声学基础知识

合集下载

声学基础

声学基础

噪声测试讲义第一章声学基础知识第一节声音的产生与传播一、声音的产生首先我们看几个例子:敲鼓时听到了鼓声,同时能摸到鼓面的振动;人能讲话是由于喉咙声带的振动;汽笛声、喷气飞机的轰鸣声,是因为排气时气体振动而产生的。

通过观察实践人们发现一切发声的物体都在振动,振动停止发声也停止。

因此,人们得出声音是由于物体的振动产生的结论。

二、声源及噪声源发声的物体叫声源,包括一切固体、液体和气体。

产生噪声的发声体叫噪声源。

三、声音的传播声音的传播需要借助物体的,传声的物体也叫介质,因此,声音靠介质传播,没有介质声音是无法传播的,真空不能传声,在真空中我们听不到声音。

声音的传播形式(以大气为例)是以疏密相间的波的形式向远处传播的,因此也叫声波。

当声振动在空气中传播时空气质点并不被带走,它只是在原来位置附近来回振动,所以声音的传播是指振动的传递。

四、声速声音的传播是需要一定时间的,传播的快慢我们用声速来表示。

声速定义:每秒声音传播的距离,单位:M/s。

在空气中声速是340 m/s,水中声速为 1450m/s ,而在铜中则为 5000m/s。

可见,声音在液体和固体中的传播速度一般要比在空气中快得多,另外,声速还和温度有关。

第二节人是怎样听到声音的一、人耳的构造人耳是由外耳、中耳和内耳三部分组成,各部分具有不同的作用共同来完成人的听觉。

耳朵三部分组成结构见彩图。

外耳,包括耳壳和外耳道,它只起着收集声音的作用。

中耳,包括鼓膜、鼓室、咽鼓管等部分。

由耳壳经过外耳道可通到鼓膜,这里便进人中耳了。

鼓膜俗称耳膜,呈椭圆形,只有它才是接受声音信号的,它能随着外界空气的振动而振动,再把这振动传给后面的器官。

鼓室位于鼓膜的后面,是一个不规则的气腔。

有一个管道使鼓室和口腔相通,这个管道叫咽鼓管。

咽鼓管的作用是让空气从口腔进人中耳的鼓室,使鼓膜内外两侧的空气压力相等,这样鼓膜才能自由振动。

鼓室里最重要的器官是听小骨。

听小骨由锤骨、砧骨和镫骨组成,锤骨直接与鼓膜相依附,砧骨居中,镫骨在最里面,它们的构造和分布就象一具极尽天工的杠杆,杠杆的前头连着鼓膜,后头连着内耳。

声学基础知识

声学基础知识

声学基础知识声学基础知识⼀、声学基础1、⼈⽿能听到的频率范围是20—20KHZ。

2、把声能转换成电能的设备是传声器。

3、把电能转换成声能的设备是扬声器。

4、声频系统出现声反馈啸叫,通常调节均衡器。

5、房间混响时间过长,会出现声⾳混浊。

6、房间混响时间过短,会出现声⾳发⼲。

7、唱歌感觉声⾳太⼲,当调节混响器。

8、讲话时出现声⾳混浊,可能原因是加了混响效果。

9、声⾳三要素是指⾳强、⾳⾼、⾳⾊。

10、⾳强对应的客观评价尺度是振幅。

11、⾳⾼对应的客观评价尺度是频率。

12、⾳⾊对应的客观评价尺度是频谱。

13、⼈⽿感受到声剌激的响度与声振动的频率有关。

14、⼈⽿对⾼声压级声⾳感觉的响度与频率的关系不⼤。

15、⼈⽿对中频段的声⾳最为灵敏。

16、⼈⽿对⾼频和低频段的声⾳感觉较迟钝。

17、⼈⽿对低声压级声⾳感觉的响度与频率的关系很⼤。

18、等响曲线中每条曲线显⽰不同频率的声压级不相同,但⼈⽿感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表⽰响度级。

20、⽤分贝表⽰放⼤器的电压增益公式是20lg(输出电压/输⼊电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表⽰计权声压级。

23、⾳⾊是由所发声⾳的波形所确定的。

24、声⾳信号由稳态下降60dB所需的时间,称为混响时间。

25、乐⾳的基本要素是指旋律、节奏、和声。

26、声波的最⼤瞬时值称为振幅。

27、⼀秒内振动的次数称为频率。

28、如某⼀声⾳与已选定的1KHz纯⾳听起来同样响,这个1KHz纯⾳的声压级值就定义为待测声⾳的响度。

29、⼈⽿对1~3KHZ的声⾳最为灵敏。

30、⼈⽿对100Hz以下,8K以上的声⾳感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作⽤,属有益反射声作⽤。

32、观众席后侧的反射声对原发声起回声作⽤,属有害反射作⽤。

33、声⾳在空⽓中传播速度约为340m/s。

34、要使体育场距离主⾳箱约34m的观众听不出两个声⾳,应当对观众附近的补声⾳箱加0.1s延时。

声学基础知识

声学基础知识
▪语言清晰度和信噪比的关系
在背景噪声较强的情况下,利用一定的手段提高信号的信 噪比,可以使语言清晰度得以提高。
28
房间的特殊声学现象
声聚焦:由于室内存在的凹面,使部分区域的声音汇集在 某一个焦点上,从而造成室内声场分布不均匀的现象。
死点:由于声音的聚焦或干涉形成某点(或某区域)声音 严重不足的情况。 声影区:由于建筑物或折射的原因,造成声音不能辐射到 的区域。 声染色:由于房间频率相应的问题,原始声音在传播过程 中被赋予了额外的声音特征。
6
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
7
声音的三要素
响度
响度又称声强或音量,它表示的是声音能量的强弱程度,主要取决 于声波振幅的大小。响度是听觉的基础。正常人听觉的强度范围 为0dB—140dB。
音高
音高也称音调,表示人耳对声音调子高低的主观感受。客观上 音高大小主要取决于声波基频的高低,频率高则音调高,反之 则低,单位用赫兹(Hz)表示。
声音的中频主要包括中高频和中低频,中频成分多时, 声音表现有力、活跃清晰、透亮;中频成分过多,声音动态 出不来、浑浊有号角声,鸣声(500~800Hz)、电话声 (2~4kHz)、刺耳声(4~7kHz)、金属声(3~5kHz); 中频成分适中,声音自然、中性、圆滑、悦耳,但声音可能 无活力、平淡;中频成分过少,声音圆润柔和,但是显得松 散。
30
频谱与音质的关系
在评价乐器或声音时,频谱结构在很大程度上决定声音的 音质。了解声音频谱与音质的内在关系,有助于声音的调 整和修饰。这对声音的前期处理喝后期加工都是十分必要 的。
频谱划分
高频段:7kHz以上
中低频段:500Hz~2kHz
中高频段:2kHz~7kHz

声学基础知识

声学基础知识

声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。

声音是一种机械波,是由介质中分子的振动引起的。

在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。

本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。

一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。

声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。

例如,乐器弦线振动时产生的声音。

2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。

例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。

3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。

例如,人的嗓子发出的声音就是通过空气的振动传播出去的。

二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。

声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。

声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。

2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。

3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。

4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。

三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。

人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。

1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。

外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。

内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。

声学基础知识

声学基础知识

声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。

声学是研究声音产生、传播和听觉效应等相关现象的学科。

本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。

一、声音的特性声音有几个重要的特性,包括音调、音量和音色。

音调是指声音的高低,由声源的频率决定。

频率越高,音调越高;频率越低,音调越低。

音量是指声音的强弱,由声源振幅的大小决定。

振幅越大,音量越大;振幅越小,音量越小。

音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。

不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。

二、声波的传播与衰减声波是指由声源振动产生的压力波。

声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。

在传播过程中,声波会经历衍射、反射、折射等现象。

衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。

反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。

折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。

声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。

一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。

环境条件如温度和湿度也会对声波的衰减产生一定影响。

三、人类的听觉系统人类的听觉系统是感知声音的重要器官。

它由外耳、中耳、内耳和大脑皮层等部分组成。

外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。

中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。

内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。

大脑皮层负责处理和解读声音信号。

人类听觉系统对不同频率的声音有不同的感知范围。

一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。

声学基本知识

声学基本知识

声学基本知识声学基本知识一、声音的基本性质声音来源于振动的物体。

辐射声音的振动物体称为“声源”。

声源要在弹性介质中发声并向外传播。

声波是纵波。

(1)人耳所能听到的声波的频率范围为20~20000Hz,称为可听声。

低于20Hz的声音称为次声;高于20000Hz的声音称为超声。

次声与超声不能使人产生声音的感觉。

(2)室温下空气中的声速为340m/s.声速c,波长λ和频率f有如下关系:频率为100~10000Hz的声音的波长为3.4~0.034m.这个波长范围与建筑物室内构件的尺度相当,在室内声学中,对这一频段的声波尤为重视。

-f2.每一频带以其中心频率fc标度,.建筑声学设计和测量中常用的有倍频带和1/3倍频带;在倍频带分析中,上限频率是下限频率的两倍,即fl=2f2;在1/3倍频带分析中,在可听声范围内,倍频带及1/3倍频带的划分及其中心频率如表3—l所示。

表中第一行为1/3倍频带中心频率,第二行为倍频带中心频率。

(4)波阵面与声线声波从声源出发,在同一介质中按一定方向传播,声波在同一时刻所到达的各点的包络面称为波阵面。

声线表示声波的传播方向和途径。

在各向同性的介质中,声线是直线且与波阵面垂直。

依据波阵面形状的不同,将声波划分为:1)平面波——波阵面为平面,由面声源发出;2)柱面波——波阵面为同轴柱面,由线声源发出;3)球面波——波阵面为球面,由点声源发出。

一个声源是否可以被看成是点声源,取决于声源的尺度与所讨论声波波长的相对尺度。

当声源的尺度比它所辐射的声波波长小得多时,可看成是点声源。

所以往往一个尺度较大的声源在低频时可按点声源考虑,而在中高频则不可以。

(5)声绕射声波在传播过程中,遇到小孔或障板时,不再沿直线传播,而是在小孔处产生新的波形或绕到障板背后而改变原来的传播方向,在障板背后继续传播。

这种现象称为绕射,或衍射。

(6)声反射声波在传播过程中,当介质的特性阻抗发生变化时,会发生反射。

从几何声学角度,可更直观地解释为,声波在传播过程中遇到尺寸比声波波长大得多的障板时,声波将被反射。

声学基本知识和专业名词

声学基本知识和专业名词

声学基本知识和专业名词作为一个操作音响的人员连最基本的声学知识都不了解,他将无法真正操作好音响设备,连一些专业名词无法理解,他不是一个合格的音响操作人员。

一、声音的物理特性(一)声音的直线传播特性1、声音的产生:声音是由物体振动引起空气的波动,传到耳膜,经过听觉神经听到声音。

声源:发生声音的振动源叫作声源。

声波:由声源引起媒质的振动形成声波。

声场:声波传播的空间叫作声场。

声音在空气中是以一疏一密的纵波传播的。

为什么叫“纵波”,因为它进行方向和传播方向一致2、声速与波长声波在单位时间内传播的距离称为声速,常用符号“C”表示,单位是米/秒(M/S)。

一般来说声速只和传播媒质及其状态有关,在标准大气压下和温度为20°C时,空气中的声速为344米/秒;15°C 时为340米/秒,工程计算一般取344米/秒(因为温度和湿度对声速影响比较大,温度每增加1°C,声速增加2英尺)。

如果声波在水中传播,声速约为1485米/秒,在海水中1500米/秒,在木材中为3320米/秒,在钢材中则为5000米/秒。

声速在室内声学设计和扩声技术中应用很多,一般以毫秒计算,即千分之一秒,1S/1000,简写MS。

声波振动一周所传播的距离为波长,常用符号“λ”表示,单位是米(M)。

声波的波长与声速和频率的关早期反射声都控制在50MS以内,在常温下50MS 所传播的距离为340M 0.05=17M,要记牢这个数值,它是一个界限,50MS以内的早期反射声,有助于加强直达声。

超过50MS的反射声会影响清晰度。

系如下:λ=C/f f为频率由此可见,相同条件下,频率越高,波长越短。

例如,常温空气中,频率为20HZ声波的波长为17.20米,频率为5千赫的声波波长为0.0688米。

3、反射、折射和透射声音在传播过程中,遇到墙壁等障碍物时,一部分声波在分界面处将改变传播方向返回到原来的媒质中去,而另一部分声波则以新的传播方向进入到新的媒质中去,并在新的媒质中继续向前传播。

声学基础知识

声学基础知识

声学基础知识一、声音声音是空气分子的振动。

物体的振动(我们称之为"声源")引起空气分子相应的振动,传入人耳导致鼓膜振动,通过中耳、内耳等一系列听觉器官的共同作用使人听到了声音。

二、声波把石头扔进平静的水面,会形成一组向四周扩散的水波,这是我们所能见到的比较直观"波",空气分子振动形成的声波要复杂一点,它是从声源向四周立体扩散的一组疏密波,空气分子并不是从声源一直跑到您的耳朵,而是在它本来的位置振动,从而引起与它相邻的空气分子随之振动,声音就是这样从声源很快地向外传播的,声音在空气中的传播速度是331米/秒。

举一个简单的例子,麦浪的运动跟声波很相似,粒子的振动方向与波的运动方向是平行的。

波需要通过介质来传播,麦浪的运动到田埂边就自然停止了,声波的传播介质是空气分子,所以,真空里声音是不能传播的。

三、声音的频率声波每秒的振动次数称为频率,频率在20Hz~20KHz之间称为声波;频率大于20khz称为超声波;频率小于20hz称为次声波。

超声波和次声波人耳是听不到的,地震波和海啸都是次声波。

有些动物的耳朵比人类要灵敏得多,比如蝙蝠就能"听到"超声波。

世界上很少存在单一频率的"纯音",我们所听到的声音大都是各种频率的复合音,如乐器发出的单音就是周期性的复合音,语音则是非周期性的复合音。

让我们对声音的频率有一个比较直观的概念:大鼓的"蓬蓬"声频率很低,大约在35Hz-7kHz;人的语音频率范围主要在200 Hz到40 00 Hz之间;锣声、铃声的频率大约在2000 Hz到3000 Hz左右;在人类语音中,女声比男声频率要高一点;童声要比成人频率高一点;"啊啊"声频率较低,"咿咿"声频率稍高,"嗤嗤、嘶嘶"声频率最高。

知道这一点很有用,在实际中,可以经常用来测试病人戴助听器前后对声音频率的反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、声学基础:1、名词解释(1)波长——声波在一个周期内的行程。

它在数值上等于声速(344米/秒)乘以周期,即λ=CT(2)频率——每秒钟振动的次数,以赫兹为单位(3)周期——完成一次振动所需要的时间(4)声压——表示声音强弱的物理量,通常以Pa为单位(5)声压级——声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的。

扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。

(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。

当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。

部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“α”表示,即α=1-K;吸声量是用吸声系数与材料的面积大小来表示。

两者之间的关系α=A/S(A是吸声量),不同的材料有不同的吸声系数,想要达到相同的吸声量,就是改变其吸声面积(4)混响有何特点?混响时间与延迟时间有和不同?答:任何人在任何地方听到的声音都是由直达声与反射声混合而成。

混呼有如下特点:A直达声与反射声之间存在时间差,反射声与反射声之间也存在时间差B直达声和反射声的强度,反射声和反射声的强度各不相同C当声源消失时,直达声音先消失,反射声在室内继续来回传播,并不立即消失。

混响时间与延迟时间是两个不同的概念:混响时间是指当声源停止振动后,室内混响声能密度衰减到它最初数值的百万之一(60分贝)所需的时间,延迟时间是指声音信号的时间延迟量,声波在室内的反射延时形成混响声(5)什么是声波的折射、绕射?答:声波的折射是声波的传播途径为曲线,是声波经过不均匀媒质时,由于传播速度的变化引起的声波弯射现象。

声波碰到墙壁或物体时,会沿着物体的边缘而弯曲地进行传播,这种现象称绕射(也称为衍射)。

妆、当障碍物或孔隙的尺寸与波长相差不多,或孔隙越小,波长越长,绕射现象越显著,所以低频(频率越低波长越长)较高频更易弯曲。

如果前障板比较宽且边角未作任何处理,严重的绕射会使音质变坏。

(6)什么是驻波?声波在室内传播是如何引起驻波的?驻波振动是否有意义?答:如果有两列频率相同且传播方向相反的简谐波爹叠加便形成驻波。

例如室内声波若干个波同时存在同时传播,既有入射波,又有反方向传播的反射波,当反射波以入射波的途径反射时,形成驻波,它使传播媒质原地振动(腹点——声波得到加强)或不动(节点——声波为零)。

驻波的听觉感觉是失真波形的感受,如同功率放大器产生严重的非线性失真一样,在室内听其音响效果极差,一旦有了难以消除,当听众在驻波严重的室内不同位置听音时,将在某些频率点形成不规则、不均匀的高声级和低声级,使频率性有“突峰”“突降”而使频率曲线不光滑。

尤其是对低于500Hz的低频非常显著。

因此无论是室内空间还是箱体设计都应考虑驻波的问题,以免它影响听音效果。

(7)什么是“声染色效应”?它的明显表现是什么?用什么方法克服?答:一个单独的强反射叠加到直达声,特别是对于音乐,可以引起另一种不希望的效应,称为“染色效应”。

即信号频谱有特殊的变化,“声染色效应”的两个条件:反射声的时延大小和强度。

例如:只要一个单独的强反射相当于直达声的延时不超过25ms,即使超过直达声强的若干倍,我们的听觉是直达声的加强而不是声染色效应。

声染色效应的明显表现:在扩声系统中的声反馈现象。

可以利用房间声学均衡器均衡掉此峰是不效的克服方法。

(8)什么是声音的“三要素”?答:音质主要由三个内容决定,音调、音量、音色,即声音的“三要素”。

音调高低是按音阶来变化,也是听者的感觉,这种感觉用声波的频率高低来定量:频率越高,音调越高。

音量是声音的大小和强弱。

音色是声音所饮食的谐波频率(泛音)成分。

二、音箱基础:1、名词解释(1)双极式音箱——发声单元分别指向音前方和后方且同相馈送信号的音箱装置(2)偶极式音箱——发声单元分别指向前方和后方且反相馈送信号的音箱装置,其声辐射图形呈倒“8”字(3)越低音音箱——用于生放深沉的普通小音箱无法达到的超低频段的特制音箱(4)有源音箱——在音箱内具有将音频信号放大的元件或电路(5)双线分音——用两套音箱线分别传送音乐信号的高、低音部分的一种接线方式2、问答(1)音箱的组成?答:音箱主要由三部分组成:箱体:包括空木箱,吸音棉,倒相孔,接线板单元:高、中、低音分频器:如果是有源音箱包括放大电路(2)高、中、低音扬声器单元各越什么作用?答:由于人耳听觉的频率范围是20Hz到20KHz,只用一个扬声器单元无法重放整个频率段的信号,所以利用二个或更多的扬声器单元来完成这个任务。

如果把整个可听频率段划分成高、中、低三个频率段;那么由高、中、低音扬声器单元分别来生放相应的频率段。

(3)什么是分频器,它的作用是什么?答:分频器是内置于音箱的种电路安装置,由电容、电感、电阻组成,不同的元件组成不同的低通、高通、带通滤波器。

它将输入的音乐信号分离成高音、中音、低音等不同部分,然后分别送到相应的高、中、低音单元中重放。

(4)何谓扬声器?答:凡是能将电能转化成声能的通常称扬声器。

扬声器不仅在民用、工程音箱中使用,而且如门铃、蜂鸣器等都称为扬声器。

扬声器的分类很多,按照其换能原理可分为:静电式(电容式),气动式,电动式,压电式,电磁式,离子放电式扬声器。

一般音箱用扬声器使用电动式及静电式为多。

扬声器的形状有:锥形、球顶形、号筒、平板等。

(5)扬声器的构造?答:一般音箱用扬声器以电动式居多。

以电动式扬声器为例,分析其构造,由三个部分组成:磁路部分,振动部分,支撑部分。

磁路部分:上下夹板,磁钢,磁极心,(钢碗)振动部分:振膜,定位支片,音圈,防尘罩支撑部分:盆架(6)扬声器各部分的作用是什么?答:磁路部分:产生磁场,当音圈上有电流通过,在磁间隙内切割磁力线,磁纲具有强恒定磁场到相同的声压能级必须使振膜的振动幅度增大,即增加振膜的位移距离。

防尘等杂物掉入磁间隙内,以免产生杂音。

定位支片保证音圈在磁钢的空气隙内沿磁极心方向垂直振动并阻尼振膜的自由振动。

支撑部分:盆架主要连接和固定磁路部分及振动部分。

(7)音箱的分类:答:常见的音箱按下同的结构及形式,可作如下分类:封闭箱:气垫式,ASW式倒相箱:倒相式,迷宫式,被动辐射式,RI式等号筒式音箱:前、后负载式控制指向性音箱:球形,声柱,多面式等目前市场上最常用的是封闭箱及倒相箱(8)书架箱是否能一比一还原录制前的音响效果?答:不可能,只能是接近,不谈扬声器的失真、导线的传播所造成的信号损失,光就交响乐所轻易达到的100dB以上的声压级就非一般音箱所能达到的。

更何况如果是一支管弦乐团,其定音鼓鼓皮震动所牵动的空据气量,就要比书架箱多。

如果想产生接近真实的舞台效果,书架箱必须具备完美的频率响应及能量再现,加外还需足够大的听音环境。

(9)小音箱是否比大音箱声音更靓?答:小音箱具有大音箱所没有的特性:A、前面板面积小使其在比较小的听音环境内能轻易营造舞台效果B、分频网络的简单易于调节C、成本较低但是设计出色的落地音箱具有更加均匀的频率特性及匀称的高、中、低音能量,使还原的音像更接近真实。

因此,大音箱的物理特性明显好于小音箱。

在设计、搭配、环境较理想的前提下,大音箱的表现更胜一筹。

(10)是否音箱越重声音越好?答:不一定,音箱重能反映箱体所用的材料扎实,不易引起箱振,因此这是产生好声音的条件之一。

有很多音箱厂家利用加厚的中密度板(MDF)甚至高密度板,或在箱体内加支撑条、声室来加固音箱结构及减低不必要的驻波和声压。

另有甚者使用金属、混泥土、天然花岗石来制作箱体。

这些都能加重音箱的重量,以免扬声器单元在大动态振动时促使箱体谐振,产生音染,这种箱声将大大影响音质(低音浑浊,中音空洞)。

(11)什么是尊宝的ABR技术?答:可调整式低音反射结构简称ABR(Adjustabe Bass Reflex),Jamo 的SR170,200,300,500上都运用了这种技术。

我们知道在例相箱中都有低音反射孔,其例相管的长度是固定的,但ABR则指例相管的的长度是可以调节,如果管的长度发生变化,音箱的低音音量也相应变化,管的长度越长(顺时针旋转),低音越强,调整的范围在100Hz时约为+/2.5Db。

(12)多路多单元是否忧于二路单元?答:由于单一的振膜无法重放全音域(20Hz--20KHz),因此二路单元设计是较简单的分频推动方式。

然而多路设计可以使每个扬声器工作于其最佳频响范围内,覆盖的范围广,整个音箱的频率响应极其均衡且承受力也将有所提升。

但是每多一路单元,必定使分频器复杂化,相位难以调节。

所以无论是多路或二路设计,都有其优缺点,应视环境及实际所需而定,否则顾此失彼,虽然是好的音箱却不适合自己。

一般录音室所用的专业监听级音箱以二分频居多,主要是占地少,易搬动,且能提供相对准确的音色及分析力。

(13)双接线格柱是否必定单接线柱音响效果更佳?答:双接线接驳音箱,是将高、中、低音之间的互相干扰降低。

目前最彻底地做法是双功放/双线分音,但其效果却视具体环境而定。

由于使用双功放,其输入功率有所提升菜可能影响整个音域的平衡。

另外,如果在听音环境较小的地方使用双功放/双线分音,而原有的音箱就属丰满厚实类,声音能量太多,效果反而不好。

真正的双线分音是从接线柱到分音电路到单元都是独立的,从而使单元与单元之间的干扰减到最低。

然而有些厂家只是使用双线分音的接线柱,内部的分频网络却并非独立,这种假的双线分音对提高音质并不会有任何作用。

(14)音箱内是填吸音棉的作用是什么?答:吸引材料是用来吸收音箱内的气流,减低驻波及共鸣。

相关文档
最新文档