时域有限差分方法发展

合集下载

时域有限差分法

时域有限差分法

引言
时域有限差分法的软件
• • FDTDA,三维时域有限差分法的软件,源程序用FORTRAN语言 编写(1993年) XFDTD,具有多种功能,包含有瞬态近—远场外推,亚网格技 术,介质可以是有耗介质、磁化铁氧体,可用以分析生物体对电 磁波的吸收特性(SAR),螺旋及微带天线,天线阻抗的频率特 性,移动电话场强分布,细导线及复杂物体电磁散射和RCS (1996年) EMA3D,分析核电磁脉冲(NEMP)及雷电耦合,高功率微波, 宽带RCS,天线,屏蔽特性,印刷电路板的电磁兼容。软件具有 多种边界条件,亚网格剖分,适用于有耗介质、平面波源及电压 电流源(1997年)
其中E为电场强度,单位为伏特/米 D为电通量密度,单位为库仑/米2 H为磁场强度,单位为安培/米 B为磁通量密度,单位为韦伯/米2 J为电流密度,单位为安培/米2 Jm为磁流密度,单位为伏特/米2
麦克斯韦方程
各向同性线性介质中的本构关系为
B = μH
D = εE
其中 ε 为介质介电系数,单位为法拉/米 μ 为磁导系数,单位为亨利/米 σ 为电导率,单位为西门子/米 σ m 为导磁率,单位为欧姆/米 σ 和 σ m 分别为介质的电损耗和磁损耗 在真空中, σ = 0 , σ = 0 , ε = ε = 8.85 ×10−12 法拉/米
引言
时域有限差分法的产生与发展
• 1989年,Britt首次给出时域远场的结果,但未给出外 推的具体方法 • 1989年,Larson、Perlik和Taflove等人提出研究适用于 时域有限差分法的专用计算机,以便用于计算电磁波 与电大尺寸物体的相互作用 • 1990年,Maloney等人用柱坐标系下的时域有限差分法 分析了柱状和锥状天线位于理想导体平面上的辐射, 得到宽带天线的输入阻抗及瞬态辐射场的直观可视化 显示

时域有限差分法二维

时域有限差分法二维

时域有限差分法二维1. 引言时域有限差分法(Finite Difference Time Domain, FDTD)是一种常用的数值计算方法,用于求解电磁场在时域中的传播和辐射问题。

本文将以二维情况为例,深入探讨时域有限差分法的原理和应用。

通过本文的介绍和解读,您将更全面地理解这一方法,并能够灵活应用于相关领域。

2. 时域有限差分法简介2.1 原理概述时域有限差分法是一种迭代求解偏微分方程的方法,通过将时域和空间离散化,将连续问题转化为离散问题。

在二维情况下,假设空间网格分辨率为Δx和Δy,时间步长为Δt。

根据电磁场的麦克斯韦方程组,可以利用中心差分公式进行离散化计算,得到求解方程组的更新方程。

2.2 空间离散化对于二维情况,空间离散化可以采用正交网格或非正交网格。

常见的正交网格包括方形格点、Yee网格等,而非正交网格则具有更灵活的形态。

根据需要和应用场景,选择合适的离散化方法对问题进行求解。

2.3 时间离散化时间离散化主要有显式和隐式两种方法。

显式方法将时间推进方程展开成前一时刻的电场和磁场与当前时刻的源项之间的关系,容易计算但对时间步长有限制;隐式方法则是通过迭代或矩阵计算求解当前时刻的电场和磁场。

3. 时域有限差分法的应用领域时域有限差分法广泛应用于电磁场传播和辐射问题的数值模拟中。

以下是几个典型的应用领域:3.1 辐射问题时域有限差分法可以模拟电磁波在空间中的辐射传播过程。

可以用于分析天线的辐射特性,设计无线通信系统的天线,或者分析电磁波在无线电频段的传播情况。

3.2 波导问题对于波导结构,时域有限差分法可以求解其模式、传输特性等问题。

波导结构广泛应用于光子学器件、微波器件等领域,时域有限差分法为建立数值模型和解析波导特性提供了一种有效的数值计算手段。

3.3 散射问题时域有限差分法在散射问题的数值模拟中也有重要应用。

通过模拟散射体与电磁波的相互作用过程,可以研究和分析散射体的散射特性,例如雷达散射截面的计算、微波散射问题等。

时域有限差分方法、编程技巧与应用

时域有限差分方法、编程技巧与应用

时域有限差分方法、编程技巧与应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍在科学计算领域,时域有限差分方法是一种用于解决偏微分方程(PDEs)数值解的有效方法。

第十一章-时域有限差分方法

第十一章-时域有限差分方法

第十一章-时域有限差分方法第十一章时域有限差分方法自从1966年K. S. Yee 创建时域有限差分法 (Finite Difference Time Domain,简称FDTD)[1]以来,已经发展成为一种理论完整、应用广泛的数值方法,并且与矩量法和有限元法一起奠定了计算电磁学的基础。

本章将介绍时域有限差分的基本理论,数值模拟技术,若干相关的专题以及工程实例。

11-1 差分的基本概念时域有限差分法是对微分形式的Maxwell方程进行差分求解的技术。

在详述其之前,首先简单回顾差分的基本概念。

已知分段连续函数在位置处的增量可表示为fxx,,(11-1-1) ,,,,,fxfxxfx,,,,,,其差商为,,,,fxfxxfx,,,,,, (11-1-2) ,,,xx,x当,0时,fx的导数定义为差商的极限,即,,,,,,fxfxxfx,,,,,,'limlim (11-1-3) fx,,,,,,,,xx00,,xx,x当足够小时,的导数可以近似为 fx,,dff,, (11-1-4) dxx,根据导数取值位置的不同,差分格式分为前向差分、后向差分和中心差分。

前向差分定义为fxxfx,,,,,,,,f (11-1-5) ,,,xxx后向差分定义为fxfxx,,,,,,,,f (11-1-6) ,,,xxx中心差分定义为fxxfxx,,,,,22,,,,,f (11-1-7) ,,,xxxfxx,,将在点x处展开为Taylor级数,得,,23dddfxfxfx,,,,,,1123 (11-1-8) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx37123dddfxfxfx,,,,,,1123 (11-1-9) fxxfxxxx,,,,,,,,,,,,,23d2!d3!dxxx将方程 (11-1-8) 和 (11-1-9) 代入 (11-1-5) ~ (11-1-7)后可以发现,前向和后向差分具有一阶精度,中心差分具有二阶精度。

时域有限差分法

时域有限差分法

时域有限差分法时域有限差分(FiniteDifferenceinTimeDomain,称FDTD)法是一种广泛应用于电磁场仿真的数值计算方法,它以离散时间步长来描述电磁场的变化,可以准确模拟空间内电磁场随时间变化的波动特性。

在时域有限差分仿真中,以Maxwell方程描述电磁场的运动,将时域的空间变化转换为表示时间的一维网格,用有限差分技术对Maxwell 方程组及其边界条件进行求解,可以得到空间中电磁场的离散值的解,从而达到仿真电磁场变化的目的。

FDTD仿真技术的最早应用出现在1960年代。

由于它的有效性和快速灵活性,FDTD仿真技术得到了快速发展,在电磁场仿真中得到了普遍应用。

FDTD仿真技术具有以下优点:1.基本实现简单,编程简单,计算效率高;2.可以准确仿真各种复杂电磁环境中电磁波传播的特性,如介质内各种参数随时间变化;3.不仅可以仿真欧姆模型,还可以用于局部质点模型的仿真;4.容易添加吸收边界,有效地抑制反射和折射现象;5.可以定制计算区域,灵活处理各种复杂的边界条件;6.计算中可以容易地加入激励和探测源;7.可以同时计算多个激励源和探测源,完成多源多探测器的仿真;8.可以方便地仿真非线性电磁材料的特性;9.单片机控制的实时仿真可以实时进行激励和探测调制;10.可以方便地模拟分布式电磁系统。

时域有限差分仿真技术的基本原理是采用有限差分法,沿时间轴以离散的步长,用一维数组离散地表示各点的电场态,并以此实现电磁场系统的时间域模拟。

FDTD法在时间域上使用一维离散网格,将Maxwell方程组及其边界条件分解,分别应用一阶导数近似公式(如中心差分公式)求解,按照计算元(grid point)在时空域中的局部特性,分别设定电磁场源、介质参数和边界条件,利用时域有限差分公式迭代求解Maxwell方程,可以得到边界条件和激励源允许的范围内的空间中的电磁场的离散值的解,从而达到仿真电磁场变化的目的。

借助时域有限差分法可以实现对天线、微波传输线、无线局域网、雷达、全波器件等电磁系统的仿真,其结果可以用于设计、性能预测、状态诊断、运行维护、电磁干扰抑制等诸多应用领域。

时域有限差分法PPT课件

时域有限差分法PPT课件

vg
d
dk
c
(1-10)
这种情况下,群速也是与频率无关。
.
8
1.2 数值色散关系(2)
上述过程也可用于一维标量波动方程差分近似的数值色散分析。
设在离散空间点 xi,tn,离散行波解为 u in u x i,tn e j n t k ~ i x ,
式中,k~ 为存在于有限差分网格中的数值正弦波的波数。一般情况 下,不同于连续物理波的波数。正是这种不同导致了数值相速和群 速偏离了精确解。进而导致了数值色散误差。
1.5 数值稳定性(1)
• FDTD计算中每一步都是有误差的,随着时间步进,误 差会不断积累。如果误差的积累不会造成总误差的增 加,就成FDTD法是稳定的,否则成为不稳定的。数值 不稳定性会造成计算结果随时间步进无限增加。
• FDTD法是有条件稳定的,即:时间步必须必须小于一 定值以避免数值不稳定性。
考虑(1.1)的正弦行波解 ux,tejtkx 代入(1-1)得
j2c2jk2 即
k c
上式便是一维标量波动方程的色散关系。
(1-8)
由上式得相速度
vp
k
c
(1-9)
可见,相速与频率无关,称为非色散。非色散意味着对于具有任意
调制的包络或脉冲形状的波传播任意距离后波形保持不变。进一步
由(1-8)可以得到群速关系
正弦函数
ui=sin(nt+)
高斯函数
ui=exp[-(n-n0)2/T2]
阶跃函数
ui= 0
n<n1
= ( n-n1)/(n2-n1) n1<n<n2
=1
n>n2
“硬源”设置简单,但当反射波回到“硬源”位置时, 会引起寄生反射,所以,要在这之前“关”掉源。

计算电磁学-第5章-时域有限差分法1

计算电磁学-第5章-时域有限差分法1



FDTD 方法提出之后,随着计算技术,特别是电子 计算机技术的发展, FDTD 方法得到了长足的发展 ,在电磁学,电子学,光学等领域都得到了广泛 的应用
4

为求解由偏微分方程定解问题所构造的数学模型
,有限差分法是将定解区域(场区)离散化为网 格离散节点的集合。

并以各离散点上函数的差商来近似该点的偏导数 ,使待求的偏微分方程定解问题转化为一组相应 的差分方程。根据差分方程组解出各离散点处的 待求函数值—离散解。
6
时域和频域的麦克斯韦方程
时域
H E t E H J , J E t E B 0
频域
E j H H J j E E B 0
x
+1
/2 ,k )
( x x, y, z ) (i 1, j, k )
y
Hx(i, j + 1 / 2,k + 1 / 2)
Hy (i +
( x, y , z ) (i, j, k )
x
Hz(i + 1 / 2, j + 1 / 2,k)
Hx(i,j+1/2,k+1/2) Hy(i+1/2,j,k+1/2) Hz(i+1/2,j+1/2,k)
12
离散取样

空间离散:假设在各方向上均匀离散,网 格步长 Δx, Δy, Δz ,用字符 i,j,k分别表示 x,y,z方向上的网格标示。这样连续的空间 (x,y,z)离散为用(i,j,k) 表示的离散空间点— —空间取样点。 ( x x, y y, z z )

时域有限差分

时域有限差分

时域有限差分时域有限差分(FiniteDifferenceinTimeDomain,简称FDTD)是一种基于有限差分方法的数值模拟技术,用于求解电磁场的时域行为。

它在电磁学仿真建模中有着重要的作用,广泛应用于电磁屏蔽、电磁兼容、发射器设计、天线特性测试、雷达和无线通信等诸多领域。

本文将从介绍FDTD的历史背景、基本思想及特点出发,重点讨论它的基本框架及其基本算法,并以此来深入剖析它的优势及应用场景,以期激发更多的研究者更好的应用FDTD去解决实际的问题。

一、FDTD的历史背景时域有限差分法始于20世纪50年代,其有名的开创者是美国科学家Yee在1966年提出的。

至此,它比传统时域分析方法(如横波模型)具有更强的计算能力,有利于模拟电磁场以及其他物理场。

经过Yee的提出,FDTD的理论基础也在不断的完善,其在电磁仿真领域的应用也更加普及,它的算法也得到了不断的改进和优化,有利于优化电磁仿真技术,并使它更容易被应用在电磁学仿真中。

二、FDTD基本思想及特点时域有限差分法基于有限差分法,用于求解电磁场的时域行为。

它采用基于欧拉方程(Maxwell-Faraday)的电磁场表示,将欧拉方程空间和时间解分,从而简化时域求解中的计算工作。

在做时域积分的时候,它采用的是一种求近似解的方法。

根据反文本定理,这种求近似解的方法能够准确地表示电磁场的时变行为,从而正确地描述电磁场在空间和时间上的变化规律。

在求解电磁场的时候,它把分析的小单元划分成不同的网格,每个网格为一个小空间,把大量的电磁场计算转换成了大量的有限差分的计算,从而极大地简化了电磁场的模拟,节约了计算时间。

另外,FDTD还具有计算简单、模拟效率高、模拟准确等优点,因此在电磁学仿真中非常受到重视。

三、FDTD的基本框架及其基本算法FDTD的基本框架由应变和电场两个部分构成,两个部分相互协作,用来计算空间上电磁场的变化过程,以及对应的时间变化过程。

其基本算法由三个步骤构成:(1)横电场更新,先从欧拉方程计算横电场;(2)纵电场更新,再从欧拉方程计算纵电场;(3)应变更新,最后从欧拉方程计算应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时域有限差分方法发展时域有限差分方法(FDTD)是一种数值模拟方法,用于分析电磁波在电磁介质中的传播规律和行为。

FDTD 方法因其精度高、适用性强和易于实现等特点,已成为求解电磁问题的重要数值方法之一。

本文将介绍 FDTD 方法的历史、理论基础、发展和应用。

一、FDTD方法的历史
FDTD 方法最早可以追溯到20世纪60年代,当时美国内战研究所的J. T. Sinko 和K. L. Wong 开始了电磁场传输问题的理论研究,他们提出了一种细分方法,也就是时域有限差分方法。

此后,人们对这种方法进行了不断的改进和优化,以增强其计算效果和范围。

1970年代后期,FDTD 方法开始被广泛应用于求解电磁波的传播和散射问题,尤其在电磁场数值模型的精细化计算和二维和三维问题的求解方面得到了广泛应用。

随着计算机硬件和软件水平的提高以及数值方法的发展,FDTD 方法不断得到优化和完善,使得其在各种应用领域中都能得到成功地应用。

二、FDTD方法的理论基础
FDTD 方法是一种基于麦克斯韦方程组的数值算法,它可以用于求解完整的时间域电磁场的变化。

其核心思想是
通过对空间内的电磁场进行离散化处理,将微分方程转化为差分方程,进而用数值计算方法求解出场的值。

FDTD 方法的主要思想是将物理力学中的傅里叶变换方法应用到电磁场问题中。

具体来说,FDTD 方法是否采用离散时间和空间点以在有限时间内模拟模拟区域内的电磁波。

该方法在时间内基于麦克斯韦方程组的简化形式,以离散的形式计算和分析电磁波的传播和反射。

这些离散点可以由网格、三角网格(二维情况下)或四面体、四面体网格(三维情况下)建模。

在离散化计算之后,差分方程可转化为等效的差分模型,以计算场值。

三、FDTD方法的发展
在过去几十年中,FDTD 方法得到了快速的发展和广泛的应用。

目前,FDTD方法可用于众多的问题求解,如电磁波的传播问题、微波电路、微波天线设计、宽带天线、电磁兼容性、光学传输问题以及生物医学中的电磁传播问题等。

近年来,FDTD 方法的发展重点在以下几个方面:
1. 增强计算的效率和速度
FDTD 方法大规模计算和存储要求高,要求卓越的计算速度和内存处理能力。

因此,研究者不断努力进行算法优化和平行化,以提高计算效率和加速计算速度。

同时,计
算机硬件和软件技术的不断进步,也为 FDTD 方法的高效计算提供了有力支持。

2. 增强算法的精度和稳定性
精度和稳定性是 FDTD 方法的两个核心因素,影响着算法在实际应用中的可靠性和准确性。

为了提高算法的精度和稳定性,研究者通常采用高阶离散方法、改进场覆盖技术和预条件化技术等策略。

这些策略可以减小误差和稳定场的变化,从而提高算法的准确性和可靠性。

3. 增强模型的适应性和多样性
FDTD 方法适用于各种电磁波问题的求解,并且可以用于处理多种复杂的材料、几何形状和边界特征。

为了使FDTD 方法更好地适应多种复杂的问题求解,研究者一直在努力改进算法,使其具有更高的灵活性和多样性。

四、FDTD方法的应用
FDTD方法在神经科学、生物医学、环境与气象预报、计算电磁学和通信工程、微波工程等领域中得到了广泛的应用。

1. FDTD方法在神经科学和生物医学中的应用
FDTD方法广泛应用于神经科学和生物医学的研究中,如组织成像、人体射频暴露、舒适感觉、生物电学、微波消融、组织电学热学等领域。

用FDTD方法连接神经元模型
的研究越来越多,帮助我们加深了解生物神经系统中的信号传输机制。

2. FDTD方法在环境与气象预报中的应用
FDTD 方法已成为气象、环境与大气中电磁场传输的重要分析方法。

FDTD 方法在这个领域的应用越来越广泛,如对气象雷达系统的设计和研究、对辐射性污染等的研究、对环境电磁污染的研究等。

3. FDTD方法在计算电磁学和通信工程中的应用
FDTD方法通常用于计算基于电和磁的现象,如射频和微波电路、天线及天线阵列的性能分析,还包括电磁计算的影响。

其中高频EMC(电磁兼容)问题的研究是FDTD方法的重要应用之一。

4. FDTD方法在微波工程中的应用
在微波工程中,FDTD方法被广泛应用于分析天线、开关及其阵列的辐射特性、分析高速数字电路中的辐射噪声以及各种电子元器件的射频特性。

FDTD方法在微波工程领域的应用越来越受到广泛关注,使得FDTD方法的理论和实际应用能够相互促进和发展。

相关文档
最新文档