H X P X ii i / 274.3 61log 61365log 365291log 912121log 1212181log 1812361log 3612 )(log )()(36112181111211091936586173656915121418133612)(=⎪⎭⎫ ⎝⎛+⨯+⨯+⨯+⨯+⨯-=-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎥⎦⎤⎢⎣⎡∑(5)“两个点数中至少有一个是1”的组合数共有11种。

bit x p x I x p i i i 710.13611log)(log )(3611116161)(=-=-==⨯⨯=2-2解:(1)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121)(21x x x p X i 比特 12log *21*2)(log )()(2212==-=∑=i i i x p x p X H(2)红色球x 1和白色球x 2的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡100110099)(21x x x p X i 比特 08.0100log *100199100log *10099)(log )()(22212=+=-=∑=i i i x p x p X H (3)四种球的概率分布为⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡41414141)(4321x x x x x p X i ,42211()()log ()4**log 4 2 4i i i H X p x p x ==-==∑比特 2-5解:骰子一共有六面,某一骰子扔得某一点数面朝上的概率是相等的,均为1/6。

信息论与编码理论课后答案

信息论与编码理论课后答案

信息论与编码理论课后答案【篇一:《信息论与编码》课后习题答案】式、含义和效用三个方面的因素。

2、 1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。

3、按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。

4、按照信息的地位,可以把信息分成客观信息和主观信息。

5、人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。

6、信息的是建立信息论的基础。

7、8、是香农信息论最基本最重要的概念。

9、事物的不确定度是用时间统计发生概率的对数来描述的。

10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。

11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。

12、自信息量的单位一般有比特、奈特和哈特。

13、必然事件的自信息是。

14、不可能事件的自信息量是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。

16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量趋于变小。

17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。

limh(xn/x1x2?xn?1)h?n???18、离散平稳有记忆信源的极限熵,。

19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。

20、一维连续随即变量x在[a,b] 。

1log22?ep21、平均功率为p的高斯分布的连续信源,其信源熵,hc(x)=2。

22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。

23、对于限平均功率的一维连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一离散无记忆信源的信源熵h(x)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为。

2728、同时掷两个正常的骰子,各面呈现的概率都为1/6,则“3和5同时出现”这件事的自信息量是 ?mn?ki?11?mp(x)?em29、若一维随即变量x的取值区间是[0,∞],其概率密度函数为,其中:x?0,m是x的数学2期望,则x的信源熵c。

《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社.docx

《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社.docx

《信息论与编码理论》(王育民李晖梁传甲)课后习题答案高等教育出版社.docx信息论与编码理论习题解第二章-信息量和熵2.1解:平均每个符号长为:2 0.2 - 0.4二兰秒3315每个符号的熵为-log - 1 Iog3 = 0.9183比特/符号32 3所以信息速率为0.91833.444比特/秒 42.2解:同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6比特; 所以信息速率为6 1000 =6000比特/秒解:(a) —对骰子总点数为7的概率是-36所以得到的信息量为 Iog 2(~6) = 2.585比特36(b) 一对骰子总点数为12的概率是136所以得到的信息量为 Iog 2丄=5.17比特36解:(a)任一特定排列的概率为古,所以给出的信息量为1-Iog 2225.58 比特52!(b)从中任取13张牌,所给出的点数都不相同的概率为13! 413 413 A 13 C 13 A 52 C 52C 13所以得到的信息量为log2C? =13.21比特. 42.5解:易证每次出现i 点的概率为丄,所以212.3 2.4I(^i^-log 2-,i =1,2,3,4,5,621 I (x = 1) = 4.392 比特 I (x =2) =3.392 比特 I (x =3) =2.807 比特 I (x =4)=2.392 比特 I (x =5) =2.070 比特 I (x =6) =1.807 比特6H(X)ilog 2i2.398比特i 421 212.6解:可能有的排列总数为277203! 4! 5!没有两棵梧桐树相邻的排列数可如下图求得, YXYXYXYXYXYXYXY一(7 \一图中X 表示白杨或白桦,它有7种排法,Y 表示梧桐树可以栽(8\种的位置,它有8种排法,所以共有8*=佃60种排法保证没有I 5丿&八3丿两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为Iog 227720-Iog 21960=3.822比特 2.7解:X=0表示未录取,X=I 表示录取;Y=0表示本市,Y=I 表示外地;Z=O 表示学过英语,Z=I 表示未学过英语,由此得3 1 P(X=O) , P(X=I ),44p( y = O) = P(X=O)P(y = O x = 0)十 P(X=I)P(y = O X = 1) — J5 = Oy=O) p(y =1)p(z=0y = 1)_ 13 _ 25,1 3 1/ - 10 4 5 1 1 1 P(X=Iy= O)= p(y=0x=1)p(x= 1)∕p(y=0) =—-/- =2 4 5P(X=Oy =0) P(X = Iy =0)p(x =1 y =O)log2 -P(X =O) P(X =I)5 8log 2θ(b) P(X=OZ = O)= (p(z=Oy=O,x=O)p(y=Ox=O)+p(z = Oy = 1,x = O)p(y=1x=O))p(x = O)∕p(z = O) 1 9 4 =(———)-/1O 1O 1O 4 25 1O4P(X=IZ =O)= (P(Z=Oy=O, x = 1)p(y=0x = 1) +p(z = O y = 1, x =1) p( y =1 x = 1)) p(x = 1)/ P(Z = O) =(1.1 Z) 1虎一—22 54 25104P(X=OZ = 0)I (X ; z = O) = P(X=OZ= O) log 2 -- --------------- +P(X = O)6935単og 2马4亜g 马410423 1042144= 0.02698 比特3 4 1(C) H(X)= log23 Jog 24 =0?8113 比特H(YX)=P(X= O) p( y = O X = 0) l0g 2 p(y = Ox = 0)十 p(x = O)p(y =1 X = O)log 2 p(y = 1x = 0)十1131=—X — +—× —4 2 4 10 1 4p(y =1) =1 -5 5P(Z=O)= P(^O)P(Z 1 440 =+ X :5 5 10013 12 P(Z =I) =1 -2525_ 38 5 8(a) P(X=Oy=O) =p(y = Ox = 0)p(x = 0) / p(y =0)=I (X ; y = 0) = P(X=Oy=O) Iog 2 3 385 4 = 0.45123,13 69 35P(X =IZ =O)log 2 P (X ( 1Z O)P(X = I)比特("x t x 七 X)HH(Z)H93r 06。

《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

《信息论与编码理论》(王育民李晖梁传甲)课后习题问题详解高等教育出版社

信息论与编码理论习题解第二章-信息量和熵2.1解: 平均每个符号长为:1544.0312.032=⨯+⨯秒 每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特 2.4 解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯所以得到的信息量为 21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特)01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 & 2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特 所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X) = 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特 I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y)=1.0143比特 I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特 I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-==(b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(4226818p p p p u p u q w ii i+-+-==∑=bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.9 2.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式) 或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。

信息理论与编码课后答案第2章

信息理论与编码课后答案第2章

第二章 信息的度量习题参考答案不确定性与信息(2.3)一副充分洗乱的牌(含52张),试问: (1)任一特定排列所给出的不确定性是多少?(2)随机抽取13张牌,13张牌的点数互不相同时的不确定性是多少? 解:(1)一副充分洗乱的扑克牌,共有52张,这52张牌可以按不同的一定顺序排列,可能有的不同排列状态数就是全排列种数,为6752528.06610P =≈⨯!因为扑克牌充分洗乱,所以任一特定排列出现的概率是相等的。

设事件A 为任一特定排列,则其发生概率为 ()6811.241052P A -=≈⨯!可得,任一特定排列的不确定性为()()22log log 52225.58I A P A =-=≈!比特 (2)设事件B 为从中抽取13张牌,所给出的点数都不同。

扑克牌52张中抽取13张,不考虑其排列顺序,共有1352C 种可能的组合,各种组合都是等概率发生的。

13张牌中所有的点数都不相同(不考虑其顺序)就是13张牌中每张牌有4种花色,所以可能出现的状态数为413。

所以()131341352441339 1.05681052P B C -⨯!!==≈⨯!则事件B 发生所得到的信息量为()()13213524log log 13.208I B P B C =-=-≈ 比特2.4同时扔出两个正常的骰子,也就是各面呈现的概率都是1/6,求: (1)“2和6 同时出现”这事件的自信息量。

(2)“两个3同时出现”这事件的自信息量。

(3)两个点数的各种组合(无序对)的熵。

(4)两个点数之和(即2,3,…,12构成的子集)的熵。

(5)两个点数中至少有一个是1的自信息。

解:同时扔两个正常的骰子,可能呈现的状态数有36种,因为两骰子是独立的,又各面呈现的概率为61,所以36种中任一状态出现的概率相等,为361。

(1) 设“2和6同时出现”这事件为A 。

在这36种状态中,2和6同时出现有两种情况,即2,6和2,6。

信息论与编码理论基础 王育民(第二章 )

信息论与编码理论基础 王育民(第二章 )

2020/4/5
9
非平均互信息量
(本章将给出各种信息量的定义和它们的性质。)
定义2.1.1(非平均互信息量) 给定一个二维离散型随机变量
{(Xx k,, j)y Y ,k,j)r k ,1 ~(K 1 ~ ; Jj}
因此就给定了两个离散型随机变量 { X ,x k ,q k ,k 1 ~ K } 和 { Y ,y j,w j,j 1 ~ J }
事件xk∈X与事件yj∈Y的互信息量定义为
I(xk;yj)loga
P(XP(Xxk|Yxk)yj)loga
P(Yyj |Xxk) P(Yyj)
logaP P((X (X,Yx)k)P((xYk,yyj)j))logaqkrkw j j
2020/4/5
10
非平均互信息量直观认识
若信源发某符号xi, 由于信道中噪声的随机干扰,收信者收到 的是xi的某种变形yj,收信者收到yj后,从yj中获取xi的信息量 用I( xi ; yj )表示,则有
2020/4/5
15
非平均自信息量
定义2.1.3(非平均自信息量) 给定一个离散型随机变量{X, xk, qk, k=1~K}。 事件xk∈X的自信息量定义为 I(xk)=loga(1/qk),
其中底数a是大于1的常数。
从上述两个系统可以看出,在一个系统中我们 所关心的输入是哪个消息的问题,只与事件出
现的先验概率和经过观察后事件出现的后验概
率有关。 信息应当是先验概率和后验概率的函数,即
I(xk;yj)=f [Q(xk),P(xk|yj)]
2020/4/5
8
研究表明
信息量就表示成为事件的后验概率与事件的先 验概率之比的对数函数!!!
2020/4/5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分答案,仅供参考。

2.1信息速率是指平均每秒传输的信息量点和划出现的信息量分别为3log ,23log ,一秒钟点和划出现的次数平均为415314.0322.01=⨯+⨯一秒钟点和划分别出现的次数平均为45.410那么根据两者出现的次数,可以计算一秒钟其信息量平均为253log 4153log 4523log 410-=+2.3 解:(a)骰子A 和B ,掷出7点有以下6种可能:A=1,B=6; A=2,B=5; A=3,B=4; A=4,B=3; A=5,B=2; A=6,B=1 概率为6/36=1/6,所以信息量-log(1/6)=1+log3≈2.58 bit(b) 骰子A 和B ,掷出12点只有1种可能: A=6,B=6概率为1/36,所以信息量-log(1/36)=2+log9≈5.17 bit2.5解:出现各点数的概率和信息量:1点:1/21,log21≈4.39 bit ; 2点:2/21,log21-1≈3.39 bit ; 3点:1/7,log7≈2.81bit ; 4点:4/21,log21-2≈2.39bit ; 5点:5/21,log (21/5)≈2.07bit ; 6点:2/7,log(7/2)≈1.81bit 平均信息量:(1/21)×4.39+(2/21)×3.39+(1/7)×2.81+(4/21)×2.39+(5/21)×2.07+(2/7)×1.81≈2.4bit2.7解:X=1:考生被录取; X=0:考生未被录取; Y=1:考生来自本市;Y=0:考生来自外地; Z=1: 考生学过英语;Z=0:考生未学过英语P(X=1)=1/4, P(X=0)=3/4; P(Y=1/ X=1)=1/2; P(Y=1/ X=0)=1/10;P(Z=1/ Y=1)=1, P(Z=1 / X=0, Y=0)=0.4, P(Z=1/ X=1, Y=0)=0.4, P(Z=1/Y=0)=0.4 (a) P(X=0,Y=1)=P(Y=1/X=0)P(X=0)=0.075, P(X=1,Y=1)= P(Y=1/X=1)P(X=1)=0.125P(Y=1)= P(X=0,Y=1)+ P(X=1,Y=1)=0.2P(X=0/Y=1)=P(X=0,Y=1)/P(Y=1)=0.375, P(X=1/Y=1)=P(X=1,Y=1)/P(Y=1)=0.625 I (X ;Y=1)=∑∑=====xx)P()1Y /(P log)1Y /(P )1Y (I )1Y /(P x x x x;x=1)P(X )1Y /1X (P log)1Y /1X (P 0)P(X )1Y /0X (P log)1Y /0X (P =====+======0.375log(0.375/0.75)+0.625log(0.625/0.25)=(5/8)log5-1≈0.45bit(b) 由于P(Z=1/ Y=1)=1, 所以 P (Y=1,Z=1/X=1)= P (Y=1/X=1)=0.5 P (Y=1,Z=1/X=0)= P (Y=1/X=0)=0.1那么P (Z=1/X=1)= P (Z=1,Y=1/X=1)+ P (Z=1,Y=0/X=1)=0.5+ P (Z=1/Y=0,X=1)P (Y=0/X=1)=0.5+0.5*0.4=0.7P(Z=1/X=0)= P (Z=1,Y=1/X=0)+ P (Z=1,Y=0/X=0)=0.1+P(Z=1/Y=0,X=0)P(Y=0/X=0)=0.1+0.9*0.4=0.46P (Z=1,X=1)= P (Z=1/X=1)*P(X=1)=0.7*0.25=0.175 P (Z=1,X=0)= P (Z=1/X=0)*P(X=0)= 0.46*0.75=0.345 P(Z=1) = P(Z=1,X=1)+ P(Z=1,X=0) = 0.52 P(X=0/Z=1)=0.345/0.52=69/104 P(X=1/Z=1)=35/104I (X ;Z=1)=∑∑=====xx )P()1Z /(P log )1Z /(P )1Z (I )1Z /(P x x x x;x=1)P(X )1Z /1X (P log )1Z /1X (P 0)P(X )1Z /0X (P log )1Z /0X (P =====+======(69/104)log(23/26)+( 35/104)log(35/26) ≈0.027bit(c)H (X )=0.25*log(1/0.25)+0.75*log(1/0.75)=2-(3/4)log3=0.811bit H(Y/X)=-P(X=1,Y=1)logP(Y=1/X=1) -P(X=1,Y=0)logP(Y=0/X=1)-P(X=0,Y=1)logP(Y=1/X=0) -P(X=0,Y=0)logP(Y=0/X=0)=-0.125*log0.5-0.125*log0.5-0.075*log0.1-0.675*log0.9=1/4+(3/40)log10-(27/40)log(9/10)≈0.603bitH(XY)=H(X)+H(Y/X)=9/4+(3/4)log10-(21/10)log3=1.414bitP(X=0,Y=0,Z=0)= P(Z=0 / X=0, Y=0)* P( X=0, Y=0)=(1-0.4)*(0.75-0.075)=0.405 P(X=0,Y=0,Z=1)= P(Z=1 / X=0, Y=0)* P( X=0, Y=0)=0.4*0.675=0.27P(X=1,Y=0,Z=1)= P(Z=1/ X=1,Y=0)* P(X=1,Y=0)=0.4*(0.25-0.125)=0.05 P(X=1,Y=0,Z=0)= P(Z=0/ X=1,Y=0)* P(X=1,Y=0)=0.6*0.125=0.075 P(X=1,Y=1,Z=1)=P(X=1,Z=1)- P(X=1,Y=0,Z=1)=0.175-0.05=0.125 P(X=1,Y=1,Z=0)=0 P(X=0,Y=1,Z=0)=0P(X=0,Y=1,Z=1)= P(X=0,Z=1)- P(X=0,Y=0,Z=1)= 0.345-0.27=0.075H(XYZ)=-0.405*log0.405-0.27*log0.27-0.05*log0.05-0.075*log0.075-0.125*log0.125-0.075*log 0.075=(113/100)+(31/20)log10-(129/50)log3 =0.528+0.51+0.216+0.28+0.375+0.28=2.189 bitH(Z/XY)=H(XYZ)-H(XY)= -28/25+(4/5)log10-12/25log3 =0.775bit2.9 解:A ,B ,C 分别表示三个筛子掷的点数。

X=A, Y=A+B, Z=A+B+C由于P(A+B+C/ A+B)=P(C/A+B)=P(C)所以H(Z/Y)=H(A+B+C/ A+B)=H (C )=log6 =2.58bit一共36种情况,每种情况的概率为1/36,即P(A=a,Y=y)=1/36H(X/Y)=H(A/Y)=(1/36)[(-1*log1-2*log(1/2)-3*log(1/3)-4*log(1/4)-5*log(1/5) )*2-6*log(1/6)]=1 .89bit由于P(A+B+C/ A+B,A)=P(C/A+B,A)=P(C)H(Z/XY)=H(C) =log6 =2.58bit由于P(A=x,A+B+C=z/A+B=y)=P(A=x,C=z-y/ A+B=y)=P(A=x/A+B=y)P(C=z-y/A+B=y)=P(A= x / A+B=y)P(C=z-y)=P(A/Y)P(C)一共216种情况,每种情况的概率为1/216,即P(XYZ)=1/216H(XZ/Y)=(1/216)[(-6*log(1/6)-12*log(1/12)-18*log(1/18)-24*log(1/24)-30*log(1/30))*2-36*log(1/36)]= (1/36)*[(log6+2log12+3log18+4log24+5log30)*2+6log36]=4.48 bit由于P(Z/X)=P(B+C/A)=P(B+C)(/)()log (/)()(/)log (/)()()log ()()xyzabcabcH Z X p xz p z x p a p a b c a p a b c a p a p b c p b c H B C =-=-++++=-++=+∑∑∑∑= (1/36)*{[log36+2log(36/2)+ 3log(36/3)+ 4log(36/4)+ 5log(36/5)]*2+6log(36/6)}bit2.11解:P(0/0)=P(1/1)=1- p , P(1/0)=P(0/1)= p (a) P (u l)=1/8P (u l ,0)=P (u l)×P (0/u l)=(1/8)×(1-p ) 接收的第一个数字为0的概率:P (0)=P (u l)×P (0/u l)+ P (u 2)×P (0/u 2)+……. P (u 8)×P (0/u 8)=4×(1/8)×(1-p )+ 4×(1/8)×p =1/2I(u l; 0)=log[ P (u l ,0)/P(0)P(u l)]=1+log(1-p ) (b) P (u l ,00)=P (u l)×P (00/u l)=(1/8)×(1-p )2P (00)=P (u l)×P (00/u l)+ P (u 2)×P (00/u 2)+……. P (u 8)×P (00/u 8) =2×(1/8)×(1-p )2 +4×(1/8)×p (1-p )+ 2×(1/8)×p 2 =1/4I(u l; 00)=log[ P (u l ,00)/P(00)P(u l)]= 2+2log(1-p ) (c) P (u l ,000)=P (u l)×P (000/u l)=(1/8)×(1-p )3P (000)=P (u l)×P (000/u l)+ P (u 2)×P (000/u 2)+……. P (u 8)×P (000/u 8) = (1/8)×(1-p )3 +3×(1/8)×p (1-p ) 2+3×(1/8)×p 2 (1-p ) +(1/8)×p 3 =1/8I(u l; 000)=log[ P (u l ,000)/P(000)P(u l)]= 3+3log(1-p ) (d) P (u l ,0000)=P (u l)×P (0000/u l)=(1/8)×(1-p )4P (0000)=P (u l)×P (0000/u l)+ P (u 2)×P (0000/u 2)+……. P (u 8)×P (0000/u 8) = (1/8)×(1-p )4 +6×(1/8)×p 2 (1-p ) 2+ (1/8)×p 4I(u l; 0000)=log[ P (u l ,0000)/P(0000)P(u l)]=4224(1)3log{22}log{}(1)6(1)p p p p p p-=-+-+-+2.12解:I(X;Z)= H(Z)-H(Z/X) I(XY ;Z)=H(Z)-H(Z/XY)I(Y;Z/X)=I(XY;Z)-I(X;Z)I(X;Z/Y)= I(XZ;Y)-I(Y;Z)= H(XZ)-H(XZ/Y) -I(Y;Z)=H(X)+H(Z/X) -H(XZ/Y) -I(Y;Z)以上可以根据2.9的结果求出2.27解:考虑到约束条件()1,()q x xq x m ∞∞==⎰⎰采用拉格朗日乘子法1212120121200(())()log ()[()][()1]()()log ()log ()[1]()()c x x H q x q x q x dx xq x dx m q x dx e a m q x dx m e q x dxq x q x λλλλλλλλλλ∞∞∞----∞∞=-----=++≤++⋅-⎰⎰⎰⎰⎰ 当且仅当12()x q x a λλ--=时,等式成立。

相关文档
最新文档