《量子力学基础和原子、分子及晶体结构》习题和思考题

合集下载

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案量子力学基础习题一、填空(用正确答案填空)1101、光波粒二象性的关系式为_______________________________________。

1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。

1103. 在电子衍射实验中,│? 对于电子,它代表___________________。

1104.它解释了不确定性关系为。

1105.一组正交和归一化的波函数?1.2.3,….正交性的数学表达式是,归一性的表达式为。

1106、│?(x1,y1,z1,x2,y2,z2)│2代表______________________。

1107、物理量xpy-ypx的量子力学算符在直角坐标系中的表达式是_____。

1108、质量为m的一个粒子在长为l的一维势箱中运动,(1)体系哈密顿算符的本征函数集为_______________________________;(2)体系的本征值谱为____________________,最低能量为____________;(3)体系处于基态时,粒子出现在0─l/2间的概率为_______________;(4)势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________;(5)若该粒子在长l、宽为2l的长方形势箱中运动,则其本征函数集为____________,本征值谱为_______________________________。

1109.质量为m的粒子被限制在边长为a的立方体中。

波函数?______;;当粒子处于某种状态时?二百一十一211(x,y,z)=当,最大概率密度处的坐标为7h2_______________________;若体系的能量为,其简并度是_______________。

24ma3h21110、在边长为a的正方体箱中运动的粒子,其能级e=的简并度是_____,24ma27h2e'=的简并度是______________。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。

解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c=+ 可得p ===h p λ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。

解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmE h 12220107.722p h -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。

已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095k λϕ--⨯=== , 5.48ϕ= 22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯ 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。

22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

量子力学基础习题一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。

1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。

1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。

1104、测不准关系是_____________________,它说明了_____________________。

1105、一组正交、归一的波函数ψ1, ψ2, ψ3,…。

正交性的数学表达式为 ,归一性的表达式为 。

1106、│ψ (x 1, y 1, z 1, x 2, y 2, z 2)│2代表______________________。

1107、物理量xp y - yp x 的量子力学算符在直角坐标系中的表达式是_____。

1108、质量为 m 的一个粒子在长为l 的一维势箱中运动,(1)体系哈密顿算符的本征函数集为_______________________________ ;(2)体系的本征值谱为____________________, 最低能量为____________ ;(3)体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ;(4)势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________ ;(5)若该粒子在长l 、宽为2l 的长方形势箱中运动, 则其本征函数集为____________,本征值谱为 _______________________________。

1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。

波函数ψ211(x ,y ,z )= _________________________;当粒子处于状态ψ211时,概率密度最大处坐标是_______________________;若体系的能量为2247ma h ,其简并度是_______________。

《量子力学基础和原子、分子及晶体结构》习题和思考题

《量子力学基础和原子、分子及晶体结构》习题和思考题

《结构化学》课程作业题第一部分:《量子力学基础和原子结构》思考题与习题1. 经典物理学在研究微观物体的运动时遇到过哪些困难?举例说明之。

如何正确对待归量子论?2. 电子兼具有波动性的实验基础是什么?宏观物体有没有波动性?“任何微观粒子的运动都是量子化的,都不能在一定程度上满足经典力学的要求”,这样说确切吗?3. 怎样描述微观质点的运动状态?为什么?波函数具有哪些重要性质?为什么?4. 简述薛定谔方程得来的线索。

求解该方程时应注意什么?5. 通过一维和三维势箱的解,可以得出哪些重要結論和物理概念?6. 写出薛定谔方程的算符表达式。

你是怎样理解这个表达式的? *7. 量子力学中的算符和力學量的关系怎样?8. 求解氢原子和类氢离子基态和激发态波函数的思想方法是怎样的? 9. 通过氢原子薛定谔方程一般解的讨论明确四个量子数的物理意义。

10. 怎样根据波函数的形式讨论“轨道”和电子云图象?为什么不能说p +1和p -1就是分别代表p x 和p y ? 11. 样来研究多电子原子的结构?作过哪些近似?用过哪些模型?试简单说明之。

12. 电子的自旋是怎样提出的?有何实验依据?在研究原子内电子运动时,我们是怎样考虑电子自旋的?*13. 哈特里-福克SCF 模型考虑了一些什么问题?交换能有何意义?14. 怎样表示原子的整体状态?光谱项、光谱支项各代表什么含义?洪特规则、选择定则又是讲的什么内容?15. 原子核外电子排布的规律是什么?现在哪些问题你比过去理解得更加深入了?通过本部分的学习,你对微观体系的运动规律和特点掌握了多少?在思想方法上有何收获?16. 巴尔末起初分析氢原子光谱是用波长)(422-=n n c λ,其中c 为常数,n 为大于2的正整数,试用里德伯常数H R ~求出c 值。

17. 试计算氢原子中电子处于波尔轨道n = 1和n = 4时的动能(单位:J )和速度(单位:m·s -1)。

18. 已知电磁波中电场强度ε服从波动方程222221t c x ∂∂⋅=∂∂εε,试说明如下函数⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=t x t x y νλπεε2c o s 0),(是这个方程的解。

结构化学练习之量子力学基础习的题目附参考问题详解

结构化学练习之量子力学基础习的题目附参考问题详解

实用标准文案精彩文档量子力学基础习题一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。

1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。

1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。

1104、测不准关系是_____________________,它说明了_____________________。

1105、一组正交、归一的波函数ψ1, ψ2, ψ3,…。

正交性的数学表达式为 ,归一性的表达式为 。

1106、│ψ (x 1, y 1, z 1, x 2, y 2, z 2)│2代表______________________。

1107、物理量xp y - yp x 的量子力学算符在直角坐标系中的表达式是_____。

1108、质量为 m 的一个粒子在长为l 的一维势箱中运动,(1)体系哈密顿算符的本征函数集为_______________________________ ;(2)体系的本征值谱为____________________, 最低能量为____________ ;(3)体系处于基态时, 粒子出现在0 ─ l /2间的概率为_______________ ;(4)势箱越长, 其电子从基态向激发态跃迁时吸收光谱波长__________ ;(5)若该粒子在长l 、宽为2l 的长方形势箱中运动, 则其本征函数集为____________,本征值谱为 _______________________________。

1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。

波函数ψ211(x ,y ,z )= _________________________;当粒子处于状态ψ211时,概率密度最大处坐标是_______________________;若体系的能量为2247m a h ,其简并度是_______________。

量子力学思考题及解答

量子力学思考题及解答

量子力学思考题1、以下说法就是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。

解答:(1)量子力学就是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。

(2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而就是量子力学实际上已经过渡到经典力学,二者相吻合了。

2、微观粒子的状态用波函数完全描述,这里“完全”的含义就是什么?解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。

如已知单粒子(不考虑自旋)波函数)(r ϖψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其她力学量的概率分布也均可通过)(r ϖψ而完全确定。

由于量子理论与经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。

从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。

3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。

解答:设1ψ与2ψ就是分别打开左边与右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ与2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不就是概率相加,而就是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ与2ψ的干涉项]Re[2*21*21ψψc c ,1c 与2c 的模对相对相位对概率分布具有重要作用。

4、量子态的叠加原理常被表述为:“如果1ψ与2ψ就是体系的可能态,则它们的线性叠加2211ψψψc c +=也就是体系的一个可能态”。

(1)就是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=;(2)对其中的1c 与2c 就是任意与r ϖ无关的复数,但可能就是时间t 的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《结构化学》课程作业题 2009.1.15第一部分:《量子力学基础和原子结构》思考题与习题1. 经典物理学在研究微观物体的运动时遇到过哪些困难?举例说明之。

如何正确对待归量子论?2. 电子兼具有波动性的实验基础是什么?宏观物体有没有波动性?“任何微观粒子的运动都是量子化的,都不能在一定程度上满足经典力学的要求”,这样说确切吗?3. 怎样描述微观质点的运动状态?为什么?波函数具有哪些重要性质?为什么?4. 简述薛定谔方程得来的线索。

求解该方程时应注意什么?5. 通过一维和三维势箱的解,可以得出哪些重要結論和物理概念?6. 写出薛定谔方程的算符表达式。

你是怎样理解这个表达式的? *7. 量子力学中的算符和力學量的关系怎样?8. 求解氢原子和类氢离子基态和激发态波函数的思想方法是怎样的? 9. 通过氢原子薛定谔方程一般解的讨论明确四个量子数的物理意义。

10. 怎样根据波函数的形式讨论“轨道”和电子云图象?为什么不能说p +1和p -1就是分别代表p x 和p y ? 11. 样来研究多电子原子的结构?作过哪些近似?用过哪些模型?试简单说明之。

12. 电子的自旋是怎样提出的?有何实验依据?在研究原子内电子运动时,我们是怎样考虑电子自旋的?*13. 哈特里-福克SCF 模型考虑了一些什么问题?交换能有何意义?14. 怎样表示原子的整体状态?光谱项、光谱支项各代表什么含义?洪特规则、选择定则又是讲的什么内容?15. 原子核外电子排布的规律是什么?现在哪些问题你比过去理解得更加深入了?通过本部分的学习,你对微观体系的运动规律和特点掌握了多少?在思想方法上有何收获?16. 巴尔末起初分析氢原子光谱是用波长)(422-=n n c λ,其中c 为常数,n 为大于2的正整数,试用里德伯常数H R ~求出c 值。

17. 试计算氢原子中电子处于波尔轨道n = 1和n = 4时的动能(单位:J )和速度(单位:m·s -1)。

18. 已知电磁波中电场强度ε服从波动方程222221t c x ∂∂⋅=∂∂εε,试说明如下函数⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-=t x t x y νλπεε2cos 0),(是这个方程的解。

其中c 表示光速。

19. 试计算具有下列波长的光子的能量和动量(a )1 nm (X-射线) (b ) 200 nm (紫外光) (c )600 nm (可见光) (d ) 10 4 nm (红外线) (e ) 1 m (微波) (f ) 10 m (无线电波) 20. 计算下列粒子的德布罗意波长,并说明所得结果的物理意义。

(a )具有200 eV 动能的电子; (b )具有105 eV 能量的光子; (c )以1m·s -1速度运动的小球(质量为0.3㎏); (d )相应于波尔轨道n = 1和n = 100的电子。

21.试确定在戴维逊-革末实验中加速至75 eV 的电子束垂直打在镍单晶表面上所得强度最大时的反射角。

22. 假定长度为l =200 pm 的一维势箱中运动的电子服从玻尔的频率规则12n n E E h -=ν,试求: (a ) 从能级n +1跃迁到n 时发射出辐射的波长λ ; (b ) 波数ν(单位㎝-1).23. 试证:如果粒子位置的不确定量等于这个粒子的德布罗意波长,则此粒子的速度不确定量等于此粒子的速度。

24. 用一台光子显微镜测定原子中电子的位置,定到10-11 m 范围内,试问用该法定电子的位置时,电子的動量不确定量有多大?25. 假定三维势阱中薛定谔方程的解具有如下形式:)()()(),,(cz n b y n a x n abc z y x z y x n n n zy x πππψ⋅⋅⋅=sin sin sin 8(式中:0 < x < a , 0 < y < b , 0 < z < c )(a ) 试证明这函数是归一化的:(b ) 在a = b = c = 100 pm 情况下,试求出直径为1.0=∆=∆=∆z y x pm ,而其中心在x =20 pm,y =30 pm , z =50 pm 的微观体积元中,发现一个电子处于这两种状态⎪⎩⎪⎨⎧211112zy x n n n 时的几率。

26.下列函数,哪几个是算符d 2 / dx 2的本征函数?并求出相应的本征值:(a ) imxe, (b ) sin х; (c ) x 2+y 2; (d )xe x a --)(27. 如果算符Qˆ对任两个波函数ψ1和ψ2的作用满足1ˆψQ =1φ, 2ˆψQ =2φ,而对于1ψ和2ψ的任意线性组合2211c c ψψ+和(c 1和c 2分别为任意常数)能满足Q ˆ(2211c c ψψ+)=1c Q ˆ1ψ+2c Q ˆ2ψ=1c 1φ+2c 2φ 则称算符Qˆ为线性算符。

试问x p ˆ、dx d 、22dxd 中哪几个是线性算符? *28. 如果算符Qˆ能满足 ()⎰⎰⎰****==ψτψφτφψQ ˆd Q ˆd Q ˆφd τ则称算符Qˆ是厄密算符。

试问x p ˆ、dx d 、22dxd 中哪几个是厄密算符? 29. 试求长度为l 的一维势箱中,处于n = 3状态的一个粒子的x 2和p 2的平均值2x 、2p 。

30. 在边长为a 、b 、c 的三维势箱中,求量子数为n x 、n y 、n z 状态时的:(a )x , (b )x p ;试问:(c )2x 是否等于()2x ;(d )xy 是否等于y x ⋅。

31. 请写出+Na 及-F 的薛定谔方程算符表达式。

32. 在原子、分子问题的讨论中频繁地出现这样的积分⎰∞+-=1n n r n dr r e ββ!试用关于定积分的微分的莱伯尼兹(Leibniz )定理dr )r ,(f dr r ,f d d ba baββββ⎰⎰∂∂=)(对上述积分结果作简单的推导。

33. 假定激发态arer b N r --=)()(22ψ是氢原子径向薛定谔方程:R E R re Z dr R d r dr R d m ⋅=-+-222222)( 的一个解,试求其a ,b ,N 的值以及相应的能量E 。

34. 假定氢原子的激发态具有这样的形式)(r f y ⋅=ψ,试根据薛定谔方程的球极坐标形式推导其径向方程为:)()()(r f E r f re Z dr df r dr f d m ⋅=-⋅+-222242 35. 已知类氢离子某一激发态的径向波函数及球谐函数分别为03222023066814a /r Z 0/ln e a r Z a r Z a ZR -⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=, θπcos Y m l 43=, 试作该电子云的径向分布及角度分布示意图,并写出其量子数n ,l ,m 的值,为什么? 36. 试验证:(a )氢原子波函数2222333333y x xy zy zx r z d d d d d--ψψψψψ,,,,是彼此正交的。

(b )对于一定角量子数l 的所有角度分布函数),(φθ2Y 的总和是与φθ、无关的常数。

由此可得出什么结论? 37. 试求在r =1.1a 0→1.105 a 0,θ = 0.2π→0.201π,φ = 0.6π→0.601π所围成的体积元内找到氢原子1s 电子的几率。

38. 在上题体积元内找到氢原子2p z 电子的几率为何?39. 请写出Be 的激发态Be (1s 22s 12p 1)的所有可能的斯莱脱行列式波函数。

40. 试由氦元素的激发态(1s )1(2s )1的下自旋态的斯莱脱行列式推导库仑能和交换能的表达式,并排出它的光谱项。

41. 验证下列电子组态所构成的光谱项: (a ) ns 1np 1: 3P ,1P ;(b ) np 1nd 1: 3F ,3D ,3P ,1F ,1D ,1P 。

42. 试找出周期表中前10个元素基组态的基谱支项的符号。

43. 元素镝(66号Dy )基态中最后增加的一个电子的四个量子数n 、l 、m 、m s 是什么?试推断该元素基组态的基谱支项。

44. 第39号元素钇(Y )的可能组态由5s 24d 1及5s 14d 2,由光谱实验知其基谱支项为32D ,试判断那种组态是正确的。

第二部分:《化学键理论、分子结构及分子对称性》思考题与习题1.何谓变分原理,试加以证明。

何谓线性变分法。

2.分子轨道理论有哪些要点?3.定域分子轨道和非定域分子轨道的区别与联系如何?4.杂化轨道理论的基本原则是什么?5.休克尔近似的基本思想是什么?6.分子图怎样得来的?它有什么价值?7.以H 2O 分子为例说明对称元素和对称操作的含义。

如何确定分子的所属点群。

8.如何应用分子对称性判断分子的旋光性和极性? 9.简述特征标表中各符号的意义。

10.何谓点群的对称性匹配线性组合,如何利用特征标表加以构造。

11.若H 2的试探变分函数为2211c c φφψ+=,试利用变分积分公式并根据极值条件0c 1=∂∂E 0c 2=∂∂E求出12s 1211s 1112c c S E H S E H ---= (s E 是最低能量) 12.若某波函数的线性组合形式为⎥⎥⎤⎢⎢⎡+=21211c c c φφψ)(利用ψ的归一化条件试求当c 1 = c 2 时,c 1可表示为[]2122121112c -++=S S S13.根据H 2的键长(e R =0.74Å)数据,按公式03120a R20e a R a R S -⎥⎦⎤⎢⎣⎡++= 计算出H 2分子中两个1s 原子轨道的重叠积分。

14.对于极性分子ab ,如果分子轨道中的一个电子有90%的时间在a 的原子轨道a φ上,10%的时间在b 的原子轨道b φ上,求描述该分子轨道波函数的形式(此处不考虑原子轨道的重叠)。

15.如果原子a 以轨道d yz ,原子b 以轨道p x 沿着x 轴(键轴)相重叠,试问能否组成有效的分子轨道?为什么? 16.指出序,并说明其理由。

的键长、键能大小的顺和、-+222O O O 17.用分子轨道理论讨论HBr 分子结构。

18.用分子轨道理论估测--++222222F N F N 、、、的稳定性和CO N O H 222、、、+的磁性。

19.用分子轨道法简明讨论NO 和+2O 分子的结构。

*20.试求等性sp 、sp 3杂化轨道的波函数形式。

21.根据s φ和x p φ原子轨道的正交归一性,证明两个sp 杂化轨道互相正交)(1=+βα。

1φ=x p s φβφα+2φ=x p s φαφβ-22.说明--+2444F e B BF NH 、、离子的几何构型和成键情况。

23.写出H 2S 、PCl 3和CH 4分子的定域分子轨道形式。

相关文档
最新文档